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Abstract

It is an understatement that both the theory and applications of probability –conditional or
unconditional – play an essential role in the processing and use of disparate information in
decision-making in C4I systems.  Apropos to the theme of this symposium, “Making Information
Superiority Happen”, the paper outlined here describes new applications, insights, and theoretical
aspects of ongoing work by the authors toward improving the rationale for use of probability
theory, keeping in mind issues of scalability and computational complexity. This paper extends
the ideas first presented in last year’s CCRTS at Newport, RI.  In short, the mathematical theme
of this paper is both a summary of past research efforts together with new results on the problem
of best estimating partially specified conditional and unconditional probabilities of interest via a
second order bayesian probability approach.  Among the new derivations provided in this paper
is a significant reduction in computational effort in obtaining (again, in the second order
probability sense) optimal or “near-optimal” probability estimates, all within the setting of a
boolean “conditional event algebra” which allows full compatibility with conditional probability
evaluations.

1.  Introduction

As stated in the abstract, this work is a direct continuation of the effort presented in [Goodman,
1999].  Even in the simplest appearing situation, where probabilistic information is present in the
form of specified or apriori known (or estimated) probabilities of certain contributing events, the
theory of how to determine or best estimate the probability of another particular event, or events
of interest, may not be readily apparent. In addition, it is possible that this problem cannot be
resolved within the confines of ordinary probability theory because at times it seems to be at
odds with our “commonsense” solution.   This phenomenon is seen to occur even at the simplest
levels, as will be illustrated later.  Since a basic aspect of reasoning relative to Command &
Control relies heavily upon probability concepts, these issues must be resolved within a
framework of rigor, yet computational tractability.  Such real-world probabilities are often not
necessarily even fully theoretically determined.  This typically occurs in rule-based systems
where all that is known concerning conditional probabilities associated with rules are lower
bounds on those probabilities.  In addition, many popular techniques, such as Bayes nets (see,
___________________
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e.g., [Pearl, 1988] for a basic exposition), may not be applicable, unless one is willing to make a
number of independence assumptions – assumptions for which there may not always be good
justification.  This paper will address a number of issues connected with the estimation of
underspecified probabilities.

1.1  Notation, Conventions, Fundamental Results

Recalling the basic identification between classical propositional logic (actually also including
its extension to quantified logic) and boolean (and sigma) algebra of events or sets, as given
through the Stone representation theorem provided in details, e.g., in Chapter 5 of [Mendelson,
1970], we choose throughout this paper to present all concepts via a boolean algebra framework
and its ramifications.  Here, letters a, b, c,... indicate events (or statements which can be true or
false) in a boolean algebra B, where: all disjunctions or unions of events in B are indicated by ∨
(where any finite quantity of such disjunctions produces another event in B); all complements or
negations of events by (.)′, as, e.g., a′ (also an event in B); and all conjunctions or intersections of
events by either &, as e.g., a&b, or when possible, by simply omitting any symbol such as ab.
Repeated conjunction or disjunction operations are indicated in the usual way in string form or
with use of an index set below the symbols & or ∨.  At times, capital letters in roman form A,
B,..., or in italic form A, B,..., as well as lower case greek letters α, β, γ,..., will be used to
indicate special events or special collections of events.   The universal event or set containing all
events of relevance to the problem at hand is indicated by Ω, while the null event or set is
indicated by ∅.  The standard subevent partial order relation is denoted as c ≤ d.  Equality of
events is simply denoted by =, etc.  The triple (Ω,B,P) refers to a probability space with
probability measure P:B→[0,1] (unit interval).  Here, generally, B is a boolean algebra, but if
needed, B may also be a sigma algebra (where all countable infinite repetitions of & and ∨ on
events in B produce again events in B).  When necessary to distinguish between the boolean
algebra operators acting on events and logical operators acting upon sets of events or upon index
sets relative to the events, we use the set notation ∩,  ∪, ⊆, rather than the corresponding &, ∨,
≤, etc.  When needed to emphasize a point, we use the convention =d to indicate a definition,
rather than a proved result and =w to indicate “which equals”. The notation card(J) refers to the
cardinality of (usually, index) set J.

Metalogical notation – i.e., notation utilized in proving theorems or making remarks about
boolean algebras, probabilities, etc. involved in the results -- will employ ordinary “and”, “or”,
“not”, “if-then” or “implies”, “iff” for “if and only if”, i.e., logical equivalence, etc.

Multivariable notation will be applied when more efficient than writing out arguments or vector
components.  For example the family of events (aj)j in J for some finite index set J, can also be
denoted as simply aJ, the repeated conjunction &(aj) can also be denoted as &(aJ); &(a′b)J for

)b'a(&
J in j

jj ; ∨(aJ) for 
J in j

∨ (aj); P(aJ) = 0J, for P(aj) = 0, j in J.  Also, 1m is that m by 1 vector, each of

whose one-dimensional components is 1, with an analogous definition for 0m.  More generally,
when unambiguous, 1J is that vector of card(J) components, each being 1, etc.   For any matrix or
vector A, sum(A) is simply the sum of all of its elements.  In a related vein, iterated summations
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such as ))(P(a
J in j

j∑ , ))b|(P(a
J in j

jj∑ , ))b(P(a
J in j

jj∑  all will be streamlined, whenever unambiguous,

to be, respectively,  Σ(P(a)J) , Σ(P(a|b)J), Σ(P(ab)J), etc.   Further multivariable notation will be
provided as needed. In addition, four special binary boolean operators at times will be of use and
are indicated in action for any a, b in B as:

(i)  material conditional or logical implication – the classic logic truth-table counterpart (or
event indicator function) is only false when the antecedent is true and the consequent is false,
and in a sense, most naturally models “if-then” or conditional statements from a classical logic
viewpoint

    “if b, then a”  becomes b⇒a =d b′ ∨ a  =w b′ ∨ ab  =w (a′b)′ =w (a¬b)′,  (1.1.1)

where “¬” is defined next.

(ii) (non-symmetric) event difference

   “b and not(a)” becomes b ¬a =d a′b.              (1.1.2)

(iii) symmetric event difference

   “(b and not(a)) and (a and not(b))” becomes a∆b =d (a′b) ∨ (b′a) =w (a⇔b)′ ,  (1.1.3)

where ⇔ is defined next.

(iv) logical equivalence

    “a iff b” or “(if b, then a) and (if a, then b)” becomes

                          a⇔b =d (ab ∨ a′b′) =w ((b⇒a)&(a⇒b)) =w (a∆b)′.  (1.1.4)

In addition to being aware of the elementary properties of probabilities, we will need on several
occasion to make use of the Fréchet-Hailperin-Hoeffding tightest general probability bounds on
conjunction (see, e.g., [Hailperin, 1965, 1984]):  For any given probability space (Ω,B,P) and
events aj in B, j in J, for some finite index set J,

max( ∑
J in j

( P(aj)) - (card(J) – 1), 0) =d L(aJ,P)  ≤     P(&(aJ)) ≤      U(aJ,P) =d  ))P(amin( j
J in j

.   (1.1.5)

From now on, the inequalities in eq.(1.1.5) will be referred to as the FHH inequalities.

Finally, a word on when conditional probabilities are well defined.  Generally speaking,
conditional probabilities such as P(a|b) are only meaningful when P(b) > 0, in which case the
standard definition holds

   P(a|b) =d P(ab)/P(b).                          (1.1.6)
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But, at times, individuals have found it convenient to extend the standard definition to either
yielding unity or zero for the case when P(b) = 0.  In particular, Adams has made such use in
developing his probability logics [Adams, 1996].  While later we will consider the situation
where in fact P(b) = 0 (although not actually defining P(a|b) directly for that case), we will
distinguish carefully through this paper between the standard case – when P(b) > 0 – and the
nonstandard.  From, now on, whenever the simple symbol P(a|b) is used, it is assumed that P(b)
> 0.

1.2  One Motivation for the Work: The Transitivity Problem

To illustrate the, unfortunately, all-to-often occurring discrepancy between probabilistic and
commonsense reassuming, consider the following example.  First, let us abbreviate the following
statements/events: b =d “enemy is secretly amassing over 100,000 troops ready to attack”; c =d

“political negotiations will fall through and it will be foggy tomorrow morning”; and a =d

“enemy will attack tomorrow morning”.  Suppose in this situation that previously acquired
intelligence information indicates that all three events are neither certain nor impossible and that
estimates of the following two conditional probabilities are the only reliable available
information:  P(a|b) =  0.9 (approximately)  and  P(b|c) = 0.8 (approximately).

What can we say about the critical desired probabilities such as P(a) or P(a|c) ?  Using the basic
laws of probability, it can be shown that, unless we make further assumptions, the above two
probabilities can take essentially any values in the unit interval.   More specifically, Figure 1
illustrates why, in general, with lack of any specific assumptions, one could have both P(a|b) and
P(b|c) very high, but P(a|c) low or even zero.  There the triangles represent any three overlapping
events a, b, c and the enclosing rectangle represents Ω.  A probability measure P is chosen with
mass to be distributed over a, b, c so that, as usual P(Ω) = 1.  The probability assignments are
shown for the various regions (or relative atoms) scoped out by conjunctions of combinations of
affirmations and negations of a, b, c, where VVL indicates “very, very low” (but not zero), VL
indicates “very low”, L indicates “low”, and H indicates “high”.

       P(abc) = VVL, P(abc′) = H,
                   a        P(a′bc) = L, P(a′b′c) = VL,

Ω                   P(ab′c′) = VL, P(a′bc′) = VVL.
                     0        0         (Typically here, VVL = 0.001, VL = 0.01,
            0 0         L = 0.1, H = 0.878.)

 VL       H     0                       P(a|b) = (H + VVL) / (H + L + 2VVL)  ≈ 1
VVL     0                                                  (Typ. Val: 0.897)

      VVL    L
           VL         P(b|c) = (L + VVL) / (L + VL + VVL)  ≈ 1

b                       (Typ. Val: 0.910)
                           c

        P(a|c) = (VVL) / (L + VL + VVL)  ≈ 0
                  (Typ. Val: 0.0090)

Figure 1. Example for conditional probability extension of classical
transitivity-syllogism problem where premise set has high conditional
probability values, but conclusion has a low (or even zero) conditional
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probability value.

Let us return to the general problem of given knowledge of P(a|b) and P(b|c), to determine P(a|c)
in some way. If we knew also P(a| bc) and P(a| b′c), then using also P(b|c) (without using P(a|b)),
we could easily determine P(a|c), as the reader can check.  Or, if we make the P-conditional
independence assumption that b alone without c is “sufficient” for a, i.e., P(a| bc) = P(a|b), and
again, that P(a| b′c) is now known, we could determine P(a|c) completely by elementary
probability considerations, using both P(a|b) and P(b|c), as in

P(a|c) = P(ab | c) + P(ab′ | c) = P(a | bc)P(b|c) + P(a|b′c)P(b′|c) = P(a|c)P(b|c)  + P(a|b′c)(1-P(b|c)).   (1.2.1)

Still other assumptions can be made about a, b, c and P to estimate P(a|c) in some sense. (See,
e.g., Section 6 of [Bamber et al., 2000].)

On the other hand, intuitively speaking, when P(a|b) and P(b|c) are both high, even though it is
possible that some probability configuration between a, b, and c may even yield  P(a|c) = 0, it
seems that on the average (whatever that means !) P(a|c) should also be high – though possibly
somewhat lower than both 0.9 and 0.8.  This intuitively desirable property, called at times
transitivity, chaining, or hypothetical syllogism, in the literature concerning the extension of
classical reasoning to a probability framework [Bamber et al., 2000; Pearl, 1988] itself, has been
the center of much controversy over the past several years in attempting to design rule-based
systems which follow the laws of probability, but also agree with commonsense reasoning as the
above example illustrates.  One basic reason for this is that rule-based systems usually operate
upon the sequential “firing” of rules, i.e., when the antecedent of one rule matches the
consequent of another.  But -- as is often the case -- when such rules are actually not 100%
reliable, but for purpose of convenience (and the usual real world tradeoff in using something
that is highly reliable but not perfect) still form part of the system, in effect, the transitivity
problem is present, even if one tacitly ignores it to perform the functioning of the system.  In a
related vein, one should mention tacit alternatives to the problem of extending transitivity and
other desirable properties of reasoning systems to a probability framework via “certainty factors”
utilized in [Buchanan & Shortliffe, 1984] and other ad hoc procedures for combining reliabilities
of inference rules, as discussed in [Hayes-Roth et al., 1983].

Note also that, instead of interpreting the above conditional statements via naturally
corresponding conditional probabilities, the statements “if b, then a”, “if c, then b”, and “if c,
then a”, could be first modeled through the classical logic (or boolean algebra) material
conditional operator and then evaluated probabilistically.  In that case, it easily follows that since

(b⇒a) & (c⇒b)  = b′c′  ∨ ab  ≤ c′ ∨ a  = c ⇒ a,  (1.2.2)

by the monotonicity property of probability, for any P over B,

P((b⇒a) & (c⇒b)) ≤ P(c ⇒ a),              (1.2.3)

and applying the lower bound FHH to eq.(1.2.3), we obtain
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     [P(b⇒a) ≥ s, P(c⇒b) ≥ t ]  implies   [P(c ⇒ a) ≥ s + t – 1],    for any ½ ≤ s, t ≤ 1,  (1.2.4)

and thus have a seemingly satisfactory solution to the transitivity problem (where both the
probabilistic analysis and commonsense reasoning apparently agree).

However, one basic fact that precludes a consistent use of (b⇒a) in interpreting the conditional
expression “if b, then a”, and the subsequent probability evaluation P(b⇒a) for measuring the
degree of reliability of the rule “if b, then a”, or the uncertainty of same rule, is that the
evaluation

P(b⇒a) = 1- P(b) + P(ab)  (1.2.5)

increases toward unity when P(b) decreases down toward zero, regardless of the relationship
between P(b) and P(ab) – which, of course P(a|b) completely respects.  Moreover, a well-known
inequality provides a good quantitative measure of the difference between the two approaches to
modeling (see, e.g., [Calabrese, 1987; Goodman & Nguyen, 1995] for further discussions)

                                   P(b⇒a) = P(a|b)  +  P(b′)P(a′|b)  ≥  P(a|b). (1.2.6)

On the other hand, when P(a|b) = 1, P(b|c) = 1, a little manipulation shows necessarily P(a|c) = 1.
In fact, this case generalizes the classical (barbara-type) of syllogism typified by the well-known
paradigm “All men are mortal”, “I am a man”, therefore “I am mortal”  (See, e.g., [Prior et al.,
1967; Copi, 1986; Goodman, 1999] for discussion and background on this classical syllogism.)
Thus, we see that a real sort of discontinuity exists between the certain conditional probability or
classical reasoning case and the general nontrivial conditional probability case for potential
transitivity, keeping in mind the additional difficulty illustrated above that the material
conditional-plus-probability-evaluation approach is also not satisfactory, despite its formally
satisfying transitivity at all probability levels.

