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Abstract 

This paper describes a set of procedures that will enhance the analysis, synthesis, and execution 
of courses of action (COA). The paper presents a set of formal methods for extending the 
capabilit y of probabili stic models (influence nets) to produce rigorous mathematical models that 
reveal the impact of the sequence and timing of actionable events on the outcome and effects 
desired in a situation.  By incorporating timing information, such a model can be converted to a 
Discrete Event System (DES) model in the form of a Colored Petri Net.  The DES model, when 
run as a simulation, can reveal the changes in the likelihood of the desired effects over time for 
any timed sequence of actionable events that comprise a COA.  The paper presents DES analysis 
techniques that can generate all of the possible sequences of probabilit y values of the outcome 
given any COA without simulation. Procedures are presented to select desirable sequences from 
the set of all sequences and determine the temporal relationship among the actionable events that 
will generate a selected sequence of probabilit y values.   

1.  Introduction 

In our modern world, complex situations arise that require the coordinated actions of many 
resources to achieve desired outcomes or effects.  The first step in dealing with these complex 
situations is to develop and select a Course of Action that will l ead to a desired outcome.  A 
Course of Action is composed of a timed sequence of actionable events.  In current practice, 
probabili stic models that relate causes to effects are used to identify the set of actionable events 
that yield the greatest likelihood of achieving the desired outcomes and effects.  Note that no 
timing information is provided by these models.  The selected set of actionable events is 
provided to planners who use experience to select, assign, and schedule resources to perform task 
that will cause the actionable events to occur. The schedule of tasks with the assigned resources 
constitutes a plan.  Outcomes, in terms of effects, are criti cally dependent on the timing of the 
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actionable events which is determined in the planning process without the use of the probabili stic 
models.   

In the military context, US Forces are undertaking a wide spectrum of operations ranging from 
Major Theater War (e.g., the Gulf War) to Humanitarian Operations / Disaster Relief.  The US 
Forces are expected to operate with coaliti on partners and with domestic, foreign, and 
international non governmental organizations (NGOs).  In Milit ary Operations other than 
Conventional War, there is need to develop multiple Courses of Action to respond quickly to 
changing situations. The increase in tempo, the proli feration of sensors, the enhancement of 
communications has pointed to the need to integrate planning and execution. The wide visibilit y 
of operations is forcing near real time effects assessment with concomitant consideration of 
alternative courses of action. Since Desert Storm, the concept of integrated Planning and 
Execution is becoming accepted and systems and procedures are being implemented to achieve it 
(e.g., concepts are being tested in Advanced Warfighting Experiments by the Services).  
Integrated Planning and Execution enables dynamic battle control, (sometimes referred to as 
dynamic re-planning).  Bosnia and especially operation Alli ed Force in Kosovo have focused 
broad attention on effects-based planning and effects assessment (see Washington Post, Sept. 20-
22, 1999).  This leads to closer interaction of intelli gence and planning: intelli gence is not only 
an input to the process, but is a  key component of the effects assessment feedback loop. Given 
the potential complexity of future situations and the many consequences of the responses, an 
approach is needed that (a) relates actions to events and events to effects; (b) allows for the 
criti cal time phasing of actionable events for maximum effect, and (c) provides in a timely 
manner the abilit y to carry out in near real time trade-off analyses of alternative COAs. This 
paper presents such an approach and ill ustrates how new technology can be applied to assist in 
effects based operations.   

2.  Background 

In the traditional command and control environment, developing, selecting, planning, and 
implementing specific courses of action to achieve objectives and goals are accomplished by a 
team of experts.   The team, comprised of intelli gence analysts, operational planners, logisticians, 
and operational controllers, collaborate in a series of at least four activities.  These activities 
include analysis of the situation, selection of a specific course of action, developing the 
operational plans to implement the COA, and directing, coordinating and controlli ng the 
execution of the plan.   

