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Abstract

Intrusion detection for computer systems is a key problem of the Internet, and the Windows NT
operating system has a number of vulnerabilities.  The work presented here demonstrates that
independent detection agents under Windows NT can be run in a distributed fashion, each
operating mostly independent of the others, yet cooperating and communicating to provide a
truly distributed detection mechanism without a single point of failure. The agents can run along
with user and system software without noticeable consumption of system resources, and without
generating an overwhelming amount of network traffic during an attack.

1. Background

Computer security in today's networks is one of the fastest expanding areas of the computer
industry because protecting resources from intruders is an arduous task that must be automated to
be efficient and responsive [Hale, 1998; GAO, 1996].  Most intrusion-detection systems
currently rely on some type of centralized processing to analyze the data necessary to detect an
intruder in real time [Lunt, 1993].  A centralized approach can be vulnerable to attack.  If an
intruder can disable the central detection system, then most, if not all, protection is subverted.



We describe here the design and implementation of a set of agents ("IDAgent"s), one for each
processor, and a communications mechanism for them, built on top a simple single-computer
intrusion-detection sensor.  All major components of the agents are constructed as threads to
allow them to run concurrently. The main components are written in Java and are a Controller
module, TCP Receiver, UDP Receiver, TCP Transmitter, UDP Transmitter, Agent Window
Manager, Host Sensor, Log Sensor, Message class, and Contact List of known agents. The Log
Sensor is a process in C that continually checks the Windows NT Security Event Log for a
variety of suspicious events (like repeated failed login attempts), and alerts the IDAgent
processes immediately via pipes when it finds something, making use of Windows NT utility
routines.  This approach to security is more aggressive than that specified under Navy IT-21
policy, and we will discuss some of its advantages.

Intrusions generally fall into two categories: misuse and anomalies.  Misuse attacks exploit some
vulnerability in the system hardware or software to gain unauthorized access.  Many of these
attacks are well documented and are easily detected by computer systems, but new ones are
constantly being discovered.  Anomalies are harder to detect since they often originate from an
inside user who already has access to the system.  They are characterized by deviations from
normal user behavior, and detection requires some type of user profiling to establish a normal
behavior pattern.

Several types of detection systems are commercially available.  These can be used individually
or can be combined to provide more protection. A host-based system resides on a single host
computer.  It uses audit logs or network traffic records of a single host for processing and
analysis.  This type of system is limited in scope since it is only able to see its own host’s
environment, and cannot detect simultaneous attacks against multiple hosts.

A network-based system is a dedicated computer, or special hardware platform, with detection
software installed.  It is placed at a strategic point on a network (like a gateway or subnetwork)
to analyze all network traffic on that particular segment.  It can scan data traffic for known attack
patterns.  It can also determine Internet Protocol (IP) addresses that originate outside its subnet.
This system can detect attacks against multiple hosts on a single subnet, but it usually cannot
monitor multiple subnets at one time.  It also cannot detect any host-based attack that does not
pass through it.

Distributed systems allow detection software modules to be placed throughout the network with
a central controller collecting and analyzing the data from all the modules.  This provides a
robust mechanism for detecting intrusions across several subnets and several hosts.  But it
requires a dedicated computer to act as the central controller; centralization can make it
vulnerable to attack.

Today’s hackers use several categories of attacks ranging from simple to very complex. The
basic categories are listed in Figure 1.



One-to-one Attacker uses a single machine to attack a single target machine.
Example: sendmail bugs.

One-to-many Attacker uses a single machine to attack many targets.
Example: probes, denial of service attacks.

Many-to-one Attacker divides assault among multiple outside machines to attack a single
victim.  This is difficult to detect because multiple connections from
multiple sources look more innocent than multiple connections from a
single source.
Example: SYN flood using IP spoofing to deny services.

Many-to-many Many collaborating attackers divide the tasks of probing/attacking multiple
victims.  This poses the same challenge as the “many-to-one” case with the
added complexity of multiple target machines.  This kind of attack is very
difficult to detect.
Example: “Smurf” attack from multiple sources.

Figure 1:  Attack Types (from [Durst, 1999])

[Barrus, 1997] defined ten basic requirements for a good intrusion detection system:

1. A system must recognize any suspect activity or triggering event that could
potentially be an attack.

2. Escalating behavior on the part of an intruder should be detected at the lowest
level possible.

3. Components on various hosts must communicate with each other regarding level
of alert and intrusions detected.

4. The system must respond appropriately to changing levels of alertness.
5. The detection system must have some manual control mechanisms to allow

administrators to control various functions and alert levels of the system.
6. The system must be able to adapt to changing methods of attack.
7. The system must be able to handle multiple concurrent attacks.
8. The system must be scalable and easily expandable as the network changes.
9. The system must be resistant to compromise, able to protect itself from intrusion.
10. The system must be efficient and reliable.

2. Related work

There are hundreds of systems available that perform intrusion detection, intrusion prevention,
and system security checking.  Many perform well and provide a robust detection mechanism,
but few run in a fully distributed environment.  Of those that are distributed, many are Unix-
based systems and will not run on Windows NT platforms.  There are fewer still that are portable
between operating systems.

The systems most similar to the one presented in this paper all have one major difference from it,
in that they are hierarchical in nature.  This places the highest vulnerabilities at the upper level of
the hierarchy.  Degrading or disabling a top-level monitor would severely limit the detection



capability of the system.  None of these systems mention the use of an alert level to determine if
an attack is in progress.