Besides the transitivity problem, a number of other fundamental problems exist in reasoning
which also yield similar apparent discrepancies with our commonsense understanding, including
contraposition and strengthening, discussed later.  In the case of all of the above-mentioned
problems, the desired probability subject to the given constraints is so underspecified that in
general it can range over the entire unit interval.  In such situations it appears that a number of
previously established approaches to estimating varying probabilities may not be adequate.  This
includes the many general bounding, probability-bounding, upper and lower probability
techniques, and random set and related (belief, plausibility, etc.) function techniques, as
provided, e.g., in [Alefeld & Herzberger, 1983; Hailperin, 1996; Walley, 1991; Dempster, 1967;
Shafer, 1976; Goodman et al., 1997].  On the other hand, these techniques, used with appropriate
caution (see, e.g., [Nguyen, 1978; Chapters 3, 4 of Goodman & Nguyen, 1985]) may provide a
viable alternative to that which we present here in the subsequent sections.  In yet another
direction, there is the basic – or naive – maxumum entropy approach, which picks a specific P –
and then uses that P to evaluate the desired conclusion probability -- through maximizing
entropy, subject to the constraints of the problem.  This, indeed, may also furnish a possible
reasonable approach to these issues, as developed, e.g., in [Rödder, 2000], based on general
principles as found, e.g., in [Kapur, 1994].  However, as in the bounding approaches, such use of
maximum entropy must be carried out with caution, as will be seen later.
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1.3  Use of Second Order Probability in Addressing the Transitivity Problem

In [Goodman & Nguyen, 1998, Goodman, 1999 and Bamber et al., 2000] it was shown that a
reasonable way to analyze the transitivity problem within a completely rigorous mathematical
framework, compatible with all the laws of probability, is to interpret the above expression on
average to mean that, instead of attempting hopelessly to pick out the “true” value P(a|c) from
the unit interval, one should average the value P(a|c) over all possible choices of probability
measures P, subject to the given constraints P(a|b) = 0.9 and P(b|c) = 0.8.   But, this bayesian
method requires a choice of second order probability, i.e., a choice of probability distribution of
the probability measures themselves!  (Second order probability techniques have already proven
useful in addressing update problems as in [Goodman & Nguyen, 1999a] and may also be found
in the older treatise of [Aitchison, 1986].)  Suppose, for simplicity and lack of any other
information, appealing, e.g., to a second order maximal entropy (or equivalently most ignorance
of information argument) – as opposed to the naive (first order) maximum entropy approach
discussed earlier -- we choose this second order distribution to be in a natural sense uniform over
the possible candidate probability measures.  Then, it can be shown [Goodman, 1999; Bamber et
al., 2000] that no matter what threshold values s = P(a|b) and t = P(b|c) are, a closed-form
expression in variables s and t can actually be computed for the P-averaged P(a|c), which, in
agreement with commonsense, does, in fact, approach unity as s and t approach unity.  In
addition, a reasonable upper bound can also be obtained for the error variance (between this
estimate and actual possible values), as the probabilities vary uniformly.  Computations for
related procedures produce closed-form results in a number of cases of interest besides
transitivity, but these approaches do not, at first analysis, appear to be generalizable, because of
the difficulty in evaluating multiple integrals over spaces of constrained probability measures.
However, recent efforts have produced promising modifications and approximations applicable
to the general case, as outlined in this paper.

Returning to the case of transitivity, the formula for the averaged value of P(a|c) with respect to
P varying uniformly and P(a|b) and P(b|c) known, as well as bounds on its variance and expected
deviation from its limiting unity value, and bounds on the associated (second order) probabilities
are given below:

EP(P(a|c) | P(a|b) = s, P(c|d) = t) = st + f(s,t) ,   1 > s, t > ½,  (1.3.1)

where the correction term f(s,t) > 0 in eq.(1.3.1) is

  f(s,t) =d   [(1-t)/2  - ( [s(1-s)(2s-1)t(1-t2)] / [t+2t2 + (s(1-s)(1-t)(2+3t-t2))] )] > 0,  1 > s, t > ½.
             (1.3.2)

In other words, for this generic example, the averaged-out value of P(a|c) is approximately the
same as if the “conditional events “a given b” and “b given c” were P-independent, for all P, up
to the correction term  f.   For the specific example at hand, where s = 0.9 and t = 0.8, the
averaged value of P(a|c) is approximately 0.75 (as compared to 0.72 for the formal assumed
independence).  Note, as stated above, that as s, t approach unity, f(s,t) approaches zero and the
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expectation approaches unity, agreeing with the commonsense argument.  In mathematical
notation this is

limit
1)t(s, →

 [EP(P(a|c) | P(a|b) = s, P(c|d) = t)] = 1.                    (1.3.3)

In turn, because all probabilities lie in the unit interval, the conditional variance

    VarP(P(a|c) | P(a|b) = s, P(c|d) = t))
=  EP([P(a|c) -EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2 | P(a|b) = s, P(c|d) = t)
=  EP((P(a|c))2| P(a|b) = s, P(c|d) = t) –  [EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2

≤  EP(P(a|c)| P(a|b) = s, P(c|d) = t) – [EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2

=  EP(P(a|c)| P(a|b) = s, P(c|d) = t)·( 1 - EP(P(a|c)| P(a|b) = s, P(c|d) = t) )
≤  1 − EP(P(a|c)| P(a|b) = s, P(c|d) = t),                (1.3.4)

where for values of EP(P(a|c)| P(a|b) = s, P(c|d) = t) not that close to unity, the second to the
bottom expression in eq.(1.3.4) can be used as an upper bound estimate of the conditional
variance.  Thus, also the averaged deviation of P(a|c) from unity, which is

     E((P(a|c) – 1)2 | P(a|b) = s, P(c|d) = t)
 = E([P(a|c) – EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2 + [EP(P(a|c) | P(a|b) = s, P(c|d) = t) – 1]2 |
       P(a|b) = s, P(c|d) = t)
=  VarP(P(a|c) | P(a|b) = s, P(c|d) = t)) +  [1-EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2,                 (1.3.5)

has also a computable upper bound obtainable from use of eq.(1.3.5).  The unity limiting form in
eq.(1.3.3) shows that both the variance and averaged deviation of P(a|c) from unity both
approach zero.  Since the usual triangle inequality provides

  0 ≤ 1-P(a|c)  ≤     1- EP(P(a|c) | P(a|b) = s, P(c|d) = t)
  +  | P(a|c) - EP(P(a|c) | P(a|b) = s, P(c|d) = t)|  (1.3.6)

the standard Chebychev inequality (see, e.g., page 95 of [Rao, 1973]) shows, for any λ > 0,
denoting Prob as the corresponding second order (posterior) probability measure determined
through the uniform prior we chose for the P’s,

       Prob( [P(a|c) - EP(P(a|c) | P(a|b) = s, P(c|d) = t)]2 ≥ λ |  P(a|b) = s, P(c|d) = t))
 ≤  (1/λ)•VarP(P(a|c) | P(a|b) = s, P(c|d) = t)).                (1.3.7)

Combining eqs.(1.3.4), (1.3.6), (1.3.7), for any λ > 0,

     Prob( [1-P(a|c)]2 ≥ λ |  P(a|b) = s, P(c|d) = t))
 ≤ (1− EP(P(a|c) | P(a|b) = s, P(c|d) = t)) / (λ1/2− [1− EP(P(a|c) | P(a|b) = s, P(c|d) = t)])2.   (1.3.8)

Finally, eq.(1.3.3) applied to eq.(1.3.8) shows that
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             limit
1)t(s, →
(Prob( [1-P(a|c)]2 ≥ λ |  P(a|b) = s, P(c|d) = t))) = 0, (1.3.9)

at least the rate described in eq.(1.3.8), so that in standard probability parlance, P(a|c) converges
in (second order) probability to unity, under the conditions P(a|b), P(b|c) themselves converge to
unity, assuming otherwise, any P is equally likely.

2.   Use of Second Order Probability in Analyzing Whether Various Types of Desirable
      Reasoning Properties Can Be Extended to a Probability Setting: An Introduction

2.1  Some Particular Examples

As in the transitivity problem discussed in Section 1.3, a second order probability approach can
be used to determine whether particular types of desirable properties that classical logic
possesses -- or more general reasoning systems should possess -- carries over to a probability-
based  reasoning system.

In addition to transitivity, closed-form results have been obtained involving a number of other
reasoning system properties, including contraposition, positive conjunction, and strengthening.

In the case of contraposition, the premise involved in natural language form is “if b, then a” and
the (potential) conclusion is “if not(a), then not(b)”, a well known valid classical logic property -
- in fact, one will recall in boolean form this is the same as the identity

b⇒a = a′⇒b′.   (2.1.1)

When the above forms are not only interpreted through the material conditional operator, but
also evaluated via probability, just as in the attempt for addressing the transitivity problem (see
eq.(1.2.4)), the classical logic property seems to extend trivially to a probability setting:

                            [P(b⇒a) ≥ s ]  implies   [P(a′ ⇒ b′) ≥ s],    for any 0 ≤ s ≤ 1.              (2.1.2)

But, again, as in the transitivity case (see the remarks following eq.(1.2.4)), because of the basic
undesirable consequences in using probability evaluations of the material conditonal operator as
interpretations of probability evaluations of conditional expressions, such an extension is not
satisfactory.  On the other hand, just as in the transitivity case (again, see Figure 1 of Section
1.2), in general, given only the information P(a|b) = s, for even s quite close to unity, we can find
particular probability measures P such that P(b′|a′) is close to, or actually zero.  Thus, once more,
we are led to seek if a second order probability approach to this quandary produces a more
reasonable result.  Specifically, we ask what is the P-averaged value of P(b′|a′)  for given
constraint P(a|b) = s and if that evaluation approaches unity as s approaches unity.

 In the case of positive conjunction, the premise involved in natural language form is {“if b, then
a”, “if c, then a”} and the (potential) conclusion is “if b and c, then a”.  Once again, as in the
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transitivity and contraposition cases, the classical logic interpretation via the material conditional
operator in boolean form is easily seen to produce the inequality
                                    (b⇒a)&(c⇒a) = b′c′ ∨ b′ac ∨c′ab  ≤ (bc ⇒a),  (2.1.3)

whence, analogous to the use of the FHH lower bound to produce eq.(1.2.4),

      [P(b⇒a) ≥ s, P(c⇒a) ≥ t ]  implies   [P(bc ⇒ a) ≥ s + t – 1],    for any ½ ≤ s, t ≤ 1.  (2.1.4)

But, once more, as in both the transitivity and contraposition cases, the potential value of the
result in eq.(2.1.4) is diminished by the difficulties involving the probability of the material
conditional.  And, once more, it can be shown that probabilities P exist for which P(a|b) = s and
P(a|c) = t, with s and t reasonably high, yet P(a| bc) quite low or even zero.  Thus, again we are
led to seek if a P-averaged evaluation of P(a| bc) subject to these constraints produces a more
reasonable result.

Finally, we mention the property of strengthening, where in a natural language setting the
premise is “if b, then a” and the (potential) conclusion is “if b and c, then a”.  The classical logic
counterpart, using again the material conditional interpretation of “if-then”, is seen to be valid
via the simple inequality in boolean form

     (b⇒a) = b′ ∨ a  ≤  b′ ∨ c′ ∨ a  = (bc ⇒a), (2.1.5)

which if P were to be applied to both sides of eq.(2.1.4), via the standard monotonicity property
of probability, produces the equally simple relation

            [P((b⇒a) ≥ s]  implies  [P(bc ⇒a) ≥ s] , for all s,   0 ≤ s ≤ 1.                 (2.1.6)

However, as in the cases of transitivity, contraposition, and positive conjunction, the same
pattern of difficulty holds: First, eq.(2.1.6) is of limited valued due to the general difficulty in
using the probability of the material conditional operator approach to modeling uncertain
conditioned information; second, “counterexamples” can be found for which P(a|b) is quite high,
yet P(a| bc) is very low or zero.   Thus, yet again, we whether by suitably averaging P(a | bc) over
possible P’s, subject to the constraint P(a|b) = s, we can obtain a computable function of  s which
approaches unity as s does.

Table 1 not only provides a summary of closed-form computations for P-averaged conclusion
probabilities for transitivity, contraposition, positive conjunction, and strengthening, but also for
a number (about thirty total) of other properties (desired and undesired) of logical systems in a
second order (uniform prior) probability framework.  In the case of the four examples discussed
so far, all of them yield P-averaged conclusions that do indeed approach unity as threshold(s) s
and/or t approach unity, compatible with commonsense reasoning.