In the first activity, intelli gence analysts, by observing the environment and assessing the 
situation, develop models that attempt to assess potential events and outcomes based on 
incomplete and uncertain understanding of both physics-based and perception-based processes.  
The intelli gence analysts may have to rely on incomplete and sometimes inaccurate information 
collected via surveill ance and reconnaissance activities that are sorted and stored in a variety of 
databases.  Often they create probabili stic models based on the stored information to suggest 
what outcomes might occur given sets of controllable actions and uncertain exogenous events.  
These models are used in the second activity, where the intelli gence analysts review sets of 
controllable actions that will comprise the COA and select the ones that they believe provide the 



best chance of achieving the desired objectives.  The selected COA is an input to the third type 
activity, planning.  The planning activity uses detailed models and algorithms for planning when 
and how to use available assets to implement the COA.  This activity is performed by operational 
planners who have expertise in the employment of the resources.  The output of the planning 
function is directives to the assets so they can prepare for and execute the COA.  During 
execution, the fourth activity, operational controllers monitor and control the COA making real 
time adjustments to the actions as needed.  A commander (or supervisor in a business context) 
oversees all activities, providing guidance and approvals as appropriate.   

Effects Based Operations 

In the traditional approach to military operations, tasks are proposed by specialists and are 
sorted, selected, and prioriti zed so military assets can be selected to accomplish those tasks.  
Presumably these tasks are nominated based on a strategy that will result in accomplishing the 
overall objectives of the military operation.  During the process of selecting and scheduling 
military resources to perform the tasks, and during the execution of the plan, the metric for 
measuring success has been the number or percentage of tasks that have been successfully 
completed.  In the Air Force, the phrase “bombs on target” represents this concept of 
effectiveness.  Recently, it has been recognized that this type of metric can become de-coupled 
from the overall objective or effects that the milit ary action is designed to achieve.  The notion of 
"effects based" operations has arisen that will provide a direct relationship between planned 
military actions and the objectives or effects that are desired.  This paper addresses this notion, 
specifically defining the types of models that can be used for effects based operations and 
describing how to use these models to support collaboration between situation analysts, 
operational planners, and the operational controllers who develop and execute these plans.   

Situation Modeling 

In the current practice, complex politi cal, economic, and military situations are analyzed and 
evaluated using a combination of models and simulations.  Many of the models deal with well 
known, physics based systems, where classic discrete or continuous dynamical models can be 
created to evaluate the behavior or performance of systems over a range of stimuli .  Detailed 
models of integrated air defense systems that can be used to determine the expected attrition of 
air strikes, or define the best suppression techniques, are readily available.  But many aspects of 
situations involve phenomena that are diff icult or impossible to model by precise, classic, 
physics-based models.  Decision and policy making and command and control processes of 
nations or organizations, and intelli gent systems are examples of such phenomenon.   

Recently, the use of probabili stic models has been incorporated in the analysis of such processes 
and their role in politi cal, economic, and military situations.  In particular, Bayesian networks 
and variants called influence nets have been incorporated in the analysis of situations.    In a 
Bayesian net or influence net, the nodes of the network represent hypotheses or propositions and 
the arcs represent direct dependency relationships between the hypotheses.  Conditional 
probabiliti es are associated with the nodes of the net that encode the strengths of the 
dependencies.  Algorithms have been developed that eff iciently compute new values of all the 
variables whenever any variable value is specified.   



Influence Nets 

One of the challenges in creating a Bayesian net is that a large number conditional probabilit y 
values must be assigned.  To extend their use to subject matter experts who are unfamiliar with 
probabilit y theory or are unable to spend resources and time to fully specify a Bayesian net, 
Rosen and Smith [1996] incorporated Causal Strength Logic [Changet al., 1994] into a Unix 
based application called the Situation Influence Assessment Module [SIAM, 1998].  When a 
situation requiring positive action arises, a team of SMEs can create an influence net model to 
identify the set of actionable events that collectively have the maximum positive influence on the 
objectives modeled in the network.  Analysts create the influence net model of a situation using 
three types of nodes (hypotheses).  The first are nodes that represent the effects or objectives that 
are desired as the result of actions to be taken.  Each of the second type of node models the 
action or actionable event that may directly or indirectly influence or cause the objectives to 
occur.  The third type of node is the intermediate node. These nodes model propositions that 
provide influencing links between the actionable events and the objectives.  The SMEs specify 
the cause effect relationships between the nodes of the influence net and specify the strength of 
each relationship using qualitative measures.  SIAM converts these qualitative inputs into 
conditional probabilit y values that can be used to update the marginal probabiliti es of the net 
including the objective nodes given probabilit y values of the input actions.  Once the model is 
constructed, pressure point analysis is performed which identifies the actions that collectively 
have the most desired impact on the objectives.  This set of actions represents the un-sequenced 
and un-timed elements of a COA.   

