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Abstract

The major hurdle in developing distributed systems is the implementing the interoperability
between the systems. Currently, most of the interoperability techniques require that the data
or services to be tightly coupled to a particular server. Furthermore, as most programmers are
trained in designing stand-alone application, developing distributed system proves to be time-
consuming and difficult. This paper address the issues by creating an interface wrapper
model that allows developers the features of treating distributed objects as local objects.  A
tool was developed to generate Java interface wrapper from a specification language called
the Prototyping System Description Language.

1. Introduction

1.1 Background

Interoperability between software systems is the ability to exchange services from one
system to another. In order to exchange services, data and commands are relayed from the
service providers to the requesters. Current business and military systems are typically 2-tier
or 3-tier systems involving clients and servers, each running on different machines in the
same or different locations. Current approaches for n-tier systems have no standardization of
protocol, data representation, invocation techniques etc. Other problems with interoperability
are the implementation of distributed systems and the use of services from heterogeneous
operating environments. These include issues concerning sharing of information amongst
various operating systems, and the necessity for evolution of standards for using data of
various types, sizes and byte ordering, in order to make them suitable for interoperation.
These problems make interoperable applications difficult to construct and manage.
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1.2 Current State-of-the-art solutions

Presently, the solutions attempting to address these interoperability problems range from
low-level sockets and messaging techniques to more sophisticated middleware technology
like object resource brokers (CORBA, DCOM). Middleware technology uses higher
abstraction than messaging, and can simplify the construction of interoperable applications. It
provides a bridge between the service provider and requester by providing standardized
mechanisms that handle communication, data exchange and type marshalling. The
implementation details of the middleware are generally not important to developers building
the systems. Instead, developers are concerned with service interface details. This form of
information hiding enhances system maintainability by encapsulating the communication
mechanisms from the developers and providing a stable interface services for the developers.
However, developers still need to perform significant work in incorporating the middleware’s
services into their systems. Furthermore, they must have a good knowledge of how to deploy
the middleware services to fully exploit the features provided.

Current middleware approaches have another major limitation in the design - the data and
services are tightly coupled to the servers. Any attempt to parallelize or distribute a
computation across several machines therefore encounters complicated issues due to this
tight control of the server process on the data.

1.3 Motivation

Distributed data structures provide an entirely different paradigm. Here, data is no longer
coupled to any particular process.  Methods and services that work on the data are also
uncoupled from any particular process.  Processes can now work on different pieces of data
at the same time. So far, building distributed data structures together with their requisite
interface has proved to be more daunting than other conventional interoperability middleware
techniques. The arrival of JavaSpace has changed the scenario to some extent. It allows easy
creation and access of distributed objects. However, issues concerning data getting lost in the
network, duplicated data items, out-dated data, external exception handling and handshaking
of communication between the data owner and data users are still open. The developers have
to devise ways to solve those problems and standardize them between applications.

1.4 Proposal

The situation concerning interoperability would greatly improve if a developer working on
some particular application were provided with the features capable of treating distributed
objects as local objects within the application. The developers could then modify the
distributed object as if it is local within the process. The changes may, however, still need to
be reflected on other applications using that distributed object without creating any problems
related to inconsistency. The current research aims at attaining this objective by creating a
model of an interface wrapper that can be used for a variety of distributed objects. In
addition, by automating the process of generating the interface wrapper directly from the
interface specification of the requirement, developers’ productivity is greatly improved.
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The tools, named as Automated Interface Codes Generator (AICG), has been developed to
generate the interface wrapper codes for interoperability, from a specification language called
the Prototype System Description Language (PSDL) [LUQ88]. The tool uses the principle of
distributed data structure and JavaSpace Technology to encapsulate transaction control,
synchronization, and notification together with lifetime control to provide an environment
that treats distributed objects as if there were local within the concerned applications.

2. Review of Existing Works

2.1 ORB Approaches

A basic idea for enhancing interoperability is to make the network transparent to the
application developers.  The existing approaches [1] include 1)Building blocks for
interoperability, 2) Architectures for unified, systematic interoperability and 3) Packaging
for encapsulating interoperability services.  These approaches have been assessed using the
Kiviat graphs by Berzins [1] with various weight factors. The Kiviat graphs give a good
summary of the strong and weak points of various approaches. ORB and Jini are currently
the more promising technologies for interoperability.

There are however, some concerns with the ORB models. Sullivan [13] provides a more in-
depth analysis of the DCOM model, highlighting the architecture conflicts between Dynamic
Interface Negotiation  (how a process queries a COM services and interface) and
Aggregation (component composition mechanism). The interface negotiation does not
function properly within the aggregated boundaries. This problem arises because components
share an interface. An interface is shared if the constructor or QueryInterface functions of
several components can return a pointer to it. QueryInterface rules state that a holder of a
shared interface should be able to obtain interfaces of all types appearing on both the inner
and outer components. However, an aggregator can refuse to provide interfaces of some
types appearing on an inner component by hiding the inner component. Thus, QueryInterface
fails to work properly with respect to delegation to the inner interface.