2.2  Generalizations

In order to put the above ideas on a more rigorous and general basis, consider the following:
Begin with a probability space (Ω,B,P), with now P arbitrarily variable and given events aj, bj, c,
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d in B, for which we assume, without loss of generality (attempting to avoid trivial results), that
∅ < aj < bj, all j in J, and ∅ < c < d.  We also consider a given premise set (aj|bj)j in J, where,
formally, each “conditional event” (aj|bj) corresponds to the conditional expression “if bj, then
aj”, before being evaluated via any choice of (well defined) P as P(aj|bj), etc., or in multivariable
notation, (a|b)J forms the premise set, while, for purpose of simplicity,  the single conditional
event (c|d) forms the potential conclusion.  In turn, we seek to determine two types of mean
conclusion functions: meanconci((a|b)J, (c|d)): A → [0,1], i = 1, 2, where A is a subset of [0,1]J,
such as (open interval(1/2,1))J, and for each choice of tJ = (tj)j in J in A,

            meanconc1((a|b)J; (c|d))(tJ) =
d  EP(P(c|d) | P(a|b)J = tJ) ,  (2.2.1)

                        meanconc2((a|b)J; (c|d))(tJ) =
d  EP(P(c|d) | P(a|b)J ≥ tJ) ,  (2.2.2)

where symbolically P(a|b)J = tJ means P(aj|bj) = tj, for all j in J, and similarly, P(a|b)J ≥ tJ means
P(aj|bj) ≥ tj , for all j in J.  The mean conclusion functions will be fully rigorously determined
once we rigorize what was meant earlier by any P, as being “equally likely”, when P varies.  A
natural way to capture this is as follows: Suppose, first that

A =d {α1,...,αm+1}⊆ B  (2.2.3)

is a set of atoms of B with respect to ((a|b)J;(c|d)).  That is, the αj’s form a nonvacuous,
exhaustive partitioning of Ω, with each αj in B, so that any nonvacuous boolean function
f(Vo((a|b)J;(c|d)) of event variables Vo((a|b)J;(c|d)) from the antecedents and consequents of
premise set of conditionals (a|b)J and potential conclusion conditional (c|d), where

 ((a|b)J;(c|d))=d {aj, aj′bj, bj′: j in J} ∪ {c, c′d, d′},                              (2.2.4)

can be (uniquely, necessarily) expressed as a disjoint disjunction of αj’s, indicated through use of
the index set I(.) ⊆ {1,...,m+1} in

f(Vo((a|b)J;(c|d)) = 
d))|(c;b)|I(f(V((a in j

j

oJ

)á(∨ .              (2.2.5)

To do this it is clearly sufficient to determine whether each possible conjunctive combination of
affirmations and negations of all of Vo((a|b)J;(c|d)) is either equal to ∅ or a disjoint disjunction of
αj’s.  Note that the coarsest set of atoms/smallest possible set of atoms/set of atoms generated by
A with respect to ((a|b)J;(c|d)) is precisely that set of all such nonvacuous possible combinations
as above and is denoted as

A(Vo)((a|b)J;(c|d)).  (2.2.6)

Thus, any choice of P with respect to its evaluations of all possible boolean functions over
Vo((a|b)J;(c|d)) is uniquely determined by the evaluation of P at each atom αj in A.  In fact, the
vector P = (P(aj))j in J, for the purpose of further analysis, may now be identified with P and the
set of possible P’s relevant to any such investigation becomes simply the simplex {P: 0J ≤ P ≤1J

and sum(P) = 1, where P is otherwise arbitrary}.  For convenience, the above simplex being
actually of dimension one less than card(J), and therefore singular with respect to J, is replaced
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by designating one atom, say, αm+1, and omitting its evaluation from P in the above simplex, but
still keeping track of it.  That is, we consider the m-simplex, replacing P by variable X (with m
components, the ith component being xi = P(αi)) and the missing component,

                                      xm+1 = P(αm+1) = 1- sum(X)              (2.2.7)
and

Sm =d {X: 0m  ≤ X ≤1m, sum(X) ≤ 1},  (2.2.8)

Then, the concept of P being equally likely becomes equivalent to assuming X can be identified
as a random vector uniformly distributed over Sm (which, in turn, determines the behavior of the
missing component).  In terms of bayesian analysis, this corresponds to choosing a prior
probability distribution, which is uniform over Sm.  This distribution is a second order one in the
sense described previously: it is, in effect, a distribution of probabilities themselves.  as
implicitly stated above, the set of atoms, A, could be chosen to be A(Vo)((a|b)J;(c|d)).  Choice of
the most appropriate set of atoms is somewhat arbitrary, but since all results depend on this
choice, the simplest and most natural, at times, may be A(Vo)((a|b)J;(c|d)).

Also, at times, it will be convenient to consider a class of possible priors to choose from, rather
than be restricted to just the uniform distribution.  One family of distributions over Sm that
includes the uniform one, has a natural characterization compatible with the modeling here, and
possesses many desirable properties -- including closure with respect to all index disjoint sums
and marginals, among others – is the Dirichlet family, indicated symbolically as dir(λ), with
(m+1 by 1) parameter vector λ > 0m+1 .  The parameter vector λ is associated with the expectation
of dir(λ), (in fact, it is such up to normalization via sum(τ)) and prior knowledge, if available, of
the expectation can be transformed into a choice of λ.  For the special case of the uniform
distribution over Sm, λ = 1m and all the component (xi) expectations are identical to 1/(m+1). For
more details on properties and characterization of the Dirichlet family, see [Goodman & Nguyen,
1999a; Section 7.7 of Wilks, 1963; Chapter 40 of Johnson & Kotz, 1972].

Returning to the interpretation of type 1 meanconc functions in eq.(2.2.1), in light of the atomic
representation of any event and that of any probability measure here, the conditional probabilities
involved can be reinterpreted as simple bilinear functions of variable X, provided that the
designated atom αm+1 ≤ &b′J&d′: Letting aj correspond to the m by 1 vector of one-dimensional
components being either 1 or 0, depending on whether for the ith component atom αi ≤ aj or not
(i.e., in the latter case, necessarily disjoint from αj), then

      P(aj|bj) =  aj
T·X / (aj

T·X  +  (aj′bj)
 T·X)  ,  j in J;    P(c|d) = cT·X / (cT·X  +  (c′d) T·X).      (2.2.9)

Using eq.(2.2.9), each probability constraint (P(aj|bj) = tj) in the antecedent of the conditional
expectation in eq.(2.2.1) becomes

aj
T·X  = tj· (aj

T·X  +  (aj′bj)
 T·X),  j in J

i.e.,  the jth plane in variable X determined by

((1-tj)·aj   -tj·(aj′bj))
T·X  = 0,  j in J.           (2.2.10)
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The counterpart of eq.(2.2.10) for the type 2 meanconc function is

((1-tj)·aj   -tj·(aj′bj))
T·X  ≥ 0,  j in J,            (2.2.11)

corresponding to the ordinary probability relations

              P(aj′bj) ≤ ((1-tj)/tj)·P(aj) , j in J.                        (2.2.12)
                    
With all of the above stated, eqs.(2.2.1) and (2.2.2) can be rigorously interpreted, whether for the
special case of X being uniform over Sm or the more general case where X is distributed as dir(λ)
over Sm.  As seen in the transitivity case earlier, in addition to determining meanconc((a|b)J;
(c|d))(tJ) for all tJ in its domain, the limiting case 

)1(t JJ

limit
↑

(meanconci((a|b)J;(c|d))(tJ) is of interest.

When

)1(t JJ

limit
↑

(meanconci((a|b)J;(c|d))(tJ)) = 1,           (2.2.13)

say that (c|d) is deduced from (a|b)J  in the expected (or averaged) probability logical sense i, i =
1, 2.  (Bamber [2000] prefers the term “near surety” in developing a related logic.)  When this
holds, we will write this relation as

            (a|b)J ≤EPL (c|d).                        (2.2.14)

3.  Probability Estimation Procedures and Their Relation to the Expected Probability
     Logic Approach: A First Glimpse

While the approach taken here uses the mean conclusion function for determining properties of
reasoning schemes in probability in a second order probability sense, other related approaches to
the same issues exist.  Bamber [2000] has pointed out, at least in the limiting sense, the “rational
closure” approaches in [Lehmann & Magidor, 1992] and that of the “system Z” in [Pearl, 1990]
essentially coincide with averaged surety deduction of type 2.  However, the actual nonlimiting
case evaluation of the meanconc function has no counterpart in these two approaches.  On the
other hand, alternative approaches based on first order probability considerations, including
those of Adams’ (see again [Adams; 1975, 1996]), where the idea of a minimal conclusion
function is developed and that of naive maximal entropy, such as elaborated upon by [Rödder,
2000], can produce different limiting, as well as non-limiting antecedent threshold, evaluations
as compared to those computed via meanconc.  Adams’ minimum conclusion function
counterpart of the mean conclusion function is the function minconc((a|b)J;(c|d)): A → [0,1],
where for any tJ in A ⊆ [0,1]J, for convenience, giving here only the type two counterpart,

                        minconc2((a|b)J, (c|d))(tJ) =
d  inf{P(c|d): all possible P, P(a|b)J ≥ tJ}.     (3.1)

The standard naive maximum entropy function counterpart is the function maxent((a|b)J; (c|d)): A
→ [0,1], where for convenience we give the type 1 counterpart
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                      maxent1((a|b)J;(c|d))(tJ) =
d   P*(c|d) ,     (3.2)

where
       P* = arg(inf{ent(P): all possible P, P(a|b)J = tJ}) ,                          (3.3)

with entropy of any P given as usual as (recalling XT = (x1,...,xm), xm+1 = 1 – sum(X)),
 

ent(P) = ∑
+

=

⋅
1m

1j
jj ))xlog((-x .     (3.4)

For a basic application of the basic maximum entropy approach as outlined in eqs.(3.2)-(3.4),
where, typically, the method of Lagrange multipliers is employed to seek for the maximum with
respect to the constraints, see [Van Fraasen, 1981].  For a criticism of this approach which
produces in a sense a “nonintuitive” result as opposed to the result using a second order
probability approach, see [Grove et al., 1997] and Goodman & Nguyen’s follow-up and
generalization of the issue [Goodman & Nguyen, 1999].

Thus, corresponding to eq.(2.7), we can state that (c|d) is deduced from (a|b)J  in the minconc
sense i, if

)1(t JJ

limit
↑

(minconci((a|b)J;(c|d))(tJ)) = 1                 (3.5)

and we can state that (c|d) is deduced from (a|b)J  in the maxent sense i, if

)1(t JJ

limit
↑

(maxenti((a|b)J;(c|d))(tJ)) = 1,  i =1, 2.                 (3.6)

In Adams’ original terminology, minconc (type 2) deduction corresponds to his high probability
deduction.  Adams has also introduced other criteria for valid deduction of (a|b)J to (c|d).  The
one of relevance here involves the minconc function evaluated at tJ = 1J (in this case, type 1 =
type 2)  which Adams calls certainty probability deduction.  More specifically, the criterion for
(c|d) being certain-probability deduced from (a|b)J is that

minconc ((a|b)J, (c|d))( 1J) = 1.     (3.7)

In addition, a basic modification must be noted for Adams’ concepts.  Apropos to comments
made earlier concerning extending the definition of conditional probabilities when the
denominator is zero, i.e., the antecedent is assigned zero probability:  Adams, in effect,  extends
minconc to operate on conditional events in such situations by formally defining the
corresponding “conditional probability” to be unity.  More specifically, in the context of this
paper in analyzing Adams’ work, we shall apply the term “strong” to the certainty probability
deduction and the minconc types 1 and 2 deduction as already provided in eqs.(3.1), (3.5), etc.,
and “weak” when in such definitions, either P(bj) = 0 in the premise set is allowed in the formal
form of P(aj|bj) = 1 or P(d) = 0 is allowed in the formal form of P(c|d) = 1.   For simplicity, we
will use here

           (a|b)J ≤HPL (c|d) ,    (a|b)J ≤CPL (c|d),     (3.7)
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to indicate high probability (usually, of the strong type), certainty probability deduction validity,
(usually of the weak type) respectively, of (c|d) from (a|b)J, where, when required to make these
distinctions, the subscript letters S, W, respectively, will be prefixed to indicate strong or weak
types.

For purpose of completeness, we present in Table 1 (a good part of which has already appeared
in [Goodman, 1999]) a compilation of computations of the type 1 mean conclusion function and
type 2 minimum conclusion function restricted, for a variety of combinations of premise sets and
potential conclusions, including many corresponding to well-known reasoning schemes of
classical logic.  Note that in particular, not only transitivity (no. 13), but also contraposition (14),
positive conjunction (15), and strengthening (16) all fail to be valid in the strong HP sense, but,
as stated earlier, are valid in both the averaged surety sense and the certainty-probability sense
(in at least the weak sense). Partial documentation for the derivations may be found in [Bamber
et al., 2000], employing various integration techniques. The general assumption throughout
Table 1 is that the set of atoms here is A(Vo)((a|b)J;(c|d)), the minimal set of atoms generated by
the premise and conclusion antecedents and consequents (see eq.(2.2.6)) and the random
probability vector X has a uniform prior over Sm.

Name and
Number of
Deduction
Scheme
(a|b)J Potent.
Deducing (c|d)

Given Levels
of Premises:
P(a|b)J ≥≥ tJ

for Minconc2;
P(a|b)J = tJ

for Meanconc1

Potent.
Con-
clus.
(c|d)

Minconc2((a|b)J;
               (c|d))(tJ)

Meanconc1((a|b)J;
                 (c|d))(tJ)

Valid
For
CPL ?

Valid
for
EPL ?

Valid
for
HPL ?

 1. Disjunction
P(a|b) = s,
P(a|c) = t

(a|b∨c) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 2. Bayes P(a|b) = s,
P(c|ab) = t

(c|b) ≥  st ≥  st YES YES YES

 3. Cautious
  Monotonicity

P(a|b) = s,
P(c|b) = t

(a|bc) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 4.PSCEA
    Order

P(a|b) = t,
for ∅ < a < b,
∅ < c < d

(c|d)
≥  t ≥  t

YES YES YES

 5. Reflexivity
P(a|b) = t

(a|b)  t  t YES YES YES

 6. Cut P(a|b) = s,
P(c| ab) = t

(ac|b) ≥  st ≥  st YES YES YES

 7. Exceptions
(a′bc′, bc ≠ ∅)

P(a | bc) =s,
P(a′|b) = t

(c|b) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 8. Equivalance  P(a|b) = s,
 P(b|a) = t

a⇔b ≥  st (s+t)/[2(s+t-st)] YES YES YES

 9. Strict Modus
     Ponens

P(a|b) = s,
P(b) = t

ab  st  st YES YES YES

10.General
Modus Ponens

P(a| b∨c) = s,
P(b) = t

ab ≥  st  st  + (1-t)/2 YES YES YES

11.Condition.
     Bounds 1  P(a|b) = t

b⇒a ≥ t (2+t)/3 YES YES YES

12.Condition.
    Bounds 2  P(ab) = t

b ≥ t

2t)-(1

t)-(1t - tlog(t)-
2

YES YES YES
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13.Transitivity-
     Syllogism

P(a|b) = s,
P(b|c) = t

(a|c)  0 ≥  st + (1-t)/2 -

t21

)t-1)(1-s)s(2s-1(
2

+

YES YES NO

14.Contra-
     position

P(a|b) = t (b′|a′) 0

   1/t 
2

t

t)t)log(1(1 −−
+

YES YES NO

15. Positive
    Conjunction

P(a|b) = t,
P(a|c) = t

(a| bc) 0 (1+t)/3  + [((1+t)(2−t)/(3t)).θ(t)],
    θ(t) 
= (t2/4)[log((2-t)/t)]/(1-t)

 - ((1-t)2/4).log((1+t)/(1-t)

YES YES NO

16.Strengthen
   Antecedent

P(a|b) = t (a| bc) 0 approx. t  (complicated,
but in closed-form)

YES YES NO

17.Penguin
    Triangle
    abc′d ≠∅

P(a|b) = r,
P(b|c) = s,
P(d|c) = t,
P(a′b |d) = u

(a′b |c) 0 ?