Four observations can be made. 

1.  The current probabili stic equili brium models (Influence nets) used for situation assessment 
contain a great deal of information in the form of beliefs about the relationships between events 
and the ultimate outcome or effect.  They have an underlying rigorous mathematical model that 
supports analysis.   

2.  They provide only a single probabilit y value for a given set of actionable events.  They do not 
capture the effect of the sequence or timing of the actionable events.  

3.  Given the information that they contain and the method of construction, it seems that it is 
possible to enhance these model so that the impact of timing of the inputs on the 
outcomes/effects can be determined.    

4.  This impact could be represented by the timed sequence of changes in the likelihood of the 
outcomes/effects determined by the timing of the actionable events  The sequence of changes in 
probabilit y is called the probabilit y profile. 

Indeed, this concept was tested and proven when a conversion algorithm was developed that 
takes the information contained in an influence net and converts it to a discrete event system 
(DES) model [Wagenhals et al., 1998].  Once timing information is added, the DES model will 
generate a timed sequence of probabilit y values for the overall effect given a timed input of 
actionable events.  The success of this conversion algorithm set the stage for a research effort to 



create a comprehensive techniques for COA development and evaluation that directly addresses 
the actionable event timing issues.   

2.  Problem Statement 

The problem that was addressed in the research can be summarized in the following manner.  
Current methods for dealing with complex situations require the development and evaluation of 
course of action defined as a timed sequence of actionable events.  The probabili stic models used 
do not provide information about the impact of sequencing or timing of actionable events on the 
outcome/effect.  The determination of timing is based on the experience of the planners and the 
availabilit y of resources needed to cause the actionable events to occur.   There is no analytical 
way to determine the impact of the timing of the actionable events on the outcomes.  What is 
needed is a rigorous method for determining the impact of the timing of actionable events on the 
outcomes plus a method for determining the timing of the actionable events that will produce any 
particular probabilit y profile. 

The following hypotheses were established to guide the research.   

• A method can be developed that uses the information contained in the influence nets to 
produce rigorous mathematical models that reveal the impact of the sequence and timing of 
actionable events on the outcome and effects desired in the situation. 

• If timing information is incorporated with an influence net, a formal method can be 
developed to convert it to a Discrete Event System (DES) model in the form of a Colored 
Petri net (CP net). 

• Such a DES model, when run as a simulation, can reveal the changes in the likelihood of the 
desired effects over time for any timed sequence of actionable events (COA). 

• Using standard analysis techniques, the DES model can generate all of the possible sequence 
of probabilit y values of the outcome given any COA.   

• Procedures can be established to discriminate and select desirable sequences from the set of 
all sequences. 

• A procedure can be devised that will determine the temporal relationship among the 
actionable events that will generate a selected sequence of probabilit y values.  

The remained of this paper highlights the procedure that was developed that satisfies the problem 
statement and evaluates the hypotheses.  The next section briefly describes influence nets and 
how timing information can be associated with them.  The resultant Discrete Event System view 
is described in Section 4 along with a high level description of the conversion technique in 
Section 5.  The conclusions from State Space Analysis of the DES model is presented in Section 
6 followed by a description of an approach to generating all of the possible probabilit y profiles 
given a set of actionable events.  Section 7 describes the technique for determining the temporal 
relationships between the actionable events that will generate a specific probabilit y profile.  
Section 8 discusses the process of selecting “good” probabilit y profiles.  Section 9 ill ustrates 



how the techniques can be used in the collaborative process of developing selecting and 
implementing a COA.  Sections 10 and 11 provide conclusions and areas for further research.   