Hence, for the ORB approaches, detailed understanding of the techniques is required to
design a truly reliable interoperable system. Programmers however, are train mostly on
standalone programming techniques. Adding specialized network programming models
increases the learning as well as development time, with occasional slippage of target
deadlines. Furthermore, bugs in the distributed programs are harder to detect and
consequences of failure are more catastrophic. An abnormal program may cause other
programs to go astray in a connected distributed environment [9], [12].
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2.2 Prototyping

The demand for large, high quality systems has increased to the point where a quantum
change in software technology is needed [9]. Rapid prototyping is one of the most promising
solutions to this problem. Completely automated generation of prototype from a very high-
level language is feasible and in-fact generation of skeleton programming structures is very
common in the computer world. One major advantage of the automatic generation of codes is
that it frees the developers from the implementation details by executing specification via
reusable components [9].

In this perspective, an integrated software development environment, named Computer
Aided Prototyping System (CAPS) has been developed at the Naval Postgraduate School, for
rapid prototyping of hard real-time embedded software systems, such as missile guidance
systems, space shuttle avionics systems, and military Command, Control, Communication
and Intelligence (C3I) systems [11]. Rapid prototyping uses rapidly constructed prototypes to
help both the developers and their customers visualize the proposed system and assess its
properties in an iterative process. The heart of CAPS is the Prototyping System Description
Language (PSDL). It serves as an executable prototyping language at a specification or
design level and has special features for real-time system design. Building on the success of
computer aided rapid prototyping system (CAPS) [11], the AICG model also uses the PSDL
for the specification and automates the generation of interface codes with the objective of
making the network transparent from the developer’s point of view.

2.3 Transaction Handling

Building a networked application is entirely different from building a stand-alone system in
the sense that many additional issues need to be taken care of for smooth functioning of a
networked application. The networked systems are also susceptible to partial failures of
computation, which can leave the system in an inconsistent state.

Proper transaction handling is essential to control and maintain concurrency and consistency
within the system. Yang [16], examined the limitation of hard-wiring concurrency control
(CC) into either the client or the server. He found that the scalability and flexibility of these
configurations is greatly limited. Hence, he presented a middleware approach: an external
transaction server, which carries out the concurrency control policies in the process of
obtaining the data. Advantages of this approach are 1) transaction server can be easily
tailored to apply the desired CC policies of specific client applications. 2) The approach does
not require any changes to the servers or clients in order to support the standard transaction
model. 3) Coordination among the clients that share data but have different CC policies is
possible if all of the clients use the same transaction server.
The AICG model uses the same approach, by deploying an external transaction manager
provided by SUN in the JINI model. All transactions used by the clients and servers are
created and overseen by the manager.
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3. The Basic Model
The AICG model is based on the concepts of encapsulating some of the features of the
JavaSpace and Jini to provide a simplified ways of developing distributed applications.
Section 3.1 examines the principles of JavaSpace and section 3.2 discusses some of the
features of AICG model.

3.1 The JavaSpace Model

JavaSpace model is a high-level coordination tool for gluing processes together in a
distributed environment. It departs from conventional distribution techniques using message
passing between processes or invoking methods on remote objects. The technology provides
a fundamentally different programming model that view an application as a collection of
processes cooperating via the flow of freshly copied objects into and out of one or more
spaces. This space-based model of distributed computing has its roots in the Linda
coordination language [3] developed by Dr. David Gelernter at Yale University.

Process

Process

Process

Process

Write

Take

Read
(waiting)

Read

Figure 2, JavaSpace operations

Space
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Figure 1, AICG Model
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A space is a shared, network-accessible repository for objects. Processes use the repository as
a persistent object storage and exchange mechanism. As shown in figure 2, processes
perform simple operations to write new objects into space, take objects from space, or read
(make a copy of) objects in a space. When taking or reading objects, processes use a simple
value-matching lookup to find the objects that matter to them. If a matching object is not
found immediately, then a process can wait until one arrives. Unlike conventional object
stores, processes do not modify objects in the space or invoke their methods directly. To
modify an object, a process must explicitly remove it, update it, and reinsert it into the space.
During the period of updating, other processes requesting for the object will wait until the
process write the object back to the space.

Key Features of JavaSpace:
• Spaces are persistent: Spaces provide reliable storage for objects. Once stored in the

space, an object will remain there until a process explicitly removes it.
• Spaces are transactionally secure: The Space technology provides a transaction model

that ensures that an operation on a space is atomic. Transactions are supported for
single operations on a single space, as well as multiple operations over one or more
spaces.