AID [Sobirey and Richter, 1999] is a client-server architecture that consists of agents residing on
network hosts and a central monitoring station.  Information is collected by the agents and sent to
the central monitor for processing and analysis.  It currently has implemented 100 rules and can
detect ten attack scenarios.  The prototype monitor is capable of handling eight agents.  This
system currently runs only on UNIX-based systems.

The AAFID architecture [Zamboni et al, 1998] appears the most similar to the one we propose.
AAFID is designed as a hierarchy of components with agents at the lowest level of the tree
performing the most basic functions.  The agents can be added, started, or stopped, depending on
the needs of the system.  AAFID agents detect basic operations and report to a transceiver, which
performs some basic analysis on the data and sends commands to the agents.  A transceiver may
transmit data to a transceiver on another host.  If any interesting activity takes place, it is
reported up the hierarchy to a monitor.  The monitor analyzes the data of many transceivers to
detect intrusions in the network.  A monitor may report information to a higher-level monitor.
The AAFID monitors still provide a central failure point in the system.  AAFID has been
developed into two prototypes: AAFID, which had many hard-coded variables and used UDP as
the inter-host communication, and AAFID2, which was developed completely in PERL and is
more robust.   They run only on Unix-based systems.

CMDS is a commercial product from Science Applications International Corporation (SAIC)
[Proctor, 1996].  It is a real-time audit reduction and alerting system that uses an expert system
and statistical profiling to analyze audit records.  The system uses distributed daemons running
on host machines to monitor audit files.  Information is sent to the CMDS central server for
analysis by a rule-based expert system.  It also uses a hierarchical architecture with several
CMDS servers reporting to a higher CMDS system.  It currently supports the operating systems
SunOS, Windows NT, Solaris, Trusted Solaris, Ops Intel Workstation, Data General DSO,
HP/UX, IBM LAN Server, Raptor Eagle Firewalls, ANS Interlock Firewalls, and SunOS BSM.
This program appears to be robust across many platforms.

EMERALD [Neumann, 1999] is a system developed by SRI International with research funding
from DARPA.  The EMERALD project will be the successor to Next-Generation Intrusion
Detection Expert System (NIDES).  It is designed to monitor large distributed networks with
analysis and response units called monitors.  Monitors are used sparingly throughout the domain
to analyze network services.  The information from these monitors is passed to other monitors
that perform domain-wide correlation, obtaining a higher view of the network.  These in turn
report to higher-level enterprise monitors that analyze the entire network.  EMERALD is a rule-
based system.  The target operating system has not been stated, but it is being designed as a
multi-platform system.  EMERALD provides a distributed architecture with no central controller
or director; since the monitors are placed sparingly throughout the network, they could miss
events happening on an unmonitored section.



3. Design of a distributed intrusion-detection system

In designing our IDAgent approach, we concentrated on agent communication and coordination
with only a relatively simple set of detection criteria.  Our goal was to explore the distributed
processing aspects of intrusion problems.  Further details are contained in the M.S., theses
[Ingram, 1999] and [Kremer, 1999], both of which are available online from
http://www.cs.nps.navy.mil/people/faculty/rowe/index.html.

3.1 Software choices

The IDAgent base design is implemented in Java version 1.1.8 to be platform independent.
Initial tests of the communications mechanisms were done on Windows NT 4.0 workstations and
Windows NT 4.0 server and Linux version 5.2.  Several trial runs were also conducted in a
mixed environment with NT 4.0 workstation, NT Server, and Linux 5.2, running together. One
problem discovered was that platform independence was difficult to achieve for an intrusion-
detection system because many of the mechanisms used to detect intrusions, such as system logs
and system alert facilities, are specific to a certain platform.  For example, a collection of data
from a system log is processed differently on a Windows NT platform than it is on a Linux or
Sun workstation.  For this reason, we chose a single platform for final testing, and since the
military is migrating primarily to a Windows NT environment, it was chosen.

Figure 2 shows a simple block diagram of the IDAgent components needed for a single host.  All
major components of the agent are constructed as threads to allow them to run concurrently. The
main components and data structures are: Controller module, TCP Receiver, UDP Receiver, TCP
Transmitter, UDP Transmitter, Agent Window Manager, Host Sensor, Log Sensor, Message
class, and Contact List of known agents.

Figure 2: IDAgent Block Diagram
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The Agent Window Manager (written initially by Major Jim Breitinger for another project) was
used after modifications for  the user interface to the IDAgent.  It contains a display frame of 500
by 320 pixels for a text display area.  The lower portion contains an area with control buttons on
a colored background of green, yellow, or red, depending on the current alert level of the
IDAgent.  The control buttons allow the generation of debug data for testing, the display of the
current contact list of known agents, a display of alert messages that caused a change to the alert
status, and a status which indicates a numerical value of the current alert level.

3.2 Controller module

The controller is the brain behind the IDAgent.  Once the main program initializes all variables
and the Window manager is started, the Controller thread is started; it suspends itself when there
is no activity. Any activity in any sensor, receiver, transmitter, or Window Manager of the
IDAgent will activate the controller so that it may analyze incoming messages from other agents
and internal sensors and determine if an intrusion is in progress.  The controller updates the Alert
status of the agent depending on the messages it receives.  The Alert status can range from 0.0 to
1.0 and represents the likelihood that an intrusion is taking place.  Alert levels of 0.0 to 0.4 will
display a green indicator in the user display; 0.4 to 0.7 will show a yellow indicator; and above
0.7 will display red.