3.  Definition of Influence Nets 

An Influence net is a directed acyclic graph with M nodes and E a set of directed arcs.  Figure 1 
provides an example.   

Let M be the set of nodes representing Boolean variables 

•  mj is a parent of node mi if there exists an arc from mj to mi 

•  Πi is the set of parents of mi 

•  For each mi with parents, there is a conditional probabilit y P[mi| Πi ] 

 

Figure 1  Example of an Influence Net 

The arcs in the Influence net represent causal relationships between nodes.  To use the influence 
net to determine the effect of actionable events, a forward propagation of probabilit y is used to 
determine the likelihood of effects (usually nodes with no children) based on the occurrence of 
controllable causes (nodes with no parents).  To implement this propagation, the marginal 
probabilit y of each node mi is calculated using the following equation: 
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Incorporating Timing Information 

A fundamental premise of this research that in creating an influence net of a situation, the causal 
influencing mechanisms are realized by a real world phenomenon to which a time delay may be 
associated.  In many cases, influence nets model the effects of command and control or 
distributed decision making processes.  In these models, the nodes are either actionable events or 
propositions about the results of a C2 process.  The actionable events, the source nodes in the 
influence net, can be associated with a time stamp.  The nodes representing propositions about 
the results of a C2 process can be grouped into three categories.  The first are propositions about 
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sensors; they are either sensor events (a radar detects an aircraft) or the state of a sensor (the 
radar is operating).  The second category contains propositions about decisions, (the leader 
decides to negotiate or issues the launch command).  The probabilit y of a proposition about a 
decision changes when the probabilit y about propositions that influence that decision change.  
The third category of propositions concerns actions (a missile is launched, an aircraft is shot 
down, etc.).  In the C2 system, the evidence of the truth or non-truth of a proposition is 
transferred from one process to another over some transfer mechanism such as a communications 
channel or courier system.   

The strategy is to incorporate knowledge about the time delays of the mechanisms into the model 
based on the structure of the influence net that will reflect the concurrent and distributed nature 
of the underlying process.  The resultant model will generate a timed sequence of probabilit y 
changes of each proposition for a given set of timed initial causal events: a probabilit y profile of 
the change in the likelihood of a proposition as a function of time.  Thus a probabilit y profile is 
composed of a set of time windows.  In each time window, there is a probabilit y that the 
proposition about an event or state is true.  The probabilit y is based on the state of the evidence 
in the model during the time window, specifically the state of the probabiliti es of the set of 
parents of the proposition.   

Because influence nets assume the independence of causal influences, it is possible to associate 
time with the arcs of the influence net.  These times represent the amount of time it takes for 
knowledge about a change in the status of any variable to be propagated by some real world 
phenomenon to the node that is affected by that change.  Thus, we associated time delays with 
the arcs representing the influence in the influence net.  The update in the marginal probabilit y of 
a node occurs immediately after the time delay.  Figure 2 ill ustrates the concept.   This is the 
influence net shown in Figure 1 with time delays associated with the arcs.  A time line is shown 
in the figure that indicates when various updates occur.  Assume both events E and B (both 
actionable events) occur simultaneously at time zero.  When Events E and B  occur, both nodes 
A and D receive the updates in one time unit and node D receives an update about node A one 
time unit later.  Node A gets a second update after five time units and node D receives the 
resultant update about node A one time unit after that.   

Figure 2  Associating Time with an Influence Net 
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4  Discrete Event System View 

Once time has been added to the influence net, it represents a dynamic system composed of a set 
of distributed processes.  This new model can generate a probabilit y profile for each node in the 
net including nodes that represent to prime objectives in the situation.  Each probabilit y profile 
consists of a timed sequence of probabilit y values for the node.  Both the probabilit y values and 
the timed sequence are dependent on not only the certainty of the actionable events, but also on 
the temporal relationships between those events.  The final values in the sequences are the same 
values provided by the standard untimed influence net.  The intermediate values in the 
probabilit y profile are interpreted as the probabilit y of the proposition being true during the time 
interval of that value in the profile.  This concept is shown notionally in Figure 3 and can be 
described formally as follows.  