YES
(weakly)

YES NO

18.Modified
    Penguin
    Triangle

P(a|b) = r,
P(b|c) = s,
P(d|c) = t,
d ≤ a′b

(a′|c) ≥ max(s+t-1,0) ≥ max(s+t-1,0)
YES
(weakly)

YES YES
(weakly)

19.Consequ. 1 P(a|b) = t a 0 (1+t)/3 NO NO NO
20.Consequ. 2 P(a|b) = t b 0 1/3 NO NO NO
21.Consequ. 3 P(a) = t (a|b) 0 1/2)(1 + g(t)),

   g(t) = [(1-t).log(1-t)] / t
            -(t.log(t)) / (1-t)

YES YES NO

22. Consequ.4 P(b) = t (a|b) 0 1/2 NO NO NO
23 Nixon
    Diamond

P(ab|c) = s,
P(d|a) = t,
P(d′|b) = t

(d|c) 0 1/2
YES
(weakly)

NO NO

24.Reverse
 Cond. Bnd. 1

P(b⇒a) = t (a|b) 0

t

t)t)(2(1

2
t

t)-t)log(1-2(1
t

+−
+

+
YES YES NO

25.Reverse
Cond. Bnd. 2

P(a|b) = t ab 0 t/3 NO NO NO

26. Abduction P(a|b) = s,
P(a) = t

b 0 If s ≥ t : t/(2s),

If s < t : 
22

23

s)2st2(t

t)s(1t

+−

−

NO NO NO

27. Induction For bjc all disj.
∨(bJc) < c:
P(a | bj&c) = tj,
j=1,…,n;

(a|c)
0 ? NO NO NO

28.Augmented
     Induction

For bjc all disj.
∨(bJc) < c:
P(a | bj&c) = tj,
j=1,…,n;
P(∨(bJ) |c) = s

(a|c)
≥ Π(tJ) – (1-s) ≥ Π(tJ) – (1-s) YES YES YES

29. Constrained
      Conjunction

P(a) = s,
P(b) = t

ab max(s+t-1, 0) (1/2)(min(s, t) +
         max(s+t-1, 0))

YES YES YES

30. Constrained
      Disjunction

P(a) = s,
P(b) = t

a∨b max(s,t) (1/2)(max(s, t) +
         min(s+t, 1))

YES YES YES



16

   Table 1.  Tabulation of minconc and  meanconc functions and listing of validity-nonvalidity
                   of  selected potential deduction schemes with respect to CPL, EPL, and HPL. Assumption
                   here is minimally-generated set of atoms from relevant premise and conclusion antecedents and

 consequents and uniform prior over the m-simplex of resulting possible probability functions.
We also illustrate in Table 2 (somewhat overlapping with Table 1) briefly how all three functions
minconc, meanconc, and maxent can be similar or quite divergent for various potential deduction
schemes.  (Again, see [Bamber et al., 2000] for documentation.)

Name and
Deduction
Scheme
(a|b)J Potent.
Deducing (c|d)

Given Levels
of Premises:
P(a|b)J ≥≥ tJ, for
minconc2;
P(a|b)J == tJ, or
P(a|b)J ≥≥ tJ for
meanconc

Potent.
Con-
clus.
(c|d)

Minconc((a|b)J;(c|d))(tJ) Meanconc((a|b)J;(c|d))(tJ)
   Maxent((a|b)J;(c|d))(tJ)

   Transitivity-
    Syllogism

P(a|b) = s,
P(b|c) = t

(a|c)  0 ≥  st + (1-t)/2 -

t21

)t-1)(1-s)s(2s-1(
2

+

(1+ (2s –1)t)/2

    Contra-
     position

P(a|b) = t (b′|a′) 0

   1/t 
2

t

t)t)log(1(1 −−
+

1/(1 + ((1−s)/s)s)

    Disjunctive
    Syllogism

P(a∨b) = s,
P(a′) = t

  b ≥ max(s+t-1,0) s –  (1/2)(1-t) s –  (1/2)(1-t)

   Moving Term  P(a∨  bc) = s,
    ab′c′ > ∅

ab ∨  c 0 (4/5)s  +  (1/3)(1-s) (4/5)s  +  (1/3)(1-s)

   Simple Lower
   Bound

 P(a) ≥ s ,
( 1> s > ½ )

   a  s   (1+s)/2    s

Table 2.  Comparison of minconc, meanconc, and maxent  functions for five selected possible
                  deduction schemes under same assumptions as in Table 1.

In particular, while obviously maxent and meanconc either coincide or are close to each other in
the first four cases of Table 2, they differ considerably with respect to the bottom type of
possible deduction scheme.   Note, in fact their coincidence for both the invalid deduction
scheme moving term (since the limit as s approaches 1 is 4/5 < 1) and the valid one disjunctive
syllogism.

4. Additional Analysis of HPL and CPL: Use of a Conditional Event Algebra

Certainly, as just seen through a number of examples in Tables 1 and 2,  Adams’ two basic
reasoning systems HPL  and CPL are quite distinct from EPL.  In fact, HPL and CPL are
monotonic logics in the sense that if (c|d) is deduced from (a|b)J in either the HPL or CPL sense,
then for any other collection of conditionals (or unconditionals) (a|b)K (with probability space
(Ω,B,P) given, P arbitrarily variable and all aj, bj, c, d in B, etc., as usual), (c|d) will also be
deduced in the same sense by (a|b)J∪Κ.  On the other hand, EPL is a nonmonotonic logic in
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general, as we shall see later.  (For further background on nonmonotonic logics, see, e.g. the text
of [Schlechta, 1997].)  Nevertheless, despite the differences, there are certain key connections
between HPL, CPL and EPL that will be pointed out.
Adams [1975, 1996] has ostensibly shown already a number of relations among not only HPL
and CPL, but other logics.  This, of course, does not include EPL, for which Bamber in [Bamber,
2000] has shown basic connections.  However, the thrust here is to refine these results more to
account for the difference between the weak and strong versions of these logics.  In addition, this
section will show, for the first time, how a certain form of “conditional event algebra” (to be
explained) can be used to provide a complete setting for both elegant formulations and
derivations of all of the key results.

This section provides only the barest information necessary for the use of conditional event
algebra in deriving properties of HPL and CPL.  Later, this will also be useful in additional study
of EPL.  For a much more detailed presentation, see [Goodman & Nguyen, 1995], where also a
history and various characterizations are presented for the particular conditional event algebra
discussed below.

To begin with, notice that while the conditional probability P(a|b) appears to be the natural
measure of uncertainty or reliability corresponding to an inference rule “if b, then a” -- taking
into account the discussion in Section 1.2, precluding use of the possible natural alternative form
P(b⇒a)) -- unlike the latter, no standard object or “conditional event” exists which can play the
role of the formal argument (a|b) of P in the evaluation P(a|b).  Or so, it seems.  In fact, a further
apparent barrier to the existence of such possible conditional events has been supposedly
provided in [Lewis, 1976].  Roughly speaking, Lewis’ result states that given any nontrivial
probability space (Ω,B,P), with P arbitrary, one cannot have for any ∅ < a < b in B, at the same
time some event, say (a|b) also in B with the property that

                              For all P over B (with P(b) > 0),  P((a|b)) = P(a|b).     (4.1)

But, this interesting – and readily proven -- result does not restrict (a|b) from existing in a space
Bo, which is, in an algebraic sense, strictly larger than B, via an isomorphic-isometric
correspondence between any a, b, c,... in B and (a|Ω), (b|Ω), (c|Ω) in Bo.  That is, the co-
existence of (a|Ω), (b|Ω), (c|Ω),... and (a|b), (c|d),... all in Bo does not violate Lewis’ “triviality
result”, even though the (a|Ω), (b|Ω), (c|Ω),... are strongly identifiable (isomorphically –
isometrically) with corresponding a, b, c,... in B!  In fact, the construction of such conditional
events may be carried out in the same completely routine manner that events in a product
probability space are obtained.  (For further proof of the avoidance of Lewis’ restriction, see
[Goodman, Mahler & Nguyen, 1997], Sections 11.5 and 12.2.2.)  The basic product probability
space here, (Ωo,Bo,Po), extending any given probability space (Ω,B,P), is simply the one formed
out of a countable infinity of independent factor spaces, each identical to (Ω,B,P).   In turn, given
any a, b in B, (a|b) is nothing more than the formal algebraic analogue of any of its nontrivial
numerical evaluations

 

                      P(a|b) = P(ab) / (1-P(b′)) = )( P(ab)))(P(b'
0j

j ⋅∑
+∞

=

,                 (4.2)



18

where arithmetic sum corresponds to disjoint ∨, multiplication to cartesian product ×, and
subtraction to negation (.)′.  That is, one can easily show that if we define the disjoint disjunction

(a|b) =d 
+∞

=
∨

0j
[(b′)j×(ab|Ω)],    Ωo =

d Ω× Ω× Ω×... ,     (4.3)

where (.)j×(..) indicates ordinary j-fold cartesian product of (.) with itself, followed by the
cartesian product of this result with (..), then, from now on, where necessary, indicating all basic
order relations and boolean operators over Bo corresponding to the usual ones over B by the
addition of subscript o,

        (a|Ω) =o  a× Ωο ,                 (4.4)

and the basic consistency relation holds

Po((a|b)) = P(a|b),  for all P over B,  for P(b) > 0.     (4.5)

Even more importantly, the well defined existence of such conditional events (a|b), (c|d),... in Bo,
for any a, b, c, d,... in B allows for natural extensions of conjunction, disjunction, negation, and,
in fact any boolean function, relative to ordinary events in B, to conditional expressions, and in
turn, then allow for probability evaluations of such expressions.  First, the basic recursive form
that all conditional events here must satisfy is

(a|b) =o (ab|Ω) ∨ (b′×(a|b)) (disjoint) .     (4.6)

Introduce the conditional-like operator [.|..]:Bo ×B → Bo , where for any A in Bo and b in B,
observing also a recursive form (with disjoint disjunctions)

 [A|b] =d  
+∞

=
∨

0j
((b′)j×(A&o(b|Ω)) =o A&o(b|Ω)) ∨ (b′× [A|b]) in Bo,        (4.7)

where it is noted that for any a, b in B and A in Bo,

[A|Ω] =o A ,   [(a|Ω) | b] =o (a|b).     (4.8)

The corresponding probability evaluations to eqs.(4.6)-(4.8) are simply for any P, with P(b) > 0,

 P(a|b) = P(ab) +  P(b′)P(a|b) ,     Po([A|b]) = Po(A| (b|Ω)) = Po(A&o(b|Ω)) / P(b)
        = Po(A&o(b|Ω)) + P(b′)Po([A|b]),     (4.9)

etc.  In turn, utilizing the above recursive forms, it follows, for any a, b, c, d in B,

  (a|b) =o (ab | b), (a|b)′o =o (a′|b) =o (a′b |b), provided that b ≠ ∅,                (4.10)
  (a|b)&o(c|d) =o [A | b∨d],  A =d (abcd |Ω) ∨ (abd′×(c|d)) ∨ (cdb′×(a|b)),   (4.11)

whence if P(b ∨d) > 0,
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   Po((a|b)&o(c|d)) = Po(A)/P(b ∨d), Po(A) = P(abcd)  + P(abd′)P(c|d)   +  P(cdb′)P(a|b).       (4.12)

Note the special cases of modus ponens and, generalizing the isomorphic imbedding relation
from B into Bo,  given via a → (a|Ω), for any a in B, for common antecdent b in B (replacing Ω),
b ≠ ∅,
            (ac |b)&o(bd |Ω) =o (abcd |Ω);  (a|b)&o(c|b) =o (ac |b), (a|b)∨ο(c|b) =o (a ∨ c |b).  (4.12′)

Since (Ω,B,Po) is a legitimate probability space where all of the standard laws of boolean (and
sigma) algebra, as well as of probability, are satisfied, then, e.g., the standard modular expansion
of probability holds

  (4.13)
   Po((a|b)∨o(c|d)) = Po((a|b)) + Po((c|d)) – Po((a|b)&o(c|d)) = P(a|b) + P(c|d) – Po(A)/(P(b ∨d),

where A is as in eq.(4.11), etc.  More generally, the following important relation is to be noted –
also readily derived from the above recursive structure of conditional events:

For any finite index set J, using multivariable notation, for any collection of aj, bj in B, j in J,

        &o(a|b)J =
d  

J in j
o& (aj|bj) =o [θ&(a,b;J) | ∨(bJ)] ;   (4.14)

       ∨(bJ) =
d 

J in j
(∨ bj) ,  θ&(a,b;J) =d   ∨o(γ(a,b;K,J) × &o(a|b)J¬K) (disjoint disjunction);   (4.15)

 γ(a,b;K,J) =d 
 Kin j
(& ajbj)&

KJ in i
(&

¬
bi′) ; γ(a,b;J,J) = 

J in j
& (ajbj) ; γ(a,b;∅,J) = 

J in j
& (bj′) =d &(b′)J ;   (4.16)

for any index sets ∅ ⊆ K ⊆ J.  In turn, the probability evaluation of the conjunction in eq.(4.14)
is
Po(&o(a|b)J) = Po(θ&(a,b;J)) / P(∨(bJ));  Po(θ&(a,b;J)) = ∑