The Alert level is increased depending on the “weight” of the message.  All messages are
initially sent with a weight value of 0.0; this prevents the message from affecting the alert level
until the controller has analyzed the message.  Once analyzed the message will either be saved
for future reference or the weight and alert level will increase.  Each message is analyzed when it
arrives.  If an attack is suspected, then an appropriate weight value is assigned to that message,
which in turn increases the alert level of the IDAgent.  If the message is not considered an attack,
then the message weight remains 0.0.

The normalized increase in the alert level, as shown in Figure 3, is inverse-exponential as the
alert value increases.  N = ((1.0 – A) * W) + A), where A = the current alert level, W = the
weight value of a message, and N = the new alert value.  The alert level will approach 1.0 if
many alerts are received.  If no alerts are received within two transmit intervals (10 minutes in
the current implementation), the alert level will decrease following a negative exponential curve.
N = (A * Degradation Factor) where degradation factor is a fraction (0.9 in the current
implementation).  Figure 4 shows the decrease over time.



Figure 3: Alert-Level Increase
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Figure 4: Alert-Level Decrease

If important information is received from an internal sensor, its agent’s controller constructs a
message and sends it to other agents in the network to notify them of an event or action that is
taking place on its own host.  Messages are not forwarded in the network to prevent duplicate
message traffic.  For an example, assume in a network of twenty computers that the agent on
computer nine detects a failed login attempt.  Its controller analyzes the attempt and constructs
an alert message with 0.0 weight that is sent to all nineteen other computers.  Now should the
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following formula = ((LoginFailures / TotalAttempts) – (1 / TotalAttempts)).  Figure 5 shows the
effect of this calculation.

Another internal sensor included in the agent is the host sensor, which uses the contact list of
known agents to determine if an agent has stopped responding.  The host sensor monitors how
many remote agents have contacted it and checks to make sure they are all still functioning.  If
the number of agents not responding reaches a threshold, a message is sent to the controller.

Figure 5: Login-Failure Calculation
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broadcast message from another IDAgent.  If a message is not in the correct format, an exception
is generated and the broadcast is discarded.  Otherwise, a contact record is created with the
remote agent’s identifying information, the port number of its TCP receiver, and the time that the
message was received.  The contact record is placed in a list of known contacts that is used by
the controller and transmitter when sending messages.  Each time a broadcast is received, the
new contact record is compared to the contact list.  If a match is found, the timestamp and the
TCP receiver port number of the original record are updated.  The port number is updated in case
an agent was restarted and is now listening on a different TCP port.  The timestamp allows the
controller to determine the last time that an agent contacted it to aid the host sensor in detecting a
non-responding host.  If an agent fails to broadcast for 3.5 transmit intervals, it is considered by
other hosts to be non-responding and this may result in an alert being generated.

3.4 TCP transmitter and receiver

The Transmission Control Protocol (TCP) Transmitter thread sends messages between agents.  A
message contains information that an agent needs to report an attack.  Since the delivery of such
a message helps in the detection of an intruder, some guarantee of delivery must be expected.
The User Datagram Protocol (UDP) Transmitter does not provide such assurance, but the TCP
protocol is connection-oriented and does [Courtios, 1998].  In the current configuration, the
transmitter will deliver any message to all known agents on the contact list.  It establishes a
connection with the remote agent’s TCP Receiver, transmits all currently available messages,
and closes the connection.

The TCP Receiver thread picks a port to listen on that is not being used by any other components
of the computer on which the agent resides.  It returns this port to a global variable in the
IDAgent so the UDP transmitter explained above will be able to access it to tell other agents
which port the receiver is listening on.  When a message is received, the TCP Receiver queues it
for the controller in the message-in queue and continues listening for additional messages.  A
TCP socket connection must be established between two agents for the message transfer to take
place.  If a connection cannot be established, the sending agent should become aware of the
problem and can report it to its own controller.

3.5 Message and ContactList class data structures

A Message Class defines message objects that can be constructed and transmitted from one host
to another.  The class contains a message code, a data field for a description of the message, an
identifier, a target address, a source address, a time stamp, and a message weight.  The message
code indicates why the message was sent.  The string data field relates to the code and provides
additional description of the code.  The identifier supplies operands, if any, for the code.  For
example, if a message were for a failed login attempt, the identifier would store the account
name.  The target address is the Internet address and host name of the recipient.  The source
address is that of the current host.  Each message is given a timestamp at origination.  The
message weight is the relative importance of the message as determined by the controller
following the methods in section 3.  In the current configuration of the IDAgent, the message
size is 787 bytes when the host name is eight characters.



The ContactList class is a data structure storing information about other known agents.  It
consists of an InetAddress, a port number, and a timestamp.  The InetAddress is a Java data type
that contains the Internet address and host name of a remote host.  The port number is the port
that the remote host has a TCP receiver listening on.  The timestamp contains the last contact
time of a remote agent.

3.6 Host sensor

The function of the host-sensor thread is to determine if any remote agents are not broadcasting
using the UDP transmitter.  It checks the contact list of known agents and compares the time of
last contact to the current time.  If the host has not responded, an alert message is generated and
placed in the controller queue.  The controller will calculate a message weight based on previous
messages.  It will then use the message weight, of this internally generated message, to determine
if there is sufficient evidence to update the system alert level.  The fraction of hosts not currently
responding determines the weight, to limit false alerts when an agent is stopped or restarted by
an administrator.  The host sensor does not cause any external messages to be generated.  It is
assumed that each IDAgent will detect a non-responding host, and therefore external messages
would be redundant.