• Spaces allow exchange of executable content: While in the space, objects are just
passive data, however, when we read or take an object from a space, a local copy of
the object is created. Like any other local object, we can modify its public fields as
well as invoke its methods.

3.2 The AICG Model

The AICG interoperability approach proposes a tool for building distributed applications.
The tool is designed to generate interface wrappers for data structures or objects that need to
be shared, and are particularly useful for applications that can model as flows of objects
through one or more servers. Build on top of JavaSpace, the AICG model hides the space and
its implementation details entirely from the application. The interface wrapper allows
applications to treat distributed data structures or objects as local within the application
space. This enhanced interoperability by making the network transparent to the application
developers.

The interface wrappers are generated from an extension of a prototype description language
called Prototyping System Description Language (PSDL). The extended Description
language (PSDL-ext) expands property definitions that are specific only to AICG model.
Some of the salient features of the AICG model are:

• Distributed objects are treated as local objects within the application process. The
application code needs not depend on how the object is distributed, since the local
object copy is always synchronous with the distributed copy. (see section 5)

• Synchronization with various applications is automatically handled. Since the AICG
model is based on the space transaction secure model, all operations are atomic.
Deadlock is prevented automatically within the interface by having only a single
distributed copy, and through transaction control. (see section 6, 8)
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• Any type of object can be shared as long as the object is serializable. Any data
structure and object can be distributed as long as it obeys and implements the java
serializable feature (see section 10.2).

• Every distributed object has a lifetime. The distributed object lifetime is a period of
time guaranteed by the AICG model for storage and distribution of the object. The
time can be set by developer (see section 7).

• All write operations are transaction secure by default. AICG transactions are based on
the Atomicity, Consistency, Isolation, and Durability (ACID) properties (see section
8).

• Clients can be informed of changes to the distributed object through the AICG event
model (see section 9). A client application can subscribe for change notification, and
when the distributed object is modified, a separate thread is spawned to execute the
callback method defined by the developer.

• The wrapper codes are generated from high-level descriptive languages; hence, they
are more manageable and more maintainable.

4. Developing Distributed Application with the AICG Tool

This section describes the steps for developing distributed applications using the AICG
model. An example of a C4ISR application is introduced in section 4.2 to aid the explanation
of the process. The same example will be used throughout this paper.

4.1 Development Process

The developer starts the development process by defining shared objects using the
Prototyping System Description Language (PSDL). The PSDL is processed through a code
generator (PSDLtoSpace) to produce a set of interface wrapper codes (figure 3). The
interface wrapper contains the necessary codes for interaction between application and the
space without the need for the developers to be concerned with the writing and removing of
objects in the space. The developers can treat shared or distributed objects as local objects,
where synchronization and distribution is automatically handled by the interface codes. The
complete cycle for generating the interface codes is shown in figure 4.

PSDL definition of the distributed
objects

PSDLtoSpace

Set of Interface Wrapper Files

Figure 3, PSDL to Space
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4.2 Input definition to the Code generator

The following example demonstrates the development of one of the many distributed objects
in the C4ISR system. Airplane positions picked up from the sensors are processed to produce
track objects. These objects are distributed over a large network and used by several clients’
stations for displaying the positions of planes. Each track or plane is identified by track
number. The tracks are ‘owned’ by a group of track servers, and only the track servers can
update the track positions and its attributes. The clients only have read access on the track
data. Figure 5 shows the PSDL codes for the track object and its methods. Figure 6 shows the
PSDL codes for the Track_list object and its methods.

Type track
  SPECIFICATION
    tracknumber: integer
  END

    OPERATOR track
      SPECIFICATION
        INPUT x:integer
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE=
CONSTRUCTOR
      END
    END

    OPERATOR getID
      SPECIFICATION
        OUTPUT x:integer
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE= READ
        END
    END

    OPERATOR setCallsign
      SPECIFICATION
        INPUT sign: string
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE= WRITE
          PROPERTY TRANSACTIONTIME = 300
      END
    END

    OPERATOR getCallsign
      SPECIFICATION
        OUTPUT sign: string
      END

 IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE= READ

       END
    END

    OPERATOR setPosition
      SPECIFICATION
        INPUT post : position_type
      END

      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE = WRITE
          PROPERTY TRANSACTIONTIME = 2000

  END
    END

    OPERATOR getPosition
      SPECIFICATION
        OUTPUT post : position_type
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE = READ

      END

  IMPLEMENTATION
    SPACE
      PROPERTY SPACENAME= DODSpaces
      PROPERTY OWNERSHIP = YES
      PROPERTY SECURITY = SERVER
      PROPERTY LEASE  = 12000
      PROPERTY CLONE = MANY
      PROPERTY NOTIFY = NO
     PROPERTY RETRY = 10
  END