⊆≠∅ J)K(

P(( γ(a,b;K,J)).Po(&o(a|b)J¬K)), (4.16′)

noting, that as in its algebraic counterpart in eq.(4.15), the full evaluation of Po(&o(a|b)J)
proceeds recursively, where the factors Po(&o(a|b)J¬K)) are evaluated similarly with J replaced by
J¬K, until no more than single conditional probability terms appear.  Note also the tie-in of the
γ’s above with the related disjoint expansion of the conjunction of the material conditional

&(b⇒a)J =
d  

J in j
& ((bj⇒aj)) = 

J)K(
))JK,b;a,((

⊆≠∅
γ∨ = &(b⇒a)J&(∨(b)J)  ∨  &(b′)J (disjoint),   (4.17)

where
                     &(b⇒a)J&(∨(b)J) =  &(b⇒a)J&(∨(a)J)  =  

J in j

(∨ γ(a,b;K,J))  (disjoint).   (4.18)

Next, it follows that for any proper (or nontrivial) conditional events (a|b), (c|d), i.e., ∅ < a < b
in B, ∅ < c < d in B (again, see [Goodman & Nguyen, 1995]),

(a|b) ≤ο (c|d) iff  (a|b) =o (a|b)&o(c|d)  iff  (c|d) =o (a|b) ∨o (c|d)
                     iff  (a|b)&o(c|d)′o =o ∅     iff  (a|b)&o(c′|d) =o ∅ο

                     iff  (a ≤ c   and   b⇒a  ≤  d⇒c )   iff   (a ≤ c   and   c′d ≤  a′b )
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         iff  ( b⇒a  ≤  (b∨d)⇒cd )   iff   (c′d ∨ d′b  ≤  a′b)
         iff   for all P over B, with P(b), P(d) > 0,  P(a|b) ≤ P(c|d),               (4.19)

(a|b) =o (c|d)  iff  ( (a|b) ≤ο (c|d)  and  (c|d) ≤ο (a|b) )   iff  (a = c  and  a′b = c′d)
          iff  (a = c   and   b = d)

                      iff  for all P over B, with P(b), P(d) > 0,  P(a|b) = P(c|d).  (4.20)

In a related direction (see also the analogue in eq.(1.2.6)), any conditional event (a|b) in Bo

satisfies
         (ab |Ω) ≤ο (a|b) ≤ο (b⇒a | Ω)  and for P(b) > 0,  P(ab) ≤ P(a|b) ≤ P(b⇒a).                   (4.20′)

Note also that eq.(4.3) shows

  (a|∅) =o ∅o ;  if  b > ∅,   (b|b) =o Ωo (essentially),               (4.21)

the only possible improper (or trivial) conditional events, and for any P over B,

                           P(b) = 0   implies  Po((a|b)) =  0 ,  P(b) > 0 implies  Po((b|b)) = 1,   (4.22)

etc. (the opposite of Adams’ interpretation, recalling the discussion in Section 3 and earlier).

From now on, we will use the term product space conditional event algebra (PSCEA) to refer to
the product probability space (Ωo,Bo,Po) extending (Ω,B,P) in the above isomorphic-isometric
sense of any a in B corresponding to (a|b) in Bo isomorphically and for any P, Po((a|Ω)) = P(a),
together with the conditional event-forming structure a, b → (a|b), etc.

We will also need to imbed an important operator developed independently in [Adams, 1975,
1996] and in [Calabrese, 1987, 1994], often called “quasi-conjunction”, since, as important an
operator as it will be seen later it is, it is not only non-boolean in structure, but fails to form a full
lattice operation with its DeMorgan dual [Goodman & Nguyen, 1995].  On the other hand, this
operator appears to produce a sort of conjunction that at times may be the appropriate
interpretation of “and” in a conditional setting.  (See, again [Goodman & Nguyen, 1995] for
further details.)  In any case, the appropriate definition in the PSCEA setting for this non-boolean
operator is, for given probability space (Ω,B,P) and any events ∅ <aj < bj in B, j in J (any finite
index set) producing proper conditional events (aj|bj) in Bo, j in J, is simply the direct (non-
associative) one, using the multivariable notation from eqs.(4.14), (4.16),

                &AC(a|b)J =
d  

J in j
AC& (aj|bj) =

d (&(b⇒a)J | ∨(bJ))

                  

       = ((&(b⇒a)J &(∨(bJ)) | ∨(bJ))    in Bo.      (4.23)

Note that this version of &AC in PSCEA is always well defined since its domain consists of
proper conditional events and thus the identification property in eq.(4.20) can be used to test
equality of other proper conditional events with those produced by &AC, under the conditionas



21

that the latter produces a proper conditional event.    Indeed, the only improper conditional event
that &AC(a|b)J can assume in general is ∅o, since

(&AC(a|b)J)′o = (∨(a′b)J  | ∨(bJ))  ,    ∨(a′b)J  =
d (

J in j
∨ (aj′bj) ,  (4.24)

and since ∨(bJ) > ∅ always is assumed,

&AC(a|b)J = Ωo    iff    (∨(a′b)J  | ∨(bJ)) = ∅ο , 

which is impossible, since by the proper conditional event assumption, each aj′bj > ∅,  hence
∨(a′b)J > ∅.  For the case of J ={1}, &AC(.)J reduces to the usual identity operator, in common
with that of &o(.)J and ∨o(.)J:
                                               &AC(a|b)J = &AC (a1|b1) = (a1|b1).                (4.25)

Clearly, when comparing the forms in eqs.(4.14), (4.15), (4.18), and (4.23), &AC and &o differ in
that each corresponding term of &o has also a cartesian product factor.  Hence, it readily follows
that it is always true that
               &o(a|b)J  ≤  &AC(a|b)J .   (4.26)
Note that the probability evaluation of &AC(a|b)J, analogous to the expansion in eq.(4.16′), is

              Po(&AC(a|b)J) = P(Α(a,b;J)) / P(∨(bJ));  Po(A(a,b;J)) = ∑
⊆≠∅ J)K(

P(( γ(a,b;K,J))),          (4.27)

which, in general, can be considerably larger than the counterpart Po(&o(a|b)J).

Ιn turn, we next state some important connections between ordering with respect to PSCEA
conjunction and AC conjunction.  From, now on, for simplicity, we omit subscript o from
ordering and equality relations and negation in PSCEA, but retain it for conjunction (and
disjunction), in order to distinguish it from &AC, which will be widely used.

Theorem 4.1.  Ordering relations between &o and &AC

For (Ω,B,P) a given probability space with PSCEA extension (Ωo,Bo,Po), P arbitrary, and any
proper conditional events (aj | bj) in Bo, j in J (finite), (c|d) in Bo,

(i)    &o(a|b)J ≤  (c|d)    iff (Or
J)K( ⊆≠∅

&AC(a|b)K ≤  (c|d) ) .

(ii)   not(&o(a|b)J ≤  (c|d))  iff (And
J)K( ⊆≠∅

not( &AC(a|b)K ≤  (c|d) ) )

                     iff   &o(a|b)J &o(c′|d) ≠ ∅ο

               iff (And
J)K( ⊆≠∅

 &AC(a|b)K ≠ ∅ο)  and (And
J)K( ⊆≠∅

 &AC((a|b)K , (c′|d)) ≠ ∅ο ) .

(iii)    &o(a|b)J = ∅o    iff       (Or
J)K( ⊆≠∅

&AC(a|b)K =  ∅o).

(iv)    &o(a|b)J ≠ ∅o    iff       (And
J)K( ⊆≠∅

&AC(a|b)K ≠  ∅o ) . 

Proof: (i) is the same as Lemma 10 in [Bamber et al., 2000].



22

           (iii) is straightforward via cases of card(J) = 1, 2, 3.  One can procede analogously for
higher values of card(J).
           (ii) and (iv) follow logically from (i) and (iii).          n
5.  Additional Analysis of HPL and CPL: Use of Algebraic Characterizations of
     Particular Probability Relations

While in Section 4 a number of algebraic properties were developed directly related to PSCEA,
in this part, relations are exhibited for the most part between algebraic descriptions and
probability bounds. This is motivated by the following definitions, which refine and carefully
delineate between the weak and strong versions of HPL and CPL.  More specifically, letting, as
usual, (Ω,B,P) be a given probability space with probability measure P:B→[0,1] arbitrarily
variable, (Ωo,Bo,Po) its PSCEA extension, J a finite index set and events ∅ < aj < bj in B, j in J, ∅
< c < d in B, using the multivariable notation as previously developed whenever possible so that
in the following, e.g., (a|b)J represents the premise set of conditional events (aj|bj) (or
unconditional/ ordinary events whenever bj = Ω) and (c|d) represents the single (for purpose of
simplicity) potential conclusion conditional event (or unconditional event, when d = Ω).

By convention, let us call the collection of above assumptions, Basic Assumption I.

For general background, we again refer to [Adams, 1966, 1975, 1986, 1996; Goodman &
Nguyen, 1998; Goodman, 1999; and Bamber et al., 2000].

Definition 1.  Say that strong high probability deduction (or logic) (SHPL) holds with respect to
((a|b)J;(c|d)) (or that (a|b)J deduces (c|d) in the SHPL sense, etc.), written symbolically as

 (a|b)J  ≤SHPL (c|d),                   (5.1)

iff                      
JJ 1t

limit(
↑

minconc((a|b)J;(c|d))(tJ) ) = 1,         (5.2)

i.e.,
        (for any 0 < ε < 1)(there is a 0 < δε < 1)(for any P)
                                      (if [P(a|b)J ≥ 1-δε)], then [P(c|d) ≥ 1-ε]),                 (5.3)

noting all conditional probabilities are in the ordinary sense, i.e., P(b)J > 0J.

Definition 2.  Say that strong high probability (SHPL) consistency holds with respect to (a|b)J iff
the “if-part” of eq.(5.3) is nonvacuously satisfied for all possible threshold levels, i.e.,

                          (for any 0 < δ < 1)( there is a Pδ)( Pδ(a|b)J ≥ 1-δ),                                            (5.4)

Definition 3.  Say that weak high probability deduction (or logic) (WHPL) holds with respect to
((a|b)J;(c|d)), (or that (a|b)J deduces (c|d) in the WHPL sense, etc.), written symbolically as

 (a|b)J ≤WHPL (c|d)                    (5.5)
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iff in the expressions in eqs.(5.2) or (5.3) we allow possibly some of the P(bj) to be 0 and
formally interpret P(aj|bj) = 1, and similarly for P(c|d), i.e.,

(for any 0 < ε < 1)(there is a 0 < δε < 1)(for any P)
                         (if [(for each j in J )(either P(aj|bj) ≥ 1-δε   or  P(bj) = 0)], then

                              [either P(c|d) ≥ 1-ε   or   P(d) = 0 ]).                  (5.6)

Definition 4.  Say that weak high probability (WHPL) consistency holds with respect to (a|b)J iff
the “if-part” of eq.(5.6) is nonvacuously satisfied for all possible threshold levels, i.e.,

  (for any 0 < δ < 1)( there is a Pδ)( for each j in J)(either Pδ(aj|bj) ≥ 1-δ  or Pδ(bj) = 0).           (5.7)

Definition 5.  Say that strong certainty  probability (SCPL) deduction (or logic) holds with
respect to ((a|b)J;(c|d)) ( or that (a|b)J deduces (c|d) in the SCPL sense, etc.), written symbolically
as

      (a|b)J ≤SCPL (c|d),                 (5.8)

iff               minconc((a|b)J;(c|d))(1J) ) = 1,        (5.9)

i.e.,
                                       (for any P)(if [P(a|b)J =1], then [P(c|d) =1]).    (5.10)

Definition 6.  Say that strong certainty probability (SCPL) consistency holds with respect to
(a|b)J iff the “if-part” of eq.(5.10) is nonvacuously satisfied at threshold level 1, i.e.,

            (there exist P)( P(a|b)J =1).    (5.11)

Definition 7.  Say that weak certainty probability (WCPL) deduction (or logic) holds with
respect to ((a|b)J;(c|d)) ( or that (a|b)J deduces (c|d) in the WCPL sense, etc.), written symbolically
as

(a|b)J ≤WCPL (c|d),     (5.12)

 iff in the expressions in eqs.(5.9) or (5.10) we allow possibly some of the P(bj) to be 0 and
formally interpret P(aj|bj) = 1, and similarly for P(c|d), i.e.,

 (for any P)(if [(for each j in J )(either P(aj|bj) = 1  or  P(bj) = 0)], then

                                  [either P(c|d) = 1   or   P(d) = 0 ]).    (5.13)

Definition 8.  Say that weak certainty probability (WCPL) consistency holds with respect to
(a|b)J iff the “if-part” of eq.(5.13) is nonvacuously satisfied at threshold level 1, i.e.,

           (there exists P)( for each j in J)(either P(aj|bj) = 1  or P(bj) = 0).   (5.14)

Remarks. By the very definitions above, it follows immediately that:
(i)    SHPL consistency implies WHPL consistency.
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(ii)   SCPL consistency implies WCPL consistency.
(iii) The remaining relations among the various concepts will be examined below.
The next results allow us to determine for the most part algebraically when any of the above
concepts hold true.

Theorem 5.1  Characterization of SHPL consistency.  (Extension of [Adams, 1975])

Under Basic Assumption I, the following statements are equivalent:

(i)      SHPL consistency holds with respect to (a|b)J.

(ii)      &o(a|b)J ≠ ∅o.

(iii) (And
J)K( ⊆≠∅

&AC(a|b)K ≠ ∅o).

(iv)   There is a positive integer M and an exhaustive nonvacuous partitioning {K1,...,KM} of J
such that, using the notation of eq.(4.16), letting 

  K(j) =d     )K( i

1-j

1i=
∪  , j=1,2,...,M; K(0) =d ∅ ,               (5.15)

γ(a,b;Kj,J¬K(j)) ≠ ∅,  for j = 1,..., M .    (5.16)

 Note that necessarily for the Mth term, K(M) = ∅  and

          γ(a,b;KM,∅) = &(aKM
) ≠ ∅.   (5.17)

(v)    There is a positive integer M and an exhaustive nonvacuous partitioning {K1,...,KM} of J
such that, using the notation of eq.(5.15),

   &AC(a|b)J¬K(j) ≠ ∅,    for j = 0, 1,..., M-1.

