
A UK view on the problems of logistic support and total cost of ownership
estimations for future commercial software based naval combat systems

Authors

1Michael Looney
Defence Evaluation Research Agency (DERA), UK

Combat Systems Department
DERA LBTS

Southwick Road
Cosham, Hants, UK

PO6 3RU
Tel: + 44 23 9231 2650

e-mail: mjlooney@dera.gov.uk

Shane Lunga
Defence Evaluation Research Agency (DERA), UK

Combat Systems Department
DERA LBTS

Southwick Road
Cosham, Hants, UK

PO6 3RU
Tel: + 44 23 9231 2771

e-mail: sblunga@dera.gov.uk

1 Point of Contact

Abstract

There has been a fundamental change to the
way the next generation of military combat
systems will be procured and developed.
Gone are the stove-piped, custom built
systems of old when the defence budget was
top dog, the new era is demanding a new
approach. Mastering through-life support is
central to future success in the procurement
of naval combat systems that will be based
on commercial off-the-shelf products, and
cost estimation is our main tool. The work
presented in this paper is premised on the
realisation that for a system to meet all its
acceptance criteria it must be built to do so.
Likewise for a system to be costed for
effectiveness throughout its life it must be
built to be costed. Just as it is very difficult
to test a system that was built without
testability as one of the prime considerations
the work presented here is an attempt to
shed light on all the issues that should
concern builders of systems with long in-
service lives to ensure that their goals are
met.

1. Introduction

While it is possible to postulate several
technical options for how future military
combat systems might be supported during
their 30 years or more of in-service life, the
final choice will lie with the procurement
authorities whose primary concern is that of
cost. The move to commercially based
software for future systems has introduced
factors into the support equation which were
never strictly of concern to military systems
procurers in the past. These include issues
such as rate of change of commercial
products, obsolescence and withdrawal of
vendor support. Affordability and therefore
cost is the decisive factor for systems
procurers. This cost manifests itself in many
guises that are not always obvious but
invariably arise from the need for the systems

to evolve or be upgradeable. The costs spans
areas such as:

• The cost of initial development and
deployment

• The cost of software changes
themselves

• The cost of post-integration
assessment, evaluation and
certification of compliance with
mission-critical requirements

• The cost of loss of sea or air time for
military personnel

• The cost of licensing and
redistribution rights

There is therefore an overwhelming need to
careful assess the desirability of frequent
system upgrades bearing in mind the cost
estimates. To address these realisations the
shape of the support curve has changed.
Gone is the major half life refit at 10 to 15
years, with perhaps a final add-on at 20 years
to see the system through operationally. The
demise of that approach also means the
disappearance of the cost profile and
budgeting process that was well understood.
We had a handle on initial development
costs; the work at the Software Engineering
Institute (SEI) has produced a new
development paradigm which allows for the
necessary trade-offs etc. and the work at
University of Southern California (USC) has
produced a cost model, Constructive COTS
Software Integration Cost Model
(COCOTS), which can be used with that
development approach. Through life costs
however still remain a fertile ground for
research.

In the main part of this paper we will look at
some research initiatives that are being
pursued to address through life costs. These
will inevitably be less formalised but be
descriptive enough to aid understanding of
potential solutions. In section 2 we briefly
present the UK Ministry of Defence (MoD)

’s view of the challenge for system procurers.
Section 3 discusses the research initiatives
concentrating on the practical steps being
taken. Section 4 tries to elaborate on the lack
of fundamental theory with which we can
formulate hypotheses that we can test.

2. The MoD Procures Naval Combat

Systems

2.1 The Problem

The MoD procures naval military systems
that include both the vessels and the software
systems that go with them. These systems are
expected to last about 30 years and are very
expensive to develop and keep operationally
capable for that length of time. Military
budgets are continually falling while the pace
of technological change is speeding up.

Every three or so years the MoD has to puts
its case to the government for its projected
funding requirements. Technological changes
and constantly changing mission types make
cost prediction extremely difficult. What the
MoD essentially needs is a procurement
process that will allow it to say to the UK
government treasury ‘This is the system we
want to acquire and this is how much it will
cost to develop, deploy and maintain for the
next 30 years’.