Figure 5, Track example in PSDL
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TYPE  track_list
  SPECIFICATIO
  END

    OPERATOR track_list
      SPECIFICATION
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE=
CONSTRUCTOR
      END
    END

    OPERATOR getID
      SPECIFICATION
        INPUT index: integer
        OUTPUT x:integer
      END
      IMPLEMENTATION
      SPACE
        PROPERTY  SPACEMODE= READ

      END
    END

    OPERATOR setNewID
      SPECIFICATION
        INPUT id: integer
      END

      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE= WRITE
           END
    END

    OPERATOR removeID
      SPECIFICATION
        INPUT id: integer
      END
      IMPLEMENTATION
        SPACE
          PROPERTY  SPACEMODE= WRITE
          PROPERTY TRANSACTIONTIME = 2000
      END
    END
  END

IMPLEMENTATION
    SPACE
      PROPERTY SPACENAME= DODSpaces
      PROPERTY OWNERSHIP = YES
      PROPERTY SECURITY = SERVER
      PROPERTY LEASE  = 0
      PROPERTY CLONE = ONE
      PROPERTY NOTIFY = YES
     PROPERTY RETRY = 5
    END

The PSDL grammar used for the AICG is an extended version of the original PSDL grammar
(Appendix A). PSDL model is very extensive and can be used to model an entire distributed
system. However, the AICG only used a portion of the PSDL to describe the interface
between systems. In another word, interactions between applications are defined using the
PSDL but not the application itself. Because of this, slight modifications on the PSDL
grammar were needed. The complete listing of the changes in the grammar statements can
also be found in Appendix A.

The track PSDL starts with the definition of a type called track. It has only one identification
field tracknumber. Of course, the track objects can have more than one field, but only one
field is in this case is used to uniquely identify any particular track object. The type
track_list shown in figure 5, on the other hand, does not need an identification field since
there is only one track_list object in the whole system. Track_list is used to keep a list of all
the active tracks tracknumber in the system at that moment in time.

All the operators (methods) of the type are defined immediately after the specification. Each
method has a list of input and output parameters that define the arguments of the method.

Figure 6, Track list example in PSDL
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The most important portion in the method declaration is the implementation. The developer
must be able to define the type of operation the method supposed to perform. The operations
are constructor (used to initialize the class), read (no modification to any field in the class)
and write (modification is done to one or more fields in the class). These are necessary, as the
code generated will encapsulate the synchronization of the distributed objects.

The other field in the implementation portion of the method, is transactiontime.
transactiontime defines the upper limit in milliseconds within which the operation must be
completed. The transaction property is discussed in detail in Section 8.

Upon running the example on figure 5 through the generator tool, a set of Java interface
wrapper files are produced. Developers can ignore most of the generated files except the
following:

• Track.java: this file contains the skeleton of the fields and the methods of the track
class. The user is supposed to fill the body of the methods.

• TrackExtClient.java: this is the wrapper class that the client initialized and used
instead of the track class.

• TrackExtServer.java: this is the wrapper class that the server initialized and used in
replace for the track class.

• NotifyAICG.java : this class must be extended or implemented by the application if
event-notification and call-back are needed.

The methods found in the trackExtClient and trackExtServer have the same method names
and signatures of the track class. In fact, the track class methods are been called within
trackExtClient or trackExtServer.

5. Distributed Data Structure and Loosely Coupled Programming

Conceptually a distributed data structure is one that can be accessed and manipulated by
multiple processes at the same time without regard for which machine is executing those
processes. In most distributed computing models, distributed data structures are hard to
achieve. Message passing and remote method invocation systems provide a good example of
the difficulty. Most of the systems tend to keep data structure behind one central manager
process, and processes that want to perform work on the data structure must “wait in line” to
ask the manager process to access or alter a piece of data on their behalf. Attempts to
parallelize or distribute a computation across more than one machine face bottlenecks since
data are tightly coupled by the one manager process. True concurrent access is rarely
achievable.

Distributed data structures provide an entirely different approach where we uncouple the data
from any particular process. Instead of hiding data structure behind a manager process, we
represent data structures as collections of objects that can be independently and concurrently
accessed and altered by remote processes. Distributed data structures allow processes to work
on the data without having to wait in line if there are no serialization issues.
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The distributed protocol for modification ensures synchronization by enforcing that a process
wishing to modify the object has to physically remove it from the space, alter it and write it
back to the space. There can be no way for more than one process to modify an object at the
same time. However, this does not prevent other processes from overwriting the corrected
data. For example, in the normal JavaSpace, process A instead of performing a “take” follow
by a “write operation, the programmer wrote a “read” operation, followed by a “write”
operation. This results in 2 copies of the object in the Space. The AICG model prevents this
by encapsulating the 3 basic commands from the developers. All modification on the object
are automatically translated to “take”, followed by “write” and all operations that access the
fields of the distributed object are translated to “read”. These ensure that local data are up-to-
date and serialization is maintained.