3.7 Alert parser

The alert parser thread is a utility thread that maintains the internal messages that the controller
uses to detect intrusions.  The alert parser runs approximately every thirty minutes or six
broadcast intervals.  It looks through a list of old alerts and discards any over twenty-four hours
old.  It scans a list of recent alerts and places any over twelve hours old into the old alert list.
This allows the controller to run more efficiently when it only needs to scan recent events.  For
the current configuration, only the recent alerts are used for processing.  The alerts over twelve
hours old were included for future sensor capabilities and are not currently used.

3.8 Audit Log Sensor

The log sensor is another independent sensor thread that automatically retrieves all login
attempts from the system log and passes them to the internal log sensor thread.  It will be
discussed in more detail in the next section.

4. The audit Log Sensor for intrusions

The Navy has issued an order “IT-21” [CINCPACFLT, 1997] providing direction for migration
to the Microsoft Windows NT 4.0 operating system for workstations and network servers, to be
completed by December 1999.  IT-21 was written considering the available NT audit tools that,
up to NT Service Pack 4.0 with the addition of Security Configuration Manager, have been
meager indeed. Without the advantage of commercial security tools specifically able to
implement an audit policy across an entire network, any additions to the IT-21 audit policy could
not have been implemented. As written, the IT-21 audit policy is only an NT audit capability
guide, not a true security audit policy.



It is inappropriate to write a security-policy specification based only on available tools. While
the IT-21 guide is an NT security implementation guide, without an NT security policy
specification guide, the implementation guide by default dictates policy. Perhaps the fault lies
not in the design of the implementation guide but in the lack of an NT security policy
specification guide.

The limitations of the NT audit capabilities should not dictate audit policy. The size and the
maintenance problems of audit files should not result in a tradeoff of size versus manageability
and therefore limit auditing. The number of false alarms should not be the reason to turn off a
segment of auditing but rather filtering rules should limit the number of false alarms. Another
limitation on IT-21 audit policy is that there is no provision for reporting from the audit logs
after the audit data has been collected.

The manual analysis of audit files has been successful in the past when only one system was
being evaluated, but the continual growth and expansion of networks makes that no longer
feasible. If better analysis tools are not developed to analyze and report on host-based intrusions
and misuse, we might as well turn off all auditing altogether, for without automated analysis all
we will see is what we have always seen from the auditing logs – highly unusual events that
stand out. Such events will not appear for a trusted individual who is determined to compromise
sensitive data and undermine the security of the military network.

In designing the Log Sensor we therefore looked at a broader class of intrusive activities than are
currently addressed under IT-21.

4.1 Windows NT event logs

There are three Windows NT event logs. The Application event log records user-application
events, both those selected by the application and system diagnostic events. All processes
running under NT have the ability to log events to the application event log. The use of the
application log by security programs needs to be expanded to include additional events. The
System event log records events logged by Windows NT system services, drivers, and kernel
mode events. The Security event log records Windows NT system security and system auditing
events.  The three event log files are located in the \WINNT\SYSTEM32\CONFIG directory.
Each event log record is stored in the EVT binary record format and is only accessible using the
Windows event-logging interface. We conducted experiments with just the security event log.

The event log record fields are:

The Time Generated field contains the date and time of the event measured in seconds
since Jan. 1, 1970, at 00:00.

The User is the user account associated with the event.

The Computer Name is the computer on which the event occurred.



The Event Identifier is the code number of reported event. This value is specific to the
event source.

The Event Source is the source name, application, service, driver, or subsystem that
reported the event.

The Event Type classifies the type of event. The Event Types of information, warning,
and error are application-log types, while success-audit and failure-audit are security-log
types.

The Event Categories identifies logical categories to which this event belongs.

The Message Strings describe the event in more detail.

Twelve functions of the event logging interface [Microsoft Corp., 1999] can be used by
application programs.  OpenEventLog gets a handle to an already-open event log, opened by
enabling auditing, while CloseEventLog closes it and releases its resources. ReadEventLog reads
the specified event log.  GetOldestEventLogRecord gets the index of the latest record and
GetNumberOfEventLogRecords returns the number of records. RegisterEventSource returns a
handle of a log file to be used by ReportEvent to write an event entry to an event log. This
functionality allows a user program to report events to the event logging service for recording in
the Application event log.  DeregisterEventSource closes the log. BackupEventLog copies the
log before clearing to an archive; ClearEventLog clears all the events in a log file.
OpenBackupEventLog opens a backup log file.  NotifyChangeEventLog allows the logging
service to signal to an event object created by CreateEvent, when a record is written to a
specified log file.  It allows the near real-time processing of security-event records as they are
written, before they can be altered or deleted.

Here is an example of a security-event record.  Event Identifier 539, an account being locked out,
was created by three logins attempts to an account with an incorrect password when the set limit
was two attempts.  The NT Event Viewer program shows the record, which is an input to the NT
Audit Log Sensor.