2.2 The MoD’s System Development: The
View

The MoD assets it can achieve its objective
of acquiring systems better and cheaper by
following a strategy that has COTS products
providing most of the capability of their
systems, ‘The adoption of COTS within the
Future Attack Submarine (FASM) IT
systems is not an issue, it will happen…..
The widescale use of COTS will require
continued through life and accepted funding
for a technology refresh policy….. To be
able to make informed decisions on the
strategy and approaches that are used, a cost
model must be produced for the whole

submarine….’
[DERA/SS/WI/WP980106/B.0].

3. Research Initiatives

3.1 Current Practical Initiatives

 The necessary research to address the issues
associated with the total through life costs of
a commercial software based system is still in
its infancy. In the UK Ministry of Defence
(MoD) there is a major research
programme which is looking at de-risking
future naval combat systems in terms of
facilitating future upgradeability, affordability
and capability. In that research initiative there
are some basic investigations being carried
out into the technical options that are open
for through life support.

As a starting point the UK MoD has
recognised a few non-technical enabling
fundamentals for successful future cost
estimations; the identification of the
necessary processes; the generation of the
appropriate policies and the means to ensure
they are followed. In the area of through life
cost the approach being adopted is to look at
the spectrum of technical options and to
identify two or three which appear to have
the necessary characteristics in terms of
acceptable process and technical capability.

The first stage is the identification of the
spread of options and the obvious starting
point is with the most market driven which
would be to change any software component
whenever a new release had been developed
and made available. This will require a means
of knowing the state of each system in terms
of configuration of existing components built
into the system and a detailed knowledge of
the supply market for each of those
components as well as some means of
keeping track of new releases. The current
state of all systems would then need to be
upgraded with the new release in some
controlled fashion. However this would not
necessarily be a straight forward process

because of the possible ‘ripple effect’, - the
upward or downward dependencies which
can so often be found in commercial
packages. It would require investigation of
the impact on the other components which
might use the new package or be used by it.
It will be necessary to identify the process
supporting this approach in some detail to
ensure that the full implications are
understood and captured. This process is
then taken as the basis to generate an
appropriate cost model extension for
COCOTS which can then be populated to
provide the information needed to assess the
total cost of ownership of the system.

At the other extreme it is necessary to
consider the process by which the software
can be upgraded at a major refit point during
the system in service life. This would be very
much in line with the existing support
approach but there needs to be some
assessment of the implications of adopting
this paradigm. The main problem would be in
the way in which obsolescence could be
handled, i.e. the difficulties of being able to
support the system even if the vendor had
ceased to support the product. While there
might only be a small problem for the first
few years this would grow with time and
might be unsupportable. The necessary
analysis of component change and their
implications in both the hardware and
software domains must be done to provide
the full understanding of the process and its
implications before attempting to generate an
appropriate extension to the cost model.

Having looked at the two extremes it will
then be necessary to identify some
intermediate paradigms which could lend
themselves to more detailed analysis. This is
probable the most difficult aspect of this
piece of research. One approach might be to
examine the approaches being taken by other
major projects in this area such as the US
New Attack Submarine or the F22 which has
already had problems with chipset
obsolescence. Another would be to consider

the approaches which have been put forward
from the more academic or commercial
domain which talk about ‘throw away
software’ or, in a similar fashion, the open
source model. However, as an initial step in
identifying the necessary process options
between the two extremes already given, it
has been agreed within our research
programme to consider a two year upgrade
cycle and to use that as the basis for the first
attempt at generating a through life cost
model. This is in some ways similar to the
‘throw away’ approach in that the system
software will be issued at the end of
development and an upgraded set of
software issued at two yearly intervals to
replace the existing configuration.

 Our approach is multi-faceted; the first stage
is to identify the types of software
components and the frequency with which
they change. Then, using our experience in
the use of COTS software components
gained from the research over the last few
years, to come up with some level of ‘ripple
effect’ which could be applied depending on
the type of component being changed. In
parallel work is underway to generate some
process model which will identify the
necessary tasks that will need to be
performed to achieve an upgrade cycle and
to derive from that some form of cost model
which can be applied. There is also work
looking at the indirect costs which are
associated with the testing and acceptance
aspects of any change. While it should be
possible to identify the fixed costs of carrying
out any laid down acceptance procedure it
may well be necessary to reconsider the
levels of testing and acceptance which need
to be carried out on the final platform. The
standing costs per day of using an
operational platform will have to be balanced
against the ability to achieve an adequate
level of testing in some integration
environment which could provide the
necessary test capability for many aspects of
system acceptance. These are issues which
will impact the acceptability of any new

support paradigm for commercially based
military combat systems.