Loosely-coupled programming has it pitfalls also.  Distributed objects may be lost if a
process removes it from the space and subsequently crashes or is cut off from the network.
Similarly, the system may enter in a deadlock state if processes request more than one
distributed object while, at the same time, holding on to distributed objects required by other
processes. In cases like this, the AICG model groups multiple operations into a transaction to
ensure that either all operations complete or none occur, thereby maintaining the integrity of
the application. With transaction control, deadlock is prevented if the process did not
complete the operation within a certain permitted time. The application can retry the
operation immediately or wait for a random time before performing the operation again

6. Synchronization

Synchronization plays a crucial role in any design of distributed application. Inevitably,
processes in a distributed system need to coordinate with one another and avoid bringing the
system into an unstable state such as deadlock. Creating distributed applications with AICG
can significantly ease the burden of process synchronization since synchronization is already
built into the AICG operations. Multiple processes can read an object in a space at any time,
but when a process wants to update an object, it has to remove it from the space and thereby
gain exclusive access to it first. Hence, coordinated access to objects is enforced by the
AICG interface doing read, take and write operations.

More advanced and complex synchronization schemes can be easily build upon from the
basic atomic features of the AIGC operations. An example is semaphores. Semaphores, a
synchronization construct that was first used to solve concurrency problems in operating
systems, are commonly found in multithreaded programming languages, but are more
difficult to achieve in distributed systems. Semaphores are typically implemented as integer
counters that require special language or hardware support to ensure the atomic properties of
the UP (signal) and DOWN (wait) operations. Using AIGC space model, we could easily
implement a semaphore as a shared variable that holds an integer counter. By assigning a
distributed variable or object as a semaphore, groups of distributed objects can be
synchronized. Hence, the AIGC model permits the developers to develop more complicated
distributed applications without being concerned about synchronization and deadlock.
Furthermore, all operations within the AICG model can impose transaction control with
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timeout monitoring.  After the timeout period, the transaction would rollback the application
to a stable state.

7. Object Life Time (Leases/Timeout)

Leasing provides a methodology for controlling the life span of the distributed objects in the
AICG space. This allows resources to be freed after a fixed period. This model is beneficial
in the distributed environment, where partial failure can cause holders of resources to fail
thereby disconnecting them from the resources before they can explicitly free them. In the
absence of a leasing model, resources could grow without bound.

There are other constructive ways to harness the benefit of the leasing model besides using it
as a garbage collector.  As for example, in a real-time system, the value of the information
regarding some distributed objects becomes useless after certain deadlines. Accessing
obsolete information can be more damaging in this case. By setting the lease on the
distributed object, the AICG model automatically removes the object once the lease expires
or the deadline is reached.

Java Spaces allocate resources that are tied to leases. When a distributed object is written into
a space, it is granted a lease that specifies a period for which the space guarantees its storage.
The holder of the lease may renew or cancel the lease before it expires. If the leaseholder
does neither, the lease simply expires, and the space removes the entry from its store.

The AICG model simplified the Java Space lease model into two configurations. These are
1. Generally, the distributed object lasts forever as long as the space exists, even if the

leaseholder (the process that creates the object) has died. This configuration is
enabled by setting the SPACE lease property in the Implementation to 0.

2. In real-time environment, the distributed object lasts for a fixed duration of x ms
specified by the object designer. To keep the object alive, a write operation must be
performed on the object before the lease expires. This configuration is set through the
SPACE lease property in the Implementation to the time in ms required.

Hence, the developer must provide due consideration towards leasing while developing the
application. If an object has a life time, it must be renewed before it expires. In the AICG
model, renewal is done by calling any method that modifies the object. If no modification is
required, the developer can consider defining a dummy method with the spacemode set to
“write”. Invoking that method will automatically renew the lease.

8. Transactions
The AICG model uses the Jini Transaction model, which provides generic services
concerning transaction processing in distributed computing environment.
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8.1 Jini Transaction model:

All transactions are overseen by a transaction manager. When a distributed application needs
operations to occur in a transaction secure manner, the process asks the transaction manager
to create a transaction. Once a transaction has been created, one or more processes can
perform operations under the transaction. A transaction can complete in two ways. If a
transaction commits successfully, then all operations performed under it are complete.
However, if problems arise, then the transaction is aborted and none of the operations occurs.
These semantics are provided by a two-phase commit protocol that is performed by the
transaction manager as it interacts with the transaction participants.

8.2 AICG Transaction model

AICG model encapsulates and manages the transaction procedures. All operations on the
distributed object can be either with transaction control or without. Transaction control
operations are controlled with a default lease of 2 sec. This default value of leasing time may,
however, be overriden by the user. This is kept by the transaction manager as a leased
resource, and when the lease expires before the operation committed, the transaction manager
aborts the transaction.