• Let M be the total number of nodes in the influence net partitioned into input, output, and 
intermediate nodes. 

•  Let the State of the system be the set of marginal probabiliti es of the nodes, P[mi]. 

•  Let an event, e ∈ E, be the updating of a P[mi]. 

•  Consider input, U, and output, Y, spaces composed of the set of probabiliti es of the input and 
output nodes. 

•  Initial state:  Same as the equili brium model with U = 0. 

• Admissible inputs:  During an input episode, each actionable event occurs at some time, 
therefore, each element of U changes once from zero to one.   

•  There is a single final state, regardless of the sequencing of the actionable events, that is the set 
of probabilit y values computed by the static equili brium model with all i nput nodes set to one.    

Figure 3  Discrete Event System View of Influence Net with Timing 
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5  Conversion of Influence Net to a Discrete Event System Model 

As mentioned is Section 1, a procedure has been developed to convert an influence net  with 
timing information into a Discrete Event System model.  Colored Petri Nets (CP nets) [Jensen, 
1997] were used as the DES system model using the software application, Design/CPN™ 
[http://www.daimi.au.dk/designCPN].  Figure 4 ill ustrates the conversion of a three node 
influence net to the CP net.  Each node in the influence net is converted to a module that is a CP 
net and the modules are interconnected.  The CP net is a bipartite directed multi -graph.  This 
means it is a directed graph with two types of nodes, places (ovals) and transitions (rectangles).  
Arcs go between nodes of different types.  Tokens can reside in the places.  In CP nets, the 
tokens can have attributes with values.   

 

Figure 4  Conversion of Influence Net to a CP Net 

A DES is a discrete state, event driven system whose evolution depends on the occurrence of 
asynchronous discrete events [Cassandras, 1993].  From a given initial state, all of the possible 
future states can be represented as a reachabilit y tree, sometimes called an occurrence graph.   

In a CP net, the state of the system is defined as the distribution of tokens in the CP net.  On of 
the strengths of CP nets is that analysis can be performed with them.  One type of analysis is 
called State Space Analysis.  In this analysis, important properties of the CP net can be 
determined and the occurrence graph can be generated.  The Design/CPN tool automates this 
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process [Kristensen et al., 1998].The behavior of the DES model of the influence net was 
investigated using the State Space Analysis techniques.  By concentrating of the values of the 
tokens generated in the Terminal or Objective node of the CP net, the following observations 
were made.   

1.  The set of output states can be arranged in a partial order (it is a lattice) with a single initial 
state and single final state. 

2.  The basis for the ordering is the combination of inputs to the objective node that is used in 
calculating the marginal probabilit y value associated with the state.   

3.  Because it is a partial order, the states can be arranged in levels.  There is a finite number of 
levels.  

4.  The transitions always go from one level to a lower level.  Maximum and minimum values 
are each level can be identified (Local Extrema).  

5.  Every path from the initial state to the final state represents a potential sequence of probabilit y 
values contained in any timed probabilit y profile that will be generated by a set of timed 
inputs.   

6. The number of steps of any sequence is less than or equal to the number of levels in the 
partial order.   

These observations mean that it is possible to generate a model of all of the probabilit y profiles 
of a set of actionable events in a situation using state space analysis of the CP net model of the 
influence net.  Unfortunately, the state space of these models grows combinatorially with the size 
of the influence net and state space explosion may make the use of state space analysis of the CP 
net intractable.   

6.  Generating the Output State Space 

To address the state space explosion problem, it was noted that the state space analysis of the CP 
net includes a very large number of variables that are not of interest.  Indeed, we are only 
interested in determining the probabilit y profiles of the objective node of the influence net 
represented by a single place in the CP net.  An approach was formulated to generate the state 
space of this single node in the CP net.   

The behavior of the objective node can be represented by a state transition diagram (STD).  To 
create this representation, three steps were developed.  (1) generate the states with probabilit y 
values, (2) determine the events that cause the transitions between states and (3) determine 
restrictions on the reachabilit y and the sequence of transitions due to the time delays of the 
influence net structure.   