3.2 Lack of reliable cost modelling

techniques

Despite the popularity of techniques such as
COCOMO and COCOTS the practicalities of
software cost estimations that can reliably
guide systems procurers in through life
budgeting are not well understood. The
reason is not surprising if we realise that
software will always be a conceptual
construct; data sets, functions and their
invocations, and relationships between data
items[Brooks, 1986]. These remain the same
in whatever domain we build software. The
problem with software is therefore its
flexibility which allows the same constructs
to be used in many different domains while
what is sought is repeatable patterns that can
be recognised in other systems. The tendency
with us system designers and ultimately those
trying to extract predictable cost models is
we inevitably focus on the solutions. We talk
of ‘technology insertion’ and ‘technology
refresh’ which in essence are solutions to
problems. Insertion and refresh are patterns
of solutions which we then use for cost
modelling. We attempt to model the cost
involved in inserting new technology to
increase capability or refresh the technology
to against obsolescence and since ‘software
systems are partial simulations of the
problems we become easily persuaded that a
description of the software is a description of
the problem’[Jackson, 1994]. As a
consequence we over-emphasize the solution
pattern and use it to make a cost model. The
answer to cost estimation may lie in the
problem analysis.

Since software solutions reduce ultimately to
the same conceptual constructs that span
many domains the discriminator between
software cost estimations lie in the problems
encountered. Developing software for
combat systems and that for car engine
management systems reduces to data items

and their relationships, functions and their
invocations etc. The problem domains are
however very different. Johnson, an expert
in the current hot topic of software patterns,
says in [Johnson, 1994]: “We have a
tendency to focus on the solution, in large
part because it is easier to notice a pattern in
the systems that we build than it is to see the
pattern in the problems we are solving that
lead to patterns in our solutions to them”.
We contend that if the MoD could find
patterns in the problems that it encounters in
through life costs then it could at least start
to have a handle on the cost models that
could be populated with metrics to give
reliable estimations. A cost modelled
problem that recurs in a domain is more
likely to be unique to that domain than a
solution cost model. The recent rise to the
fore of component based development
testifies to the popularity of solution oriented
thinking than problem focussed analysis. This
is not to say that the former has no place it
has, except that the authors asset that
problems would be better guides to the cost
models in a particular field. Identification of
recurring problems within combat systems
through life support should be the starting
point to getting the cost models.

4. Summary

 The main combat system research
programme will provide the means by which
the possible paradigm cost models can be
exercised in the form of an experimental
system test bed which will be used to validate
aspects of the support paradigm process
model and any cost model developed over an
extended period. The research will be carried
out with close links into other national and
international programmes of research in this
area. It is hoped that at the end of the work
the UK MoD will be much better placed to
formulate its policy in the area of long term
logistic support for the next generation of
commercially based military combat systems.

 At present we lack adequate cost
generalisations that would help procurers
bring cost estimations under sufficient
intellectual control. Due to this absence of a
coherent theoretical basis for long term cost
modelling most emphasis has been placed on
practicalities for initial integration coding
effort, which although of value offer limited
predictive powers. What we end up doing is
collect data or cost metrics without a
hypothesis we want to confirm. A
combination of problem analysis and case
studies of past support strategies may help
produce cost models that we can use with
confidence. The flexibility of software which
allows it to be applied in different fields while
using the same basic conceptual constructs
suggest that finding cost models maybe
better achieved by trying to find patterns not
only in solutions but more importantly in the
problems.

References

[Johnson, 1994] Ralph E Johnson; Why a
Conference on Pattern Languages? ACM SE
Notes, Vol. 19 Number 1, pages 50-52,
January 1994.

[DERA/SS/WI/WP980106/B.0] Unpublished
DERA report.

[Jackson, 1994] Michael Jackson, Problems,
Methods and Specialisation (A Contribution
to the Special Issue of SE Journal on
Software Engineering in the Year 2001) pp
6-7.

[Brooks, 1986] Frederick P Brooks, No
Silver Bullet – Essence and Accidents of
Software Engineering Information
Processing86: Proceedings of the IFIP 10th

World Computer Congress, 1986

The views expressed in this document are purely those of the authors and do not reflect the views of the
Defence Evaluation Research Agency.

Crown Copyright 2000 - DERA
Published with the permission of DERA on behalf of the Controller HMSO