Date 07/15/1999
Time 7:03:19 PM
User NT AUTHORITY\SYSTEM
Computer D871WS01
Event Identifier 539 ! 539 == Account Locked Out
(Event) Source Security
(Event) Type Failure Audit
(Event) Category Login/Logoff
Detail view:
Description: *Event specific*
Reason: Account locked out
User Name: admin  ! Name of user
Domain: D871WS01 ! Domain (if server, else computer)



Login type: 2 ! 2 == local, 3 == remote
Login Process: NWGINA   ! Process submitting login request
Authentication package: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0

! Program used to authenticate login
Workstation Name: D871WS01

[Staniford-Chen et al, 1999] argues for the importance of a common record format to allow
intrusion data to be shared across a network.  To this end, we create data records with fields:
Date & Time Generated, Event ID, Event Type, Event Category, User Name, Computer name
(Domain), Login Type, and Workstation.  The format of the fields is ASCII text and they are
comma-separated. The records are of variable length and fields reported are dependent on the
record Event Identifier. An example record for the same event above is:

Date 7/15/1999
Time 19:03:19 PM
Event Identification 539
Event Type 16 ! == Failure Audit
Event Category 2 ! == Login/Logoff
User admin
Computer D871WS01 !Domain
Login 2 !(local 2 or remote 3)
Workstation D871WS01

4.2 Implementation of the log sensor

Our Log Sensor makes requests of the event logging service by calling the abovementioned
functions to perform reading, backing up, and clearing of the security event log.  The API
(interface) Dynamic Link Library defines the functions and is used by user-mode Win32
processes to access the security-event log. The log can only be accessed by an user account with
the “manage auditing and security log” privilege set. The event logging service can also access
remote system’ event logs by using Remote Procedure Calls but these calls were not explored in
this program. Figure 6 shows a block diagram of the sensor interface between the NT Audit
Sensor and the IDAgent.



Figure 6: Context of the NT Audit Log Sensor
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5.1 Testing of the Log Sensor

The NT Audit Log Sensor was tested on a dedicated NT workstation where NT security events
of login success, login failure, and locked account occurred and were logged.  The Log Sensor
was notified through the NotifyChangeEventLog function when something was written to the NT
security-event log, and if the event was of the types mentioned, it was parsed, reformatted, and
written to a pipe. Initial standalone tests required the simulation of an IDAgent by a simple
program that read the pipe and wrote to a disk file where the complete transfer could be checked.
The Log Sensor provides real-time parsing of the security-event records to accomplish the
following checks (admittedly incomplete) using Event Identification as the primary event-record
key.

Detection: Audit Policy changed or Event Log cleared.
Description: Verify that Audit Policy changes reflect the organization policy and that the Event
Log is only cleared by the Security Manager.
Action: Monitor the Security Event Log entry for Event Identification 517 where the user name
is other than the Security Manager. Sensor provides a record for Event Identification 517, “Event
Log cleared” from the first record to the new log file after the log has been cleared. Monitor the
Security Event Log entries for Event Identification 612 where the user name is other than the
Security Manager. Sensor provides the record for Event Identification 612, “Audit Policy
Changed”.

Detection: Attempt to exploit default NT user accounts, Administrator and Guest.
Description: The Administrator and Guest accounts that come with the initial NT system have
been renamed by the security policy.  Any Login Failure events with these account names
indicate an attempted intrusion.
Action: Monitor the Security Event Log entries for Event Identification 529 where the account
name is any spelling variation of account “Administrator” or “Guest”. Sensor provides the record
for Event Identification 529, “Login Failure”.

Detection: Multiple Login Failures suggesting intrusion attempt.
Description: Multiple login failure events in a short period of time indicate a possible attempted
intrusion. More weight should be given to a remote failure than a local failure.
Action: Monitor the Security Event Log entries for Event Identification 529. Compare the
number from a workstation over a period of time. Sensor provides the record for Event
Identification 529, “Login Failure”.

Detection: Account lockouts suggesting intrusion attempt.
Description: Accounts are locked out when a defined number of unsuccessful login attempts
occur. Attempts to login after lockout will result in additional lockout events. May indicate a
possible attempted intrusion, but false alarms are possible.
Action: Monitor the Security Event Log entries for Event Identification 539 and Event
Identification 644. Sensor provides the record for Event Identification 539, “Account locked”
and for Event Identification 644, “User Account Locked”.

Detection: User account added, deleted, or modified.



Description: User accounts are changed. May indicate a misuse, but false alarms are possible.
Action: Monitor the Security Event Log entries for Event Identifications 630, 624, and 642.
Sensor provides the record for Event Identification 630, “User account delete”, 624, “User
account created”, and 642, “User Account Modified”.

The following is an example output file, in the format described earlier, from an early test run of
one complete pass of the Log Sensor through a security event log. The log was interspersed with
records of the type the program was capable of detecting and was created specifically for this
test. All records of the types checked for were correctly identified.