One the prime enablers of this approach is the fact that the “branchless” version of an influence 
net has the same behavior as the original (as long as the replicated inputs are the same) 
[Wagenhals and Levis, 1999].  An influence net can be converted to a “branchless” source-to-



sink path graph using a variant of the “find path” algorithm of Jin [1986].  The result is a net of 
concatenated joins as shown in Figure 5.  

The input to the objective join can be reflected back to the input nodes of the source-to-sink path 
graph. The net in Figure 5 is composed of two concatenated joins, Node B and Node C, and there 
are three distinct paths from the two sources to the sink node. In an untimed CP net, Node C 
could be updated by any combination of the four marginal probabiliti es of Node B and the two 
probabiliti es of Node A1.  There are eight possible combinations:  P[C|P[B|¬D, ¬A2], ¬A1], 
P[C|P[B|¬D, A2], ¬A1], P[C|P[B|D, ¬A2], ¬A1], P[C|P[B|D, A2], ¬A1], P[C|P[B|¬D, ¬A2], 
A1], P[C|P[B|¬D, A2], A1], P[C|P[B|D, ¬A2], A1], and P[C|P[B|D, A2], A1].  Each of these 
values is based on one of the possible combinations of the binary values corresponding to the 
occurrence or non-occurrence of each of the three input nodes of the source-to-sink path graph.  
We define the corresponding states by an encoding scheme based on the set of updates from the 
input or source nodes that were used to calculate the marginal probabilit y of the state.  In this 
case there are three, and the encoding scheme is a triple.  Letting the first, second and third 
elements represent nodes, D, A1 and A2, respectively, the eight states are [0, 0, 0], [0, 0, 1], [1, 
0, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [1, 1, 0], and [1, 1, 1].  Table 1 tabulates the states and the 
corresponding marginal probabilit y values.  A STD of Node C can be created by defining the 
transitions between states using the encoding scheme previously described.  The transitions are 
caused by the arrival and use of updates from the source nodes in the computation of a new 
marginal probabilit y value.  These events are denoted in lower case.  The STD of node C is 
shown in Figure 5.9. The concatenation of joins can be carried out as many times as necessary to 
create the complete source-to-sink path graph of an influence net.  The main result is that the 
state of the objective node can always be represented by the vector s that reflects back to the 
decomposed source nodes.   

Figure 5  Creating Source to Sink Path Graph 

Table 5.2  States of Node C 

State [P[D], P[A1], P[A2] Marginal Probabilit y of Node C 
[0, 0, 0] P[C|P[B|¬D, ¬A2], ¬A1] 
[0, 0, 1] P[C|P[B|¬D, ¬A2], A1] 
[0, 1, 0] P[C|P[B|¬D, A2], ¬A1] 
[1, 0, 0] P[C|P[B|D, ¬A2], ¬A1] 
[1, 0, 1] P[C|P[B|D, ¬A2], A1] 
[1, 1, 0] P[C|P[B|D, A2], ¬A1] 
[0, 1, 1] P[C|P[B|¬D, A2], A1] 
[1, 1, 1] P[C|P[B|D, A2], A1] 
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Figure 6  Full State Transition Diagram of the Influence Net of Figure 5. 

Because of the time delays associated with the arcs, not all states in the untimed STD are 
reachable.  In addition, not all paths from the initial state to the final state are feasible.  A 
procedure, based on Timed Point Graphs [Zaidi, 1999], is used to determine the reachable states 
and feasible paths.   

As an example, assume the four-node net of Figure 5 had path lengths of 1, 3, and 4, for paths 1, 
2, and 3, respectively.  The number of reachable states would be reduced from eight to six.  The 
resultant STD is shown in Figure 7.   

The set of feasible states can be arranged in a partial order (a lattice) that is based on the number 
of paths that have arrived at the sink node.  This can be identified by the number of ones in each 
state.  Since there are three paths in the example, there are four levels in the partial order, starting 
with all zeros and ending with all ones.   