 (vi)   (Or(And
K)LJ)K( ⊆≠∅⊆≠∅

γ(a,b;L,K) ≠ ∅)).

(vii)    )a)((&a)&(bAnd KK
J)K(
( ∨⇒

⊆≠∅
≠∅).

Proof: (iii) iff (vi) iff (vii): This follows immediately from definition of &AC, etc.
(iv) iff (v) holds due to the basic structure of &AC (see Section 4).

            (ii) iff (iii) follows directly from Theorem 4.1 (iv).
            (ii) implies (iv): Using eqs.(4.14)-(4.16), (ii) shows that for some ∅ ≠ Κ1 ⊆ J, there is a
term γ(a,b;K1,J) × &o(a|b)J¬K1

 ≠ ∅ο in the consequent θ&(a,b;J) of &o(a|b)J .  Thus, both sides of

the cartesian product must be non-null, whence &o(a|b)J¬K1
 ≠ ∅.  But, next, replacing J in the

above reasoning process by J¬K
1
 ,  we next obtain some ∅ ≠ Κ2 ⊆ J¬K1 and a term γ(a,b;K2,
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J¬K1¬K2) × &o(a|b) J¬K1¬K1
 ≠ ∅ο .  We continue the process until some M is found so that

(guaranteed) J ¬K1 ... ¬KM =  ∅.
            (iv) implies (i):  This follows the guidelines of Adams’ approach [1996], where since it is
readily verified that the γ(a,b;Kj,J¬K(j)) ≠ ∅,  for j = 1,..., M , are all mutually disjoint subsets of
∨(b)J, for any given real d, 0 < δ < 1, we construct a Pδ by assigning

Pδ(γ(a,b;Kj,J¬K(j)) =d  δj-1 – δj  , for j = 1,..., M-1 ;
Pδ(γ(a,b;KM,∅)        =d  δΜ-1       , for j = M.                 (5.18)

Then, since for any Kj, and all i in Kj, bi is disjoint from &(b′)J¬K(j-1) , the latter being  ≥

(
1-j

1k=
∨ γ(a,b;Kk,J¬K(k))), it follows that         

              Pδ(bi) ≤ 1 – Pδ( (
1-j

1k=
∨ γ(a,b;Kk,J¬K(k))) ) = 1 – ∑

−

=

1j

1k

( δk-1 – δk) = δj-1, j = 1,...,M.         (5.19)

On the other hand, since for any i in Kj,

ai ≥  &(a)Kj  ≥  γ(a,b;Kj,J¬K(j)) > ∅,

Pδ(ai) ≥  Pδ(γ(a,b;Kj,J¬K(j)), for j = 1,..., M.                 (5.20)

Thus, combining eqs.(5.18)-(5.20) shows, for all i in Kj,

            P(ai|bi) ≥  (δj-1 – δj) / δj-1 = 1-δ,  for  j = 1,..., M.                        (5.21)

             (i) implies (ii): Since all laws of probability apply to PSCEA, the FHH lower bound in
eq.(1.1.5) holds applied to unconditionals replaced by conditionals and P by Po, i.e., assuming
P(bj) > 0, all j in J,

         max( ∑
J in j

(P( P(aj|bj) – (card(J)–1), 0)  ≤  Po(&o(a|b)J)  ≤  
J in j

min (P(aj|bj)).                     (5.22)

(i) then implies for every real 0 < d < 1, there is a Pδ with Pδ(aj|bj) ≥ 1-δ, for all j in J, which
combined with eq.(5.22), for all δ, 0 < δ < 1/card(J),  shows

 0 < 1 – δ.card(J) =  card(J).(1-δ) – (card(J) – 1) ≤ ∑
J in j

(P( aj|bj)) – (card(J) –1)

       ≤  Po(&o(a|b)J),    (5.23)

which certainly implies that  &o(a|b)J ≠ ∅o.                n

Theorem 5.2.  Characterization of SHPL deduction. (Extension of [Adams, 1975])

Under Basic Assumption I and SHPL consistency, the following statements are equivalent:
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(i)      (a|b)J ≤SHPL (c|d).

(ii)      &o(a|b)J ≤ (c|d).

(iii) (Or
J)K( ⊆≠∅

&AC(a|b)K ≤ (c|d)).

Proof:  By Theorem 4.1(i), (ii) iff (iii).
             not(ii) implies not(i): Suppose not(ii).  By Theorem 4.1 (ii),  not(ii) is equivalent to

                 &o(a|b)J &o(c′|d) ≠ ∅o.               (5.24)

But, by Theorem 5.1, where we assume o not in J, letting (ao|bo) =
d (c′|d) and Jo =

d J∪{o},
replacing J there by Jo:
For each real δ, 0 < δ < 1,  there is a Pδ such that for all j in Jo, P(aj|bj) ≥ 1-δ,
i.e., Pδ(aj|bj) ≥ 1-δ, for all j in J, and Pδ(c′|d) ≥ 1-δ, i.e., P(c|d) ≤ δ.      (5.25)

Thus, the results in eq.(5.25) clearly shows not(i).

              (ii) implies (i): Simply apply the FHH inequality in a PSCEA setting, as in eqs.(5.22),
(5.23).                   n

Theorem 5.3.   Characterization of WHPL consistency.

Under Basic Assumption I, the following statements are equivalent:

(i)       WHPL consistency holds with respect to(a|b)J.

(ii)      &(b⇒a)J ≠ ∅ .

(iii)     ∨(a′b)J ≠  Ω .

Proof: (ii) iff (iii) is immediate.
            (ii) implies (i): From eq.(4.17), (ii) implies there is some K,  ∅ ≠ K ⊆ J, so that γ(a,b;K,J)
≠ ∅.  Then, pick any P such that P(γ(a,b;K,J)) = 1. This immediately implies that (i) is satisfied.
            not(ii) implies not(i): Suppose not(ii).  First, consider any probability measure P and KP

=d {j in J: P(bj) = 0}.  If KP = J, then  P(∨(b)J) ≤ Σ(P(bJ)) = 0, implying P(∨(b)J) = 0.  But, by
not(ii), &(b⇒a)J = ∅o and hence ∨(a′b)J = Ω, implying ∨(b)J = Ω, contradicting the above
probability evaluation.  Thus, we must always have ∅ ⊆ KP ⊂ J (proper), and hence, ∅ ≠ J¬KP.
In turn, note that by the definition of KP,

                              1 = P(Ω) = P(∨(a′b)J) = P(∨(a′b)J¬KP
).   (5.26)
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Now, suppose (i) were true.  In particular, choose any real δ, 0 < δ < 1/(1+card(J)) and any Pδ

satisfying Pδ(aj|bj) ≥ 1-δ or P(bj) = 0, for any j in J.  Thus, Pδ(bj) = 0, for all j in KP and P(aj|bj) ≥
1-δ, for all j in J¬KP.  The latter is the same as

     Pδ(aj′bj) ≤ (δ/(1-δ))P(aj), for all j in J¬KP.    (5.27)

Combining eqs.(5.26) and (5.27),
           1 = P(∨(a′b)J¬KP

) ≤ Σ(Pδ(a′b) J¬KP
)  ≤ (δ/(1-δ)).Σ(Pδ(a) J¬KP

)

                                       ≤ (δ/(1-δ)).card(J¬KP) ≤  (δ/(1-δ)).card(J) < 1,

a contradiction.  Hence, not(i) must hold.                   n

Theorem 5.4. Under SHPL consistency, WHPL deduction implies SHPL deduction.

Under Basic Assumption I and SHPL consistency,

                    (a|b)J ≤WHPL (c|d)    implies    (a|b)J ≤SHPL (c|d).

Proof: Suppose not (SHPL).  Then, eq.(5.25) in the proof of Theorem 5.2 clearly shows a
violation of both SHPL and WHPL.                   n

Theorem 5.5.

Under the Basic Assumption I, if (a|b)J is SHPL consistent and  (a|b)J ≤SHPL (c|d), then

         &((b⇒a)J) ≤ d⇒c.                (5.28)

Proof: By hypothesis, using Theorem 5.1,

                  ∅ ≠  &o(a|b)J  ≤  (c|d).     (5.29)

Hence, by Theorem 4.1(iv), (i),

(And
J)K( ⊆≠∅

&AC(a|b)K ≠  ∅)  and  (there exists K1)(∅≠K1⊆J)(&AC(a|b)K1
 ≤ (c|d)).            (5.30)

Now, as pointed out in Section 4, under Assumption I, for any K, ∅≠K⊆J, &AC(a|b)K ≠ Ωο.  On
the other hand, the left-hand side of eq.(5.30) shows neither can any &AC result be null either,
i.e., we must have, in particular, &AC(a|b)K1 being a proper conditional event.  Hence, the basic
ordering criterion for PSCEA in eq.(4.19) can be invoked to characterize the right-hand side of
eq.(5.30).  Thus, noting again from Section 4, the structure of &AC, we obtain from the right-
hand side of eq.(5.30)

                    &AC(a|b) K1  =
w (A|B)  ≤ (c|d)  iff   [A ≤ c   and  B⇒Α  ≤  d⇒c ] ,              (5.31)
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where
      A =d &((b⇒a)K1

)& B ,  B =d ∨(bK1
).

In turn, part of the right-hand side of  eq.(5.31) implies

     &(b⇒a)J   ≤   &(b⇒a)K1 = B⇒Α  ≤  d⇒c,
the desired result.                 n

Theorem  5.6.  Characterization of WHPL deduction.  (a variation of [Adams, 1986, 1996])

Under Basic Assumption I  and WHPL consistency, the following statements are equivalent:

(i)       (a|b)J ≤WHPL (c|d) .

(ii)  )([ c)]d(a)(b&[  and c]b)((&a)(b&Or KkK
J)K

⇒≤⇒≤∨⇒
⊆≠∅

.

(iii) )]()[( c)d(a)(b& and  b)((&a)(b&Or KkK
J)K
( ⇒≤⇒∅=∨⇒

⊆≠∅

                      or   [∅ ≠ &AC(a|b)K ≤ (c|d)] )

Proof: [Adams, 1986] provides an equivalent, but different-appearing formulation and proof of
the above theorem.  A complete self-contained proof here is given in Appendix A.          n

Remark 1.

Improving upon Theorem 5.4, Theorem 5.6 shows directly that under (a|b)J having SHPL
consistency, WHPL and SHPL deduction of (c|d) from (a|b)J are equivalent.  It also shows
directly that under WHPL consistency, WHPL deduction implies WCPL deduction of (c|d) from
(a|b)J.  See also the summary of consistency and deduction relations in Theorem 5.11.

Remark 2.

As an illustration of weak vs. strong HPL deduction, consider, e.g., the case of J = {1,2}, where
for purpose of nontriviality, we assume that (a|b)J is not SHPL consistent, but is WHPL
consistent, i.e., from the above theorems,

&o(a|b)J = ∅o   and  &(b⇒a)J ≠ ∅.     (5.32)

Using eqs.(4.11), (4.16), (4.17), it follows that eq.(5.32) (under our basic Assumption I) is
equivalent to

a1a2 = a1b2′ = a2b1′ = ∅,    b1′b2′ ≠ ∅.     (5.33)

Consider next the possible situations with respect to any real δ, 0 < δ < 1 and Pδ such that the
weak  consistency condition at δ is satisfied, i.e., either Pδ(aj|bj) ≥ 1- δ or Pδ(bj) = 0, j = 1, 2.
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Case 1: Pδ(aj|bj) ≥ 1- δ, j = 1, 2. But, by appealing to the FHH lower bound (eq.(5.22)), it is clear
that for d sufficiently small, we would have (Pδ)o((a1|b1)&o(a2|b2)) large, contradicting the left-
hand side of eq.(5.32), where the value should be zero.
Case 2: Pδ(a1|b1) ≥ 1- δ  and Pδ(b2) = 0.  But, eq.(5.33) shows that since Pδ(b2′) = 1, Pδ(a1) =
Pδ(a1b2′) = Pδ( ∅) = 0, contradicting Pδ(a1|b1) ≥ 1- δ   above.
Case 3: Pδ(a2|b2) ≥ 1- δ  and Pδ(b1) = 0.  This yields, dually, the same contradiction as in Case 2.
Case 4: This is the only remaining possibility: Pδ(b1) = Pδ(b2) = 0, i.e., Pδ(b1′b2′) = 1.

Thus, so far,
       (a|b)WHPL ≤ (c|d)  iff  (for all real ε)(0<ε<1)(there is a real δ)(0<δ<1)(for all P)

     (if P(b1′b2′) = 1, then either P(c|d) ≥ 1-ε or P(d) = 0).         (5.34)

Situation 1: b1′b2′c′d ≠ ∅.  But, pick any P such that P(b1′b2′c′d) = 1, thus showing not((a|b)J

≤WHPL (c|d) )  here.

Situation 2: b1′b2′ ≤ d⇒c, the only remaining possibility, which obviously from the constraint on
possible P’s works, i.e., for any P satisfying the “if-part” of eq.(5.34), P(d⇒c) = 1, i.e., either
P(d) = 0 or P(c|d) = 1.

Hence, in summary, for J = {1,2} and (a|b)J being WHPL consistent, but not SHPL consistent,

    (a|b)J ≤WHPL (c|d)  iff  b1′b2′ ≤ d⇒c ,     (5.35)

with no proper conditional probabilities involved when the deduction holds.

Lemma 5.1 A useful characterization.

Here, assume a probability space (Ω,B,P) present, with P variable, J a finite index set, ∅ ≠ ej, f in
B, j in J.  Then, the following two statements are equivalent:

(i)  (There is a P)(P(f) = 1  and for all j in J, P(ej) > 0).

(ii)     (And
J in j

 ejf ≠ ∅ ).

Proof: Straightforward.                  n

Theorem 5.7.  Characterization of WCPL consistency.

Under the Basic Assumption I, the following statements are equivalent:

(i)  (a|b)J is WCPL consistent.