8/31/99,17:43:46,612,8,6
8/31/99,16:52:30,624,8,7,test_u,D871WS01,admin
8/31/99,16:52:17,630,8,7,test_u,D871WS01,admin
8/31/99,16:50:42,612,8,6
8/31/99,16:49:19,624,8,7,test_user,D871WS01,admin
8/31/99,16:47:46,630,8,7,Test_acct_lockout,D871WS01,admin
8/31/99,16:47:24,612,8,6
8/31/99,15:14:52,529,16,2,admin,D871WS01,2,D871WS01
8/31/99,15:11:24,529,16,2,kremer,D871WS01,2,D871WS01
8/31/99,15:11:14,529,16,2,kremer,D871WS01,2,D871WS01
8/31/99,14:54:18,612,8,6
8/31/99,14:53:11,612,8,6
8/31/99,14:44:42,612,8,6
8/31/99,13:48:53,529,16,2,Administrator,D871WS01,2,D871WS01
8/31/99,13:48:42,529,16,2,Guest,D871WS01,2,D871WS01
8/31/99,13:28:3,539,16,2,Test_acct_lockout,D871WS01,2,D871WS01
8/31/99,13:28:1,529,16,2,Test_acct_lockout,D871WS01,2,D871WS01
8/31/99,13:28:1,644,8,7,Test_acct_lockout,D871WS01
8/31/99,13:27:58,529,16,2,Test_acct_lockout,D871WS01,2,D871WS01
8/30/99,8:20:50,529,16,2,ADMINTRJ,SPAWAR SSC ,3,\\FINA
8/26/99,15:18:52,529,16,2,admin,ANDROMEDA,2,D871WS01
8/26/99,15:18:39,529,16,2,admin,ANDROMEDA,2,D871WS01
8/26/99,15:18:27,529,16,2,admin,ANDROMEDA,2,D871WS01
8/26/99,14:57:46,517,8,1

The Audit Log Sensor was then executed in a networked environment as described below,
writing its output record written to an output file rather than to a pipe because we did not have
the time to debug the implementation of the pipe to the Controller.

5.2 Restricted network testing

To test the networking facilities, a program was designed that uses some simple detection
mechanisms along with all the necessary components to transmit and receive data over the
Internet.  The first test was performed in the early stages of code development. Only a basic
agent skeleton with TCP Transmitter and TCP Receiver classes was used in order to make an
initial determination of network overhead usage.  Follow-on tests were then conducted with other



parts of the agent operating to get the full effect on network and CPU utilization.  Finally,
simulated alert messages were sent to see how the agents reacted and what impact this reaction
would have on CPU utilization of the host.

Initial throughput testing of the IDAgent was conducted on a closed network of three Micron
166Mhz Pentium computers, each running the Windows NT 4.0 operating system as server or
workstation.  Two of the machines were configured as workstations with 32MB of RAM, and
one was configured as a server with 64MB of RAM.  To prove portability of the basic agent,
tests were also performed on the same machines running the Linux operating system version 5.2.
However, no other portions of the testing were done on Linux, and the results were only used to
show portability of the agent to other platforms.

The agents had no detection capabilities or message processing capabilities during the initial
testing.  Only the network-bandwidth utilization was compared.  Using an Observer network-
packet “sniffer” (a software program used to capture and analyze information being transmitted
over a network), We monitored the network to determine the average bandwidth utilization for
the three agents on a 10Mbps Ethernet 10BaseT network.  The bandwidth measurement includes
usage resulting from network polling, broadcasts, and network overhead on both the Windows
NT and Linux operating systems. The IDAgents were configured to send 5,000 static messages
of approximately 155 bytes each to each of the other agents.  With three agents running, 45,000
messages or approximately 6.975 Megabytes of data was transmitted.  The test was repeated
three times to get an average transmit time.  Figure 7 shows the results.

Figure 7:  Network Bandwidth Utilization
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The transmission of 45,000 messages took approximately 110 seconds, and the average
bandwidth never exceeded 10% of the 10-megabit Ethernet network.  The results were very
encouraging since it will rarely be expected that an agent will need to transmit 5000 messages in
such a short time.

5.3 General network testing

The second test was conducted on an open network in the Computer Science Department at the
Naval Postgraduate School.  The subnet we used is the same one used by most students, faculty,
and researchers in the department.  We used the same three computers and added four additional
workstations, all running the Windows NT operating system version 4.0 workstation.  The
IDAgent was fully configured and included login detection and host failure detection as
described in section 3.  Any successful or unsuccessful login attempts generate a message from
the agent sent to all other hosts that have the IDAgent running; a broadcast message is sent by
each host at five-minute intervals to update the contact list of known agents.  Some general
assumptions were made for this test to determine what an adequate number of login attempts
should be. We estimated the number of daily login alerts based on a ten-user network.  We
assumed each user performs a login approximately three times a day.  We assumed each user
locks the computer screen an additional four times a day, requiring a password to unlock it, and
generating an authentication alert.  Windows NT authenticates users on the network who map a
drive to a shared resource, which also generates an authentication alert on login since the
resource is still open during a screen lock.  It is assumed for this scenario that each user maps
two network drives: one for shared applications and one for a shared file storage location. An
expected login failure rate of 15% is set as the threshold in the IDAgent to reduce false alerts.
With these assumptions, a network of ten users will generate approximately 130 login alerts per
day, which will average approximately 16.25 logins per hour.  Figure 8 shows the expected login
alerts and the acceptable login failure rate for other numbers of users.

 Users Logins /Day Locks/Day Mapped
Drives

Estimated
Alerts

Acceptable
Failure Rate

10 3 4 2 130 19.5
20 3 4 2 260 39
30 3 4 2 390 58.5
40 3 4 2 520 78
50 3 4 2 650 97.5
100 3 4 2 1300 195

Figure 8:  Estimated Login Alerts

Using the same network sniffer as in earlier testing, we monitored the network with no agents
running for one hour to establish baseline utilization.  We then ran seven IDAgents on the
network for one hour, generating over 50 login alerts and producing over 400 message
transmissions.  This is three times more than the average number for an hourly period in our
assumptions.