Transactions have the following desirable effect on the semantics of the AICG operations.
When a distributed object is created, the object is not seen or accessible outside of the
transaction until the transaction commits. However, when a distributed object is updated or
read under transaction, it can come from new object created within the transaction or objects
in the space.

The AICG model by default, enable all transaction for write operations and the transaction
lease time is two seconds. The developer can modify the lease time through the PSDL
SPACE transactiontime property.

PROPERTY
transactiontime= 0: Disable transaction for that method

             /n: Set the lease time to n ms.

All the read operations in the AICG model do not have transactions enabled. However, the
user can enable it by using the property transactiontime with the upper limit in transaction
time for the read operation. To used the same transaction for more than one operation, the
following property must be set.

PROPERTY
transactionID = 99 : An ID number that are the same for more than one method.
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9. AICG Event Notification

In the distributed and loosely-coupled programming environment, it is desirable for an
application to react to changes or arrival of newly distributed objects instead of “busy
waiting” for it through polling. AICG provides this feature by introducing a callback
mechanism that invokes user-defined methods when certain conditions are met.

Java provides a simple but powerful event model based on event sources, event listeners and
event objects. An event source is any object that “fires” an event, usually based on some
internal state change in the object. In this case, writing an object into space would generate
an event. An event listener is an object that listens for events fired by an event source.
Typically, an event source provides a method whereby listeners can request to be added to a
list of listeners. Whenever an event source fires an event, it notifies each of its registered
listeners by calling a method on the listener object and passing it an event object.

Within a Java Virtual machine (JVM), an application is guaranteed that it will not miss an
event fired from within. Distributed events on the other hand, had to travel either, from one
JVM to another JVM within a machine or between machines networked together. Events
traveling from one JVM to another may be lost in transit, or may never reach their event
listener. Likewise, an event may reach its listener more than once.

Space-based distributed events are built on top of the Jini Distributed Event model, and the
AICG event model further extends it. When using the AICG event model, the space is an
event source that fires events when entries are written into the space matching a certain
template an application is interested in. When the event fires, the space sends a remote event
object to the listener. The event listener codes are found in one of the generated AICG
interface wrapper files. Upon receiving an event, the listener would spawn a new thread to
process the event and invoke the application callback method. This allows the application
codes to be executed without involving the developer in the process of event-management.

There are a few steps for setting up AICG event for a particular application. Firstly, the
distributed objects must have the SPACE properties for Notification set to yes. One of the
application classes must implement (java term for inherit) the notifyAICG abstract class. The
notifyAICG class has only one method, which is the callback method. The user class must
override this method with the codes that need to be executed when an event fires.

10. AICG Design

This section explains the design of the AICG and the codes that are generated from psdl2java
program. The codes used in this section to explain the AICG and the development processes
are generated from the track PSDL of section 4.2.

10.1 AICG Architecture

The AICG architecture consists of four main modules. They are the Interface modules, the
Event modules, Transaction modules and the Exception module. The interface modules
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implement the distributed object methods and communicate directly with the application.  In
reference to the example in section 4, the interface modules are entryAICG, track, trackExt,
trackExtClient, trackExtServer. Instead of creating the actual object (track), the application
should instantiate the interface object either the trackExtClient or trackExtServer. Event
modules (eventAICGID, evenAICGHandler, notifyAICG) handle external events generated
from the JavaSpace that are of interest to the application. Transaction modules
(transactionAICG, transactionManagerAICG) support the interface module with transaction
services. Lastly, the exception module (exceptionAICG) defines the possible types of
exceptions that can be raised and need to be catch by the application. Figure 7 below shows
the architecture of the generated interface wrapper and the interaction with the other modules
and application.

Each time the application instantiate a track class by creating a new trackExtServer, the
following events take place in the Interface:

1. An Entry object is created together with the track object by the trackExtServer. The
tack object is placed into the Entry object and stored in the space.

2. Transaction Manager is enabled.
3. The reference pointer to trackExtServer is returned to the application.

Each time a method (getID, getCallsign, getPosition) that does not modify the contents of the
object is invoked, the following events take place in the Interface:

1. When the application invokes the method through the Interface
(trackExtServer/trackExtClient).

Exception HandlingTransaction

trackExtServer

track

trackServerExt

getID

getCallsign

setCallsign

getPosition

setPosition

JavaSpace
Notification
module

A
P
P
L
I
C
A
T
I
O
N

Figure 7, Architecture of the generated interface wrapper and the interaction with the other
modules and application
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2. The Interface performs a Space “get” operation to update the local copy.
3. The method is then executed on the updated copy of the object to return the value

back to the application.