7  Determining Temporal Relationships Between Actionable Events 

Once the final STD is created along with the set of feasible paths from initial to final state, it is 
possible to determine all possible sequences of the probabilit y values that can be generated by 
the timed sequence of actionable events.  Given that a particular sequence is desired, a procedure 
has been developed to determine the temporal relationship between the actionable events that 
will generate the selected profile.  Figure 8 shows a set of Timed Point Graphs from a 
hypothetical influence net that has four actionable events, a, b, c, and d.  The Timed Point Graph 
on the left shows independent chains of updates to the objective node.  Assume that a path 
through the STD has been selected.  The sequence of transitions for the path through the STD 
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specifies relationships that must exist between the chains of the timed point graph.  For example, 
if the desired sequence is { a1, a2, b1, c1, a3, d1, c2, a4, b2, b3, d2}, this translates to the 
temporal specification {a1 < a2 < b1 < c1 < a3 < d1 < c2 < a4 < b2 < b3 < d2} and the resultant 
Timed Point Graph is shown on the right side of Figure 8.   

Figure 7 STD of Influence Net with Time Delays 

Figure 8  Timed Point Graphs 

The relationship between the unconstrained chains on the left side of Figure 8 are suff icient to 
determine the temporal relationships between the actionable events.  In the example of Figure 8, 
the pair wise relationships between the chains are { a2 < b1},{b1 < c1}, [c1 < a3}, [a3 < d1], 
{d1 < c2}, { c2 < a4}, { a4 < b2}, and  {b3 < d2}.   

Each of these relationships can be converted to relationships between the input nodes of each 
chain by substituting the equivalent time point referenced to the input node.  For example, the 
length of the interval between node a and node a2 in the point graph is 1 + 5 = 6.  This means 
that the time point represented by a + 6 is at the same time point as a2, and therefore, a + 6 can 
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be substituted for a2 in the expression.  Similar substitutions can be made for all of the time 
points.  Table 6.1 tabulates the result of these substitutions.   

Table 6.1 Conversion of Inter-Chain Relationships to Input Relationships 

Original Relationship Substitution Input Relationships 
{ a2 < b1}  a + 6 < b + 4 a < b - 2 
{ b1 < c1}  b +4 < c + 1 b < c - 3 
{ c1 < a3}  c +1 < a + 11 c < a + 10 
{ a3 < d1}  a + 11 < d + 10 a < d - 1 
{ d1 < c2}  d + 10 < c + 5 d < c - 5 
{ c2 < a4}  c + 5 < a + 16 c < a + 11 
{ a4 < b2}  a + 16 < b + 11 a < b - 5 
{ b3 < d2}  b + 12 < d + 15 b < d + 3 

 

To complete the determination of the temporal relationships, non-dominant relationships are 
identified and eliminated. In the example, the final set of temporal relationships is {b < c -3}, 
{ c < a + 10}, {a < d - 1}, {d < c - 5}, {a < b – 5}, and {b < d + 3}.  Any timing of the set of input 
actionable events that simultaneously meets these six relationships will generate the original 
probabilit y profile.   

8.  Selection of COAS Using A Common Planning Problem 

We have now described a procedure for creating a model of a situation in which uncertainty 
plays an important role, that can be used to develop, analyze, and select a course of action, 
defined as a timed set of actionable events designed to achieve an overall effect or objective.  We 
presented a set of tools and techniques that support this COA evaluation and selection process.  
This set, called the common planning problem (CPP), is comprised of f ive elements: 

– Influence net with timing information,  

– CP net model of influence net,  

– STD of objective node with li st of infeasible sequences,  

– Timed point graph (TPGs) of the events,  

– Procedure of determining COA given a sequence through the STD 

As was discussed in Section 1, it is envisioned that this set of models can be the basis of a 
methodology used by a team composed of analysts and planners charged with the responsibilit y 
of analyzing a situation, developing an effective course of action, and developing and 
implementing plans for the scheduled use of resources to implement the COA.   



In general, there will be a very large set of feasible sequences through the STD.  Each represents 
an untimed probabilit y profile.  To effectively use the CPP, we need an approach for selecting 
good candidate untimed profiles using the STD and the TPGs so that they can be evaluated as 
timed probabilit y profiles using the CP net.  While this may seem to be straight forward, i.e. 
select the profile with the best probabilit y values at every step, the process is more complex.  
This is because there is a non-fixed, non-linear mapping from each untimed probabilit y profile 
the timed probabilit y profile.  This is ill ustrated in Figure 9.  