Figures 9 and 10 show the average number of network packets per second, average number of
broadcasts per second, and percentage of network-bandwidth utilization for the one-hour period
both with and without agents running.  The average number of packets sent while the agents
were running was actually slightly lower than without.  The average number of broadcast
messages increased slightly as expected; the average network utilization decreased slightly as
shown in Figure 10, which was not expected.  However, looking at the percentage of bandwidth
used, the slight drop is insignificant when compared to the total bandwidth available.  The
“average maximum utilization” averages the peak bandwidth usage for each ten-second interval.
This average went up slightly from 1.9 to 2.3, which indicates that the packet transmissions show
more short bursts of data.  From the data collected, it appears that the IDAgent has little effect on
bandwidth consumption in an open network.  During the one-hour time that the agents were
running, approximately 64,000 packets were captured.  Of those packets, only 5,391 were from
one of the computers running an IDAgent, about 8%.  The remaining 92% were from normal
network activity.

Figure 9: Average Packets and Broadcasts
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Figure 10: Percent Network Bandwidth Utilization

5.4 CPU utilization tests

Another test was conducted using the Windows NT performance monitor and logging tool.  We
were able to log and graph the CPU utilization over time with an IDAgent running to see its
impact.  We configured the performance monitor to log processor usage for user programs and
started one IDAgent; no other user programs were running on its computer.  An IDAgent was
also started on another host and login alerts were generated from both computers.  During the
thirty-minute analysis period, approximately 20 alerts were generated.  Figure 11 shows that the
maximum CPU utilization of the agent was 8.145%.  The average utilization over the entire
period was 0.329%.  There are several small usage periods, when the IDAgent was active in
receiving and sending messages.
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Figure 11: CPU Utilization

5.5 Simulated attack scenarios

Several scenarios were used to test the reaction of the IDAgent.  Three computers were used.  In
the first scenario, all three computers had several successful logins from users; then one
computer had a series of unsuccessful login attempts on a single account.  In the second scenario,
several successful login attempts were performed on each computer, followed by a series of
unsuccessful attempts.  In the third scenario, all three computers were used, and many rapid
consecutive unsuccessful login attempts were made from a single administrator account on one
machine.

After allowing all three agents to run for several minutes with no activity, two successful logins
were made on each computer followed by an attack on machine three.  The attacker produced six
successive login failures.  Table 3 shows the login attempts and reactions of the agents with their
corresponding alert level changes.  Machine three responded differently because its weight
calculation was based on attempts being made on its own host, while the other two machine
calculations were based on attempts throughout the entire network because the messages
originated from another machine (See section 3 for calculation details).  The result is a higher
alert level on the machine where the attack is taking place.



Total # of
Attempts

Total # of
Failures

Machine
#1
Message
Weight

Machine
#1
Alert
level

Machine
#2
Message
Weight

Machine
#2
Alert
level

Machine
#3
Message
Weight

Machine
#3
Alert
level

7 1 0.0 0.1 0.0 0.1 0.0 0.1
8 2 0.0 0.1 0.0 0.1 0.1 0.19
9 3 0.072 0.1648 0.072 0.1648 0.249 0.392
10 4 0.150 0.290 0.150 0.290 0.35 0.605
11 5 0.2136 0.4417 0.2136 0.4417 0.4214 0.771
12 6 0.2666 0.5905 0.2666 0.5905 0.475 0.880

Figure 12: Alert Levels for Single Target Attack

The second scenario was much like the first but with an attacker attempting to login on to all
three machines simultaneously instead of just one.  Figure 13 shows the results of the test.  The
alert levels for all machines were very close together since login failures were spread across all
hosts.  The second machine reached a yellow alert level of 0.423 on the twenty-first login
attempt with three local failed attempts, four remote failed attempts, and fourteen successful
logins.  The remaining machines reached a yellow alert level of 0.486 after two more attempts,
one successful and one failing.  A total of twenty-three logins were attempted, eight login
failures and fifteen successful logins.
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11 1 0 0 0.0 0.1 0.0 0.1 0.0 0.1
13 1 1 0 0.0 0.1 0.0 0.1 0.0 0.1
14 1 2 0 0.0 0.1 0.05 0.1450 0.0 0.1
16 1 2 1 0.0375 0.1337 0.0375 0.177 0.0375 0.1337
17 1 2 2 0.0852 0.2076 0.0852 0.247 0.0852 0.2076
19 2 2 2 0.1131 0.2972 0.1131 0.3324 0.1131 0.2972
21 2 3 2 0.1357 0.393 0.1357 0.423 0.1357 0.393
23 2 3 3 0.1543 0.486 0.1543 0.512 0.1543 0.486

Figure 13: Alert Levels for Multiple Target Attack

The IDAgent is designed to suspend transmission of messages for a short period of time if it
comes under a repeated attack, to prevent a flood of network traffic from its own messages.  To
test this, three test machines were started and 40 rapid login attempts were made against an
administrator account on a single host.  After transmitting 25 messages to the other agents, the
IDAgent being attacked continued to log the attack, but it did not continue transmitting messages
until five minutes after the attack had stopped.  Agent response was successful: The attacked



machine had an alert level of 1.0, the highest that can be reached, while both remaining agents
had an alert level of 0.999.