(ii)  &(b⇒a)J ≠ ∅.
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Proof: (ii) implies (i):  Suppose (ii) holds.  Let P be such that P(&(b⇒a)J) = 1.  This yields
P(bj⇒aj) = 1, and hence P(aj|bj) = 1 or P(bj) = 0, as required, for all j in J.
not(ii) implies not(i): Suppose not(ii) holds.  Then, it is impossible to find any P such that for all
j in J, either P(bj) = 0 or P(aj|bj) = 1, since this would imply P(bj⇒aj) = 1 and hence P(&(b⇒a)J)
= 1, implying  (&(b⇒a)J) ≠ ∅, contrary to the assumption.                                  n

Theorem 5.8.  Characterization of WCPL deduction.   [Adams, 1996]

Under the Basic Assumption I and WCPL consistency for (a|b)J, the following statements are
equivalent:

(i)  (a|b)J  ≤WCPL (c|d).

(ii)  (&(b⇒a)J) ≤ d⇒c.

Proof: The proof is basic and has appeared in a number of places. However, for completeness,
we present a brief outline.
               (ii) implies (i):  Suppose (ii).  Then for any P such that P(bj) = 0 or P(aj|bj) = 1, i.e.,
P(bj⇒aj) = 1, all j in J, implying 1 = P((&(b⇒a)J) ≤ P(d⇒c).
   not(ii) implies not(i):  Suppose not(ii).  Then, (&(b⇒a)J)&c′d ≠ ∅, and by choosing P, such
that P((&(b⇒a)J)&c′d) = 1, we easily see that not(i) holds.                   n

Theorem 5.9.  Characterization of SCPL consistency.

Under Basic assumption I, the following statements are equivalent:

(i)    (a|b)J is SCPL consistent.

(ii)     (And
J in i

 bi& (&(b⇒a)J) ≠ ∅).

(iii)    (And
J in i

 ai& (&(b⇒a)J) ≠ ∅).

(iv)     (And
J in i

 ai¬ (&(b⇒a)J) ≠ ∅).

Proof: (iii) and (iv) are obviously equivalent.
           (ii) implies (i):  Suppose (ii).  Then, using Lemma 5.1, with ei = bi and f = &(b⇒a)J, i in J,
there is a P such that P(&(b⇒a)J) = 1 and P(bi) > 0, i in J.  This is sufficent, as similar reasoning
in previous proofs show, to insure that (i) holds.
            not(ii) implies not(i): Suppose not(ii). Then, there is an i in J such that bi&(&(b⇒a)J) =
∅.  Hence, for any P so that P(aj|bj) = 1, all j in J, implies P(&(b⇒a)J) = 1, and thus implies by
the above disjointness that P(bi) = 0, a contradiction to P(ai|bi) = 1.  Thus, not(i) must hold.
           (iii) implies (ii):  Obvious, since each ai ≤ bi .
           not(iii) implies not(i): Suppose not (iii).  Then, there is some i in J with ai&(&(b⇒a)J) =
∅.  Hence, if there is some P so that P(aj|bj) =1, all j in J, again this implies P(&(b⇒a)J) = 1,
implying, in turn, from the above disjointness condition, that P(ai) = 0, contradicting P(ai|bi) = 1.
Thus, not(i) must hold.                  n
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Theorem 5.10.  Characterization of SCPL deduction.

Under Basic Assumption I and SCPL consistency holding for (a|b)J, the following statements are
equivalent:

(i)    (a|b)J  ≤SCPL (c|d) .

(ii) (
J in i

Or  &(b⇒a)J ≤  (bi∨d)⇒c) ) .

Proof: not(i) holds iff  (there is a P)( (P(a|b)J = 1 ) and (either P(d) = 0 or P(c|d) < 1))
       iff  (there is a P)( (P(&(b⇒a)J) = 1)  and  (P(bJ) > 0J ) and

                                     (either P(d′) = 1 or P(c′d) > 0) )
                               iff  ([(there is a P)( (P(d′&(&(b⇒a)J)) = 1 ) and ( P(bJ) > 0J))]  or

        [(there is a P)( (P(&(b⇒a)J) = 1)  and  (P(bJ) > 0J)  and (P(c′d) > 0) )]
       iff, using Lemma 5.1 twice, with at first f = d′&(&(b⇒a)J)  and ei =
             bi, and then f = &(b⇒a)J, ei = bi, eo = c′d, by extending index set J
             to include o corresponding to c′d, etc.,

                           [ (And
J in i

 bid′&(&(b⇒a)J) ≠ ∅) ]

                                    or  [ (And
J in i

bi&(&(b⇒a)J) ≠ ∅)  and  (c′d&(&(b⇒a)J) ≠ ∅)].          (5.35′)

Hence, the equivalence in eq.(5.35′) shows, by negating through,

           (i) holds iff    [       (
J in i

Or  (&(b⇒a)J ≤  bi⇒d )
           and  [ (Or

J in i
&(b⇒a)J  ≤  bi′)  or    (&(b⇒a)J  ≤  d⇒c)  ]

                          iff    [    (Or
J in i

&(b⇒a)J ≤  bi′)   or    (Or
J in i

&(b⇒a)J  ≤  (bi∨d)⇒c) ].    (5.36)

However, because of SCPL consistency (see Theorem 5.9(ii)) , we cannot have the left-hand side
expression at the bottom of eq.(5.36), [ Or(&(b⇒a)J ≤  bi′)], holding true there.  Hence, (i) holds
iff the bottom right-hand side expression of (5.36) holds, which is the desired result (ii).          n

Theorem 5.11.   Basic relations among consistencies and deductions.

Under Basic Assumption I, the following hold:

(i)   With respect to (a|b)J: either SCPL consistency  or SHPL consistency implies
        WHPL consistency =w  WCPL consistency.

(ii)   Under also SHPL consistency for (a|b)J,
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        ( (a|b)J  ≤WHPL (c|d))   iff  ((a|b)J  ≤SHPL (c|d))   implies   ((a|b)J  ≤WCPL (c|d)).

 (iii)  Under also WHPL consistency for (a|b)J,

         ( (a|b)J  ≤WHPL (c|d))   implies   ((a|b)J  ≤WCPL (c|d)).

Proof: Simply compare the algebraic forms in the previous Theorems of this section.                 n

Theorem 5.12.  Reduction of weak and strong CPL and HPL consistencies and deductions to the
classical logic case for unconditional events.

Make Basic Assumption I, with the proviso that now bJ = Ω = d.  Then:

(i)     (a|Ω)J is SHPL consistent iff it is WHPL consistent iff it is WCPL consistent
                                                   iff it is SCPL consistent    iff  &(aJ) ≠ ∅.

(ii)    Under the common consistency assumption in (i),

         ((a|Ω)J  ≤SHPL (c|Ω))  iff  ((a|Ω)J  ≤WHPL (c|Ω))  iff  ((a|Ω)J  ≤WCPL (c|Ω))
       iff  ((a|Ω)J  ≤SCPL (c|Ω))   iff  &(aJ) ≤ c,

the same as in classical logic (see, e.g., [Copi, 1986], where the basic conjunctive deduction
relation is usually presented via the equivalent truth-table form of  “whenever all aj are verified
(or true), then so must c (be true)”.

Proof: Apply the simplifying constraint bJ = Ω = d to all of the previous relevant theorems in this
section.                  n

Theorem 5.13.  The behavior of minconc when deduction fails in the HPL or CPL senses.

Under Basic Assumption I:

(i)  Under also SHPL consistency for (a|b)J: If not((a|Ω)J  ≤SHPL (c|Ω)), then not (a|Ω)J  ≤SHPL

(c|Ω)), and for any real δ, 0 < δ < 1, slightly abusing notation by replacing (1-δ).1J by just 1-δ,
minconc2((a|b)J;(c|d))(1-δ)  ≤  δ.

(ii)  Under WCPL consistency for (a|b)J: If not ((a|Ω)J  ≤WCPL (c|Ω)), then

minconc2((a|b)J;(c|d))(1J ) =  0.

(iii) Under SCPL consistency, where also

                                                   (Or
J in i

&(b⇒a)J ≤ bi⇒d ),

then,  [ not (((a|Ω)J  ≤SCPL (c|Ω)) ]  implies  [minconc2((a|b)J;(c|d))(1J ) =  0 ] .
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Proof: Employ each algebraic characterization of the appropriate type of deduction (via the
above theorems in this section) and consider the negation of each characterization and choose a P
over this region, usually with the value 1.                  n

As stated previously, in one way or another, Theorem 5.13 points out specifically the essentially
extreme (0,1)-only possible values for the minconc function, for sufficiently high threshold
values.  Thus, the minconc function, despite its use as seen in the above theorems, cannot be
interpreted as a way of measuring “degree of deduction” -- or softening of deduction of (c|d)
from (a|b)J -- when, instead of taking limits of minconc as the premise thresholds approach unity,
one holds them fixed and simply uses the evaluation of minconc as is.  This leads to considering
the meanconc function as a possibly more reasonable candidate to reflect such softening of
deduction, as will be verified in the next section.

6.  Some New Results and Insights in Expected Surety Logic

6.1  Review of Relevant Definitions and Concepts Required

Returning to the meanconc function and expected surety logic, consider the following: Suppose
again we make Basic Assumption I, as given at the beginning of Section 5 and used throughout
there.  Recall also the discussion at the beginning of Section 2, where a set of m+1 atoms A =
{α1,...,αm,αm+1} ⊆ B (for given probability space (Ω,B,P)) is given with respect to ((a|b)J;(c|d)),
(and relative to all boolean combinations of the antecedents bj and consequents aj of each proper
conditional event (aj|bj), j in J).  Unless otherwise stated, the designated atom αm+1 ≤ &(b′J),
therefore, assumed nonvacuous.  For any probability measure P, we have its natural
identification with the evaluations of P over atoms α1,..., αm, i.e., with values (P(α1),...,P(αm)) =
(x1,...,xm) =d XT, with P(αm+1) = xm+1 =  1-sum(X) – (.)T denoting vector or matrix transpose –
with X lying in the m-simplex Sm of all possible values of such X: 0m ≤ X ≤ 1m, sum(X) ≤ 1, so
that as P varies, X varies, etc.  Also, each event c in the boolean combinations generated by A
can be uniquely expressed as a disjoint disjunction of certain of the atoms, written, c = ∨(αI(c)) =

d

I(c) in j
j )(α∨  (using, again, multivariable notation) where index set I(c) ⊆ {1,..., m, m+1} (with

usually only the first m integers involved).  When unambiguous, we will interchange P with X
being in Sm, keeping in mind the last component xm+1 of P is not really in Sm.  Also, as in the
discussion in Section 2, we use the notation which identifies any relevant event as an m by 1
column vector of 0’s and 1’s with respect to the first m components of A (provided αm+1 is not
part of it).

Next, for each real s, t, 0 < s, t < 1  and any real vector s, of size card(J), define the following
subsets of Sm:

       At =
d {P in Sm: P(a|b)J ≥ t} =w {X in Sm: h1(X) ≥ t}  (common lower bound t),   (6.1.1)

      A(s) =
d {P in Sm: P(a|b)J =  s} =w {X in Sm: h1(X) = s},              (6.1.2)

        Bt =
d {P in Sm: Po(&o(a|b)J)≥ t} =w {X in Sm: h2(X) ≥ t},  (6.1.3)
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        B(s) =
d {P in Sm: Po(&o(a|b)J) = s} =w {X in Sm: h2(X) = s},  (6.1.4)

         Ct =
d {P in Sm: Po(&AC(a|b)) ≥ t} =w {X in Sm: h3(X) ≥ t},   (6.1.5)

        C(s) =
d {P in Sm: Po(&AC(a|b)) = s} =w {X in Sm: h3(X) = s}.              (6.1.6)

Here,
            h1(X) =d (h1,j(X))j in J , h1,j(X) =d (aj

T.X / bj
T.X), j in J,  (6.1.7)

are bounded bilinear functions in X. h2(X) as a function of X is obtained similarly as h1, by
replacing P everywhere appropriately by X in the computations in eq. (4.16′) and, while much
more nonlinear in structure than h1(X), it is, nevertheless also a “well-behaved” function (i.e.,
differentiable, bounded, etc.). h3(X) is obtained likewise from eq.(4.27) with P replaced by X,
noting that, just as h1(X), h3(X) is also a bounded bilinear function in X.  Also, for any choice of
prior (second order) probability distribution for X over Sm – such as typically here Dirichlet
(including the uniform one over Sm as a special case) – denote the corresponding cdf’s with
respect to antecedent space At, Bt, Ct by Fi,t and the corresponding cdf’s with respect to A(s), B(s),
C(s),  by Gi,t, for any x in Sm ( or, more generally, in m-dimensional real space),

             F1,t(x)  =
d Prob(X ≤ x | X in At) , G1,s(x)  =

d Prob(X ≤ x | X in A(s)) ,   (6.1.8)
  F2,t(x)  =

d Prob(X ≤ x | X in Bt) , G1,s(x)  =
d Prob(X ≤ x | X in B(s)) ,   (6.1.9)

  F3,t(x)  =
d Prob(X ≤ x | X in Ct) , G1,s(x)  =

d Prob(X ≤ x | X in C(s)).            (6.1.10)

6.2  Method of Approach to Evaluation of Meanconc

It is clear that for the fixed (i.e., non-unity limiting) threshold case the determination of the two
types of meanconc functions – i.e., E(P(c|d) | P in At) or E(P(c|d) | P in A(t)) – requires evaluation
in general of multiple integrals over the polytope formed from Sm and the constraints via At or
A(t). Tables 1 and 2 illustrate closed-form results for a number of special types of premise sets
and potential conclusions.  Even there, in some cases, such as transitivity, full evaluation, under
the simplest assumptions, such as choice of a uniformly distributed prior for P, required lengthy
integration evaluations.  (See Section 6.3 of [Goodman, 1999] for an outline of the calculations
for the transitivity case.)  On the other hand, there have been many advances in the area of such
calculations, as seen, e.g., in [Bisztriczky et al., 1994], which potentially can significantly reduce
such calculations.  (See also [Goodman & Nguyen, 2000] for further discussion.)