 

Figure 9  Non-Linear Mapping Between Un-timed and Timed Probabil ity Profiles 

The left side of Figure 9 shows a representation of the STD of an DES model of an influence net.  
Presented in a plot format, it shows the probabilit y values for each state arranged in layers or 
steps.  Several parameters that characterize the profiles are shown on the figure.  There is a 
single initial probabilit y value and a single final value.  Highlighted is a probabilit y profile that 
traverse the local maximum probabilit y values at each step.  A second probabilit y profile is 
shown that traverses the middle of the plot.  The timed versions of the two profiles is shown on 
the right side of the figure.  While the profile that traverses the local maxima is always higher in 
the un-timed case, this is not the case in the timed profile.  Indeed, one could argue that the 
second profile is preferred over the apparent best selection in the untimed profile.   

Some characteristics of the set of untimed probabilit y profiles (initial and final states and global 
extrema) map to the timed probabilit y profiles while others only apply to the untimed profiles. 
For example the local extrema apply only to the untimed profile while the initial, final values and 
the global extrema apply to both types of profiles. Needed are parameters whose values can be 
determined using CPP that discriminate the timed probabilit y profiles. Time parameters are 
candidates, e.g. time to final state, time to global extrema, as well as the minimum time to final 
state and global state.  Indeed, second profile of Figure 9 was obtained by using a combination of 
the minimum time to global maximum and the local extrema.   
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9.  Collaboration Using the Common Planning Problem 

A team of situation analysts, operational planners, and operations controllers can use the 
common planning problem models and analysis techniques to develop and evaluate COAs and 
support effects based dynamic control of resultant plans.  The concept is shown using the IDEF0 
formalism [IDEF0, 1996] in Figure 10.  
 

Figure 10  Using the CPP in a Collaborative Manner 

The four activities described in Section 1 are shown with the members of the Commanders Staff 
that perform those activities indicated as mechanisms.  The output of the first activity is the set of 
Common Planning Problem models that have been described in this paper.  An initial COA is 
selected using the approach described in Section 8.  The selected COA is provided to the team of 
planners who attempt to build a plan that will im plement the COA.  It may turn out that resource 
constraints prohibit the timing required by the COA.  If this is the case the CPP tools can be used 
to refine the selection given those constrains.  Once the plan has been created and approved, it is 
provided to the field and to the controllers for execution.  During execution, the controllers can 
use the CPP to determine the impact that changes in scheduled actions may have on the expected 
probabilit y profile.  If schedule changes adversely affect the probabilit y profile, the CPP can be 
used to determine the best adjustments to the COA.   

10.  Conclusions  

We have presented a method that addresses the problem presented in Section 2.  A method was 
developed that uses the information contained in the influence nets to produce rigorous 
mathematical models that reveal the impact of the sequence and timing of actionable events (a 
COA) on the outcome and effects desired in the situation.  It has been demonstrated that by 
adding timing information to an influence net model it can be transformed into a discrete event 
system model that can be used to generate all timed sequences of probabilit y values for any 
timing of the set of inputs.  State space analysis techniques have been used create a set of models 
that comprise a common planning problem.  A STD, sequence rule mode, and timed point 
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graphs, created using the timed influence net and the CP net, can generate all probabilit y 
sequences of an objective node.  A method has been developed to determine the temporal 
relationships among inputs that will generate any feasible untimed probabilit y profile using a set 
of models that comprise the common planning problem. Together, these procedures support a 
vision of collaborative COA development and evaluation for effects based planning and 
execution.   

11.  Future Directions 

Three areas of current research are: (a) extending the fixed time delays to stochastic time delays, 
(b) expanding the evaluation of untimed and timed probabilit y profiles, and (c) incorporating 
feedback during plan execution for determining when to change COAs.  We plan to incorporate a 
portion of the CPP process in upcoming demonstrations and exercises to assess the practicality of 
the collaborative process proposed in this paper.  The first demonstration will be in Global 2000 
at the Naval War College.   
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