Each time a method (setCallsign, setPosition), which does modify the contents of the object
is invoked, the following events take place in the Interface:

1. When the application invokes the method through the Interface
2. The interface performs a Space “take” operation, which retrieves the object from the

space.
3. The actual object method is then invoked to perform the modification.
4. Upon completion of the modification, the object is returned to the space by the

interface using a “write” operation.

10.2 Interface Modules

The interface modules consist of the following modules; an entry (entryAICG) that are stored
in space, the actual object (trackExt )that are shared and the object wrapper (trackExt,
trackExtClient, trackExtServe.).

10.2.1 Entry

A space stores entries. An entry is a collection of typed objects that implements the Entry
interface.  The base class of the AICG distributed object:

public abstract class entryAICG implements Entry
{

// main identifcation number
 public Integer entryID;
// required by JavaSpace //default constructor

 public entryAICG( )
 { }
 public entryAICG(int id){
 entryID = new Integer(id);
 }
 // return the object stored in   //the entry

public abstract Object
getObject( );

}

The Entry interface is empty; it has no methods that have to be implemented. Empty
interfaces are often referred to as “marker” interfaces because they are used to mark a class
as suitable for some role. That is exactly what the Entry interface is used for, to mark a class
appropriate for use within a space.

All entries in the AICG extend from this base class. It has one main public attribute, an
identifier and an abstract method that returns the object. Any type of object can be stored in
the entry. The only limitation is that the object must be serializable. Serializable allows the
java virtual machine to pass the entire object by value instead of by reference. Here is an
example “track” entry codes generated by the AICG from the PSDL file in figure 4. The
interface contains the object track in one of the field and an ID.
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public abstract class trackEntry
extends entryAICG

{
// id is required if there are more
// than one similar object in

   // the space
public Integer id;
// track object
public track data;
// default Constructor

    public trackEntry(){ }
// Constructor with information
//extracted from the track PSDL
// file.
public trackEntry(int aid, Integer

inID, track inData){
 super(aid);
   data = inData;
    id = inID;

}
public Object getObject(){

return data;
}

}

All Entry attributes are declared as publicly accessible. Although it not typical of fields to be
defined in public in object-oriented programming style, the associative lookup is the way the
space-based programs locate entries in the space. To locate an object in space, a template is
specified that matches the contents of the fields. By declaring entry fields public, it allows
the space to compare and locate the object. AICG encourage object-oriented programming
style by encapsulating the actual data object into the entry. The object attributes can then be
declared as private and made accessible only through clearly defined public methods of the
object.

10.2.2 Serialization

Each distributed interface object is a local object that acts as a proxy to the remote space
object. It is not a reference to a remote object but instead a connection passes all operations
and value through the proxy to the remote space. All the objects must be serializable in order
to meet this objective. The Serializable interface is “marker” interface that contains no
methods and serves only to mark a class as appropriate for serialization.  Here is the
Serializable interface:

public abstract interface Serializable
{

// this interface is empty
}

In that case, the track class of the example needs to implement the interface Serializable.

public class track implements
Serializable {
. .

   // since Serializable is a marker
// interface no methods need to be
//override.

}
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10.2.3 The Actual Object

We now look at the actual objects that are shared between the servers and clients. The
psdl2java generates a skeleton version of the actual class with the methods names and its
arguments. The body of the methods and its fields need to be filled by the developers. The
track class generated is shown below:

public class track implements
java.io.Serializable
{

private Integer trackNumber;

  public track(int inID){
   // insert the body here

}
public int getID(){

    // insert the body here
  }

  public void setPosition
(position_type post){

    // insert the body here
   }

  public position_type getPosition(){
   // insert the body here
  }

  public String getCallsign(){
   // insert the body here

  }
  public void setCallsign(String

sign){
   // insert the body here
  }

// automatically generated do
// not delete!!

  public Integer autoGetID1(){
return trackNumber ;

  }
}

10.2.4 Object Wrapper

Wrapping is an approach to protecting legacy software systems and commercial off-the-shelf
(COTS) software products that require no modification of those products [1]. It consists of
two parts, an adapter that provides some additional functionality for an application program
at key external interfaces, and an encapsulation mechanism that binds the adapter to the
application and protects the combined components [1].

In this context, the software being protected contains the actual distributed objects, and the
AICG model has no way of knowing the behaviors of the distributed object other than the
type of operations of the methods. The adapter intercepts all invocations to provide additional
functionalities such as synchronization between the local and distributed object, transaction
control, events monitoring and exceptions handling. The encapsulation mechanism has been
explained in the earlier section (AICG Architecture). Instead of instantiation of the actual
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object, the respective interface wrapper is instantiated. Instantiating the interface wrapper
would indirectly instantiate the actual object as well as storing the object in the space.

Three classes generated for every distributed object. There are named with the object name
appended with the following Ext, ExtClient, and ExtServer.