6. Conclusions

This paper has proposed distributed nonhierarchical autonomous agents as an intrusion-detection
mechanism.  Testing with an implementation of such an agent in this environment showed that
neither CPU utilization nor network utilization were heavily loaded by the IDAgent.  Even with
over 50 login attempts within one hour, the network traffic, broadcasts, and processing did not
interfere with normal computer and network operations.  The IDAgent was also able to detect
several scenarios of login attempts from both a single host and multiple hosts, and escalated the
alert level of each agent appropriately.

6.1 Fulfillment of system requirements

We can assess our system in terms of the ten basic requirements for a good intrusion detection
system listed in section 1.

The System Must Recognize Suspect Activity of a Potential Attack: The prototype system could
effectively recognize failed logins, both on a single host and across distributed hosts.  To
recognize other types of activity, sensors would have to be written.  The modular design of the
IDAgent allows the straightforward integration of new sensors.

Escalating Behavior Should Be Detected at the Lowest Level Possible: The requirement to detect
an intruder at the lowest level possible is very subjective.  Triggering an alert the instant a failed
login occurs would generate a large number of false positive alerts; waiting until an attack is
absolutely certain might be too late.  The threshold values in the IDAgent allow the level of
detection to be adjusted to meet requirements.  We believe our IDAgent detected login attacks at
an appropriate level.

There Must Be Interhost Communication Regarding Intrusions and Alert Levels: The IDAgent
program was designed specifically to meet this requirement.  Its transmitter and receiver
components are the means of communication, and the Message Class data structure carries the
information between hosts.

There Must Be Appropriate Response to Changing Alert Level: This requirement was not
implemented in the current configuration of the IDAgent.

The System Must Incorporate Manual Control Mechanisms for Administrators:  The user
interface for the IDAgent includes some control for debugging and determining the status of the
agent.  There are no controls for resetting thresholds or other parameters, but they could easily be
added.

The System Must Be Adaptable to Changing Methods of Attack:  This requirement was only
partially met because only login sensors were written.  Multiple sensors would be needed to
detect changing attack methods.



The System Must Be Able to Handle Multiple Concurrent Attack Threads: IDAgent is a multi-
threaded application that is capable of detecting multiple attack scenarios.  If multiple login
attacks were taking place, the IDAgent should be able to detect all suspicious activity.

The System Must Be Scalable and Easily Expandable: This requirement is fully met by IDAgent.
To scale to a large network, you simply start agents on the added hosts.  Expandability is allowed
through the modular design of the agent.

The System Must Be Resistant to Compromise and Able to Protect Itself from Intrusion: This is
left as future work.  Java provides many built-in security features, though none were
incorporated yet.

The System Must Be Efficient and Reliable: Determination of efficiency was one of the primary
goals of this work and has been adequately achieved in this prototype.  Network bandwidth
consumption and CPU utilization were both tested.  The system was reliable under our limited
testing.

6.2 Future work

Some of the following would provide for a more robust agent for future work and testing.

The current agent does not incorporate security or secure message handling to prevent blocking
of messages or generation of false messages.  Java does provide built-in encryption
mechanisms that could be used.

How does one determine if an agent that is responding is really a trusted agent or a piece of
malicious software used by a hacker?  Some form of authentication should be used to ensure
security.

Running the IDAgent as an application under Java required a few work-arounds during testing.
If the IDAgent was running and the user logged off, the IDAgent would terminate leaving no
protection.  The answer to this problem is to run IDAgent as an NT service.  This was done
successfully; however, the user interface cannot be seen or accessed making it difficult to
monitor the agent.  These problems would have to be overcome to successfully use the agent in a
live network.

The version of Java used in this implementation is an interpreted language and as such runs
much slower than an application written in a lower level language.  Java was sufficient for
prototyping and allowed rapid development of the communication portions of the agent.
However, other languages should be researched.

There must be a response to an attack or intrusion to prevent entry.  The system should be
reactive.



The IDAgent tested here had limited sensor capability.  It could detect user login attempts and
when another agent was not responding.  Other sensors could scan for network traffic patterns,
known attacks, or other system log entries.  The agent was written in a modular fashion to allow
such sensor threads to be included easily.

The threshold values in the agent were set based on our knowledge of network administration.
Testing on a live network would allow the adjustment of the threshold values to better match the
nature of the users in the network.

A configuration file that would allow an administrator to change parameters, variables, and
threshold values without modification of the IDAgent would be a beneficial addition to the
system.

The Log Sensor should be executed as a system service, started at system boot-up under NT
System Services. It can be resident on all NT workstations and servers in the network. Since the
security architecture and the auditing services are the same on servers and workstations, the Log
Sensor can operate on both.

The Log Sensor currently recognizes only a small number of the events that can be audited, but it
could be easily extended to handle more. Such events are set by the audit-policy settings which
are mandated by the security policy.  Programming to read the events and convert to a common
format is needed, but the examples contained in the program should make that  simple. A
common audit format would allow data sharing amongst a variety of security tools.

The Log Sensor could filter more false alarms if desired. A graphical user interface allowing
selective filtering options would be helpful.  The sensor monitors the security log only, but it
could be adapted to monitor the application and system logs with additional threads.

To ensure that the Log Sensor is not sabotaged or crashed, a message indicating the sensor is
alive should be send periodically to the IDAgent. If the IDAgent does not get the expected
message, an appropriate response should be generated.  File access auditing should be set for the
Log Sensor so that any attempt to delete or take ownership of the sensor would be recorded.

Archive backup and clearing of the event logs are maintenance functions that could easily be
added to the Log Sensor.
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