10.3 Event Modules

The event modules consist of the event callback template (notifyAICG), the event handler
(evenAICGHandler ) and the event identification object (eventAICGID).

10.3.1 Event Identification object

The event identification object is used to distinguish one event from others. When an event of
interest is registered, an event identification object is created to store the identification and
event source. Together these two properties act to uniquely identify the event registration.

The object has only two methods, an ‘equals’ method that check if two event identification
objects are the same and a ‘to string’ method which is used by the event handler for
searching the right event objects from the hash table.

10.3.2 Event Handler

Event Handler is the main body of the event operation in the AICG model. It handles
registration of new events, deletion of old events, listening for event and invoking the right
callback for that event. Inside the event handler are in fact, three inner classes to perform the
above functions. Events are stored in a hash table with the event identification object as the
key to the hash table. This allows fast retriever of the event object and the callback methods.

The event handler listens for new events from the space or other sources. When an object is
written to the space, an event is created by the space and captured by the all the listeners. The
event handler would immediately spawn a new thread and check whether the event is of
interest to the application.

// call when an external event is
// “fired”.
public void run() {

Object source = event.getSource();
   long id = event.getID();
   long seqN =

event.getSequenceNumber();
   // create a new event identifcation

//object
   eventAICGID keyID= new

eventAICGID(id,source);
   registerAICG tempReg;

   String key = new
String(keyID.toString());

   // check if the key exist in the
// hash table (storage)

   if ((tempReg = (registerAICG)
storage.get(key)) !=null)
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   {
   // check if the event is an old or

// duplicate event
   if (seqN > tempReg.seqNum) {

   tempReg.seqNum = seqN;
src.listenerAICGEvents

(tempReg.anyObj);
   } else {
   // old events ignored
   return;
   }

}
}

}// end of notifyHandler

10.3.3 The Callback Template

The callback template is a simple interface class with an abstract method
listenerAICGEvents. Its main function is to allow the AICG model to invoke the application
program when certain events of interest is “fired”.  As explain earlier, the template need to be
implemented by the application that wishes to have notification.

public interface notifyAICG
{

public abstract void
listenerAICGEvents(Object obj);

}

10.4 The Transaction Modules

The transaction modules consist of transaction interface (transactionAICG) and the
transaction factory  (transactionManagerAICG).

The transaction interface is a group of static methods that are used for obtaining reference to
the transaction manager server somewhere on the network. It uses the Java RMI registry or
the look-up server to locate the transaction server.

The transaction factory uses the transaction interface to obtain the reference to the server,
which is then used to create the default transaction or user-define transaction. In short the
transaction factory can perform the following:

1. Invoke the transaction interface to obtain a transaction manager.
2. Create a default transaction with lease time of 5 seconds.
3. Create a transaction with a user define lease time.

10.5 The Exception Module

The exception module defines all the exception code that is return to the application when
certain unexpected conditions occur in the AICG model. The exception include

• "NotDefinedExceptionCode"; unknown error occur.
• "SystemExceptionCode"; system level exceptions, such disk failure, network failure.
• "ObjectNotFoundException"; the space does not contain the object.
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• "TransactionException"; transaction server not found, transaction expire before
commit.

• "LeaseExpireException"; object lease has expired.
• "CommunicationException"; space communication errors.
• "UnusableObjectException"; object corrupted.
• "ObjectExistException"; there another object with the same key in the space.
• "NotificationException"; events notification errors.

11. Conclusion

This paper demonstrates the ease of sharing distributed objects and automates the generation
of generic interface wrappers directly from the Prototype System Description Languages.
However, the design has a performance price penalty. Every read operation requires the
interface to synchronize the local object with the distributed object before the value is
returned. Every write operation requires two Space operations. Adding the overhead for
transactions, event monitoring and control, reading operations are in the range of a hundred
milliseconds and writing is in the range of a few hundred of milliseconds. The high overhead
lies within the Java Virtual Machine (JVM), the JavaSpace Model and the network latency.
Current versions of JVM and JavaSpace are in a premature state in terms of performance.
Even so, the performances are still suitable for most applications that are not time critical.
Similar implementations of distributed systems with the above features of AICG interface in
CORBA and Java would not perform any better. Hence, the AICG model is still a viable
option in developing interface wrapper for distributed system.
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Appendix A: PSDL Grammar

A.1 Extension to PSDL for AICG model

Changes:

17. type_impl  = "implementation ada" id "end"
| "implementation" type_name {"operator" id operator_impl} "end"
| “implemetation space” <space_impl>

18 <operator_impl> ::= implementation <id>
<id> end |  implementation <psdl_impl> end
|  implementation
<class_impl> end

* Those in bold is the additional grammars added.

Additional:

52. <space_impl> ::= space {<property>} end