With the above in mind, let us consider an alternative to either attempting to obtain full closed-
form evaluations or direct numerical approximations.  The direction here is one of
approximation, but in the following sense:  We first attempt to show that, in an asymptotic sense,
the expectation antecedents, (P in At), (P in A(t)), are essentially equivalent in their effect upon the
potential consequent P(c|d) as the related forms Bt, B(t)  (where P satisfies Po(&o(a|b)J) ≥ t, = t)
and  Ct, C(t) (where P satisfies P(&AC(a|b)J) ≥ t, = t).  In addition, another justification for
considering replacement of At (but not A(t), etc.) by the corresponding spaces determined by &o

or by &AC is the “intertwining” – or asymptotic intertwining property they possess with respect
to one another.  That is, any one of the three spaces, At, Bt, Ct, determined by the separate
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constraints P(aj|bj) ≥ t, essentially lie inside any of the other two for t appropriately changed – but
still retaining a value relatively close to unity.  While this property alone does not guarantee
convergence of the corresponding conditional expectations to each other as t approaches unity, it
is an enhancing property of the closeness of the three spaces to each other asymptotically (see
Theorem 6.5).  Fortunately, Theorem 6.2 reinforces this closeness in demonstrating that, indeed,
under mild conditions, all three spaces do lead asymptotically to the same relevant conditional
distributions and expectations!  While it is of some interest to know that &o(a|b)J could be used at
least in theory for the desired replacement at some reasonably high (though not necessarily
exactly unit) threshold level, inspection of its structure in eqs.(4.14)-(4.16′) compared to that of
the far simpler – and, in fact, single conditional event reducing -- &AC(a|b)J (see eqs.(4.23)-
(4.27)) shows the latter as the preferred candidate (even though it is not a true conjunction
operator, etc.).

Ideally, one would then determine the replaced conditional expectation E(P(c|d) | P(&AC(a|b) ≥ t)
(or E(P(c|d) | P(&AC(a|b) = t)).  However, even in this case, preliminary results (at this point)
indicate there is still considerable complexity of the required integration procedure – although
these investigations do show a basic connection with the evaluation of certain integrals of
hypergeometric functions of higher order.  But, final success can be achieved in a modified way,
by adapting an approach analogous to that employed by the popular naive maximum entropy
approach E(P(c|d) | P in At), where first a criterion is satisfied – i.e., maximizing the possible
(first order probability) entropy and then the result is plugged into the objective function, i.e., the
maximizing entropy probability measure P* is then used to evaluate P*(c|d).  Thus, as the
counterpart to the above, we seek first to find that probability measure P# which is most central
to the premise set, i.e., we seek to obtain P# = E(X| X in At) or the similar expression where At is
replaced by A(t) (see also the limiting forms in Theorem 6.2(iii) below) and then “plug-in” to
evaluate P#(c|d).  For simplicity, we shall consider only E(X|X in A(t)) in the actual evaluations,
carried out in Theorems 6.6 and 6.7.

The next result is stated in part in [Goodman & Nguyen, 2000] and is presented here in slightly
different form for clarity.  It is a generalization of a basic surface integral result due originally to
[Higgins, 1975], with related work carried out by [Saw, 1973]:

Theorem 6.1.  Decomposition into a weighted sum of ratios of surface integrals of any
conditional cdf whose antecedent is generated from the implicit solution to a well behaved
function being constant.

Let (Ω,B,P) be a real probability space, X an associated m by 1 random vector over some domain
S in (Real line)m with joint pdf f which is continuous and uniformly bounded over S.  Let n be a
positive integer with n < m and let h:S→(Real line)n be a “well-behaved” function (uniformly
bounded above and below away from zero,  differentiable, etc.).  Then, for any event c ⊆ S and
any real vector s in range(h),

   P(X in c | h(X) ≤ s) = ∫
≤sr

( ρ(h,f;c)(r).g(h,f)(r))dr  (ordinary integral),            (6.2.1)

where
                                    ρ(h,f;c)(r)  =d  ψ(h,r;f,c)/ψ(h,r;f,S),  (6.2.2)
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                              g(h,f)(r) =d   ψ(h,r;f,S) / ∫
≤rv

( ψ(h,v;f,S) )dv ,  (6.2.3)

and surface integral

                 ψ(h,s;f,c) =d  ∫
∩ c surf in X sh,

(f(x) /[det(dh(X)/dX)(dh(X)/dX))T)]) dsurfh,s(X) ;  (6.2.4)

                    surfh,s = {X in S: h(X) = s} = h-1(s).  (6.2.5)

(See, e.g., [Devinatz, 1968] for details of general surface integration; the surface integral in
eq.(6.2.4) can also be converted back to ordinary integral form, but will not be needed here.)
Note that the non-negative (“well-behaved”) function in r,  ρ(h,f;c)(r) is bounded by unity and
that g(h,f)(r) as a function of r is a legitimate pdf.                              n

Remark.

Note first the vector derivative in eq.(6.2.4) is the n by m matrix of partial derivatives of the
various scalar component function of h with respect to each single argument and, as part of the
“well-behaved “ property of h, it is assumed to be of full rank n (< m) so that the factor
det(dh(X)/dX)(dh(X)/dX))T) > 0 in all X in surfh,s, for all s in range(h).

The original form of the above theorem does not appear as a weighted sum: the factor

                ψ(h,r;f,S) =   ∫
∩ S surf in X sh,

f(x)( /[det(dh(X)/dX)(dh(X)/dX))T)]) dsurfh,r(X) 

            =   ∫
sh,surf in X

f(x)( /[det(dh(X)/dX)(dh(X)/dX))T)]) dsurfh,r(X)              (6.2.6)

 cancels out in eq.(6.2.1).

Theorem 6.2.  Three equivalent limiting forms involving meanconc.

Suppose that Basic Assumption I holds.  For a second order probability prior over Sm, choose
random vector X (representing a random probability measure) to be distributed so that its pdf
over Sm is bounded and continuous.  For example, we can choose the Dirichlet distribution dir(τ)
for X with parameter τ such that τ ≥ 1.  Suppose also that

                                                       A1 =
d )( t1t

A
↑
∩  ≠ ∅ .                                                           (6.2.7)

(The condition in eq.(6.2.7) can be analyzed via Theorem 5.9 for consistency of SHPL.) Then:

(i) Referring to eqs. (6.2.1)-(6.2.3), each of the three ordinary cdf’s Fj,t can be identified as
weighted averages of the corresponding cdf’s Gj,s over the exact threshold spaces, all identified in
the natural sense with the expansion in Theorem 6,1: For all x in Sm,
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F1,t(x) = ∫
≤≤ 1st

( G1,s(x).g1(s))ds,   F2,t(x) = ∫
≤≤ 1st

( G2,s(x).g2(s))ds,   F3,t (x) = ∫
≤≤ 1st

( G3,s(x).g3(s))ds  .

The above representations rigorize formal readily-derived counterparts which simply use
integration-out of variables and chaining.

(ii)  
1t

limit
↑

 (F1,t(x)) = G1,1(x) , 
1t

limit
↑

 (F2,t(x)) = G2,1(x) ,   
1t

limit
↑

 (F3,t(x)) = G3,1(x) ,

where, for the limiting cdf’s
                   G1,1(x) = G2,1(x) = G3,1(x)  =d  G(x),  all x in Sm.

(iii) 
1t

limit
↑

(E(X| X in At))  =
1t

limit
↑

(E(X| X in Bt)) = 
1t

limit
↑

(E(X| X in Ct))

                                          =  E(X) for X assigned cdf  G.

(iv) 
1t

limit
↑

(E(P(c|d) | P in At))  = 
1t

limit
↑

(E(P(c|d)| P in Bt)) = 
1t

limit
↑

(E(P(c|d)| P in Ct))

    =  E(P(c|d)) for P (or X) assigned cdf G.

Proof:  First replace separately in Theorem 6.1, h by hj, j=1, 2, 3. Also, replace there c by the
infinite left ray at x in real m-space, and S by Sm.  This yields (i).  Then, noting that, because
each cdf is a weighted sum of the corresponding exact threshold cdfs with range space t ≤ s ≤ 1 ,
as a typical example, squeezing down to unity itself as  t ↑ 1, and that all cdf’s are “well-
behaved”, etc., the top part of (ii) also holds.  That the bottom part of (ii) holds is because, by
inspection:

h1(X) = 1 iff  P(a|b)J = 1;  h2(X) = 1 iff  Po(&o(a|b)J) = 1 iff   P(a|b)J = 1 ;

h3(X) = 1 iff Po(&AC(a|b)J) = 1  iff  Po((&AC(a|b)J)′) = 0  iff  P(∨(a′b)J) = 0
                    iff  P(aj′bj) = 0, all j in J (but P(bj) > 0) iff P(a|b)J = 1.

Finally, (iii) holds by simply applying the extended Helly-Bray moment theorem separately to
each of the three converging sequences of cdf’s for both the identity function in X and the
bilinear function in X representing P(c|d). both being continuous bounded functions of X.  (See,
e.g., [Loève, 1963], Sections 11.3, 11.4.)                  n

Theorem 6.2 insures the mutual asymptotic equivalence of meanconc with respect to either the
original separate premise conditions, their PS conjunction forming one compound conditional
form in PSCEA, or their replacement by a significantly simpler single proper conditional via
&AC.  However, the next results also reinforce this approximate equivalent asymptotic behavior
in another direction.
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Theorem 6.3.  A lower bound on E(X in At | X in Ct).

Suppose Assumption I holds, as well as SCPL consistency (see Theorem 5.9).  Suppose also that
P, i.e., X, is distributed over Sm as Dirichlet dir(τ), where parameter vector
τ = (τ1,...,τm,τm+1) ≥ 1m+1

Then, there exists an increasing function g:[0,1]→ [0,1] with g(0) = 0, g(1) = 1, such that for all
t, 0 < t < 1,

                             g(t) ≤  EP(And(P(a|b)J ≥ t) | P(&AC(a|b)J) ≥ t).

One can choose for g, without loss of generality (for at at least all t sufficiently close to unity)

g(t) = )t)/t1(11( )( −+ .[1 - 
J in j

max  (Fj( t)/t1( − ))],         (6.2.8)

 where Fi is the cdf of the beta(τ1,i,τ2,i) distribution;

                       τ1,i =
d ∑

ϕ

τ
)I( in j

j

i

)( ;  ϕi =
d ai&(&(b⇒a)J) ≠ ∅;   τ2,i =

d ∑
ϕ¬

τ
)I(A in j

j

i

)( .                      (6.2.9)

Proof: Since &AC(a|b) = (A | A ∨ A′B),  A′B = &(b′)J, with A defined as in eq.(6.2.9′),

     A =d (&(b⇒a)J)&(∨(b)),     (6.2.9′)

P((&AC(a|b)) ≥ t iff   P(A′B) ≤ ((1-t)/t)P(A).  Hence,

P(ai|bi) ≥ P(ϕi)/(P(ϕi)+ P(A′B))  ≥  Ui / (Ui + ((1-t)/t)) ,            (6.2.10)

where, from the theory of Dirichlet distributions applied to random vector P (see, e.g., [Goodman
& Nguyen, 1999a] or [Wilks, 1963]),

    Ui =
d P(ϕi) / P(A)  is distributed as beta(t1,i, t2,i) , independent of  P(A) and P(A′B).       (6.2.11)

Hence, denoting the pdf for beta(t1,i,t2,i) as hi, the required expectation here is

 E(Ui / (Ui + ((1-t)/t))) = ∫
=

1

0u

[ (u/(u+((1-t)/t)).hi(u)]du.            (6.2.12)

Breaking up the range of integration in (6.2.12) into two parts, [0, t)/t1( − ] and [ t)/t1( − , 1],

it is clear that u/(u+((1-t)/t)) over the first interval varies between t and )t)/t1(11( )( −+  while

u/(u+((1-t)/t)) over the second interval varies from 0 to )t)/t1(11( )( −+ .  Since τ ≥ 1m+1 , there

is a unique finite maximum mi given as

                                 mi = hi((τ1,i – 1)/( τ1,i – 1 + τ2,i – 1)), i in J,            (6.2.13)
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with limiting (uniform distribution) case interpreted as 1, when τ1,i = τ1,i = 1.  (For justification of
eq.(6.2.13), see [Johnson & Kotz, 1972], vol. 2, Chapter 24, Section 3.)

Finally, putting eqs.(6..2.10)-(6.2.13) together,

 )t)/t1(11( )( −+ .(1-Fi( t)/t1( − ) ) ≤  EP(And(P(a|b)J ≥ t) | P(&AC(a|b)J) ≥ t),    for i in J.        n

Theorem 6.4.  Some additional bounds connected with Theorem 6.3.

Under the same assumptions as in Theorem 6.3, for all 0 < t < 1, for all i in J,

(i)  Var(P(ai|bi) | P(&AC(a|b)J) ≥ t) ≤ (1-g(t)).E(P(ai|bi) | P(&AC(a|b)J) ≥ t) ≤ 1-g(t).
(ii)  For all real ε, 0 < ε < 1,

        Prob (|P(ai|bi) -  E(P(ai|bi) | P(&AC(a|b)J)≥ t)| ≤ ε) ≥  1 – (1-g(t))/ε2.

(iii)  Prob(P(ai|bi) ≥ g(t)-(1-g(t))1/3 | P(&AC(a|b)J) ≥ t)  ≥  1 – (1-g(t))1/3,

 for all t sufficiently close to 1.

(iv) Prob(And[P(ai|bi) ≥ g(t)-(1-g(t))1/3] | P(&AC(a|b)J) ≥ t)  ≥  1 – (1-g(t))1/3,
                  i in J

for all t sufficiently close to 1.

Proof: Straightforward use of Theorem 6.3 together with Chebychev’s inequality, where, letting
Yi =

d P(ai|bi), Zi,t =
d E(Yi | Ct), σ2

i,t =
d Var(P(ai|bi) | P(&AC(a|b)J) ≥ t),

    Prob(Yi ≥ g(t) – ε |Ct) ≥ Prob(Yi ≥ Zi,t– ε |Ct) ≥ Prob(|Yi-Zi,t| ≤ ε |Ct) ≥ 1- σ2
i,t/ε2

                ≥ 1 –  (1-g(t))/ε2

and then choosing ε =  (1-g(t))1/3 .                                                   n

Definition.  Given any probability space (Ω,B,P) and two collections A = (At)0<t<1 , B = (Bt)0<t<1

with At, Bt in B and each collection nesting down as t increases.  Then, say that A and B are
intertwined iff  there are functions f, g: [0,1]→[0,1] increasing and continuous with f(0) = g(0) =
0, f(1) = g(1) = 1, such that

                        Bf(t) ≤  At ≤  Bg(t) , for all t, 0 < t < 1.
Hence, conversely,

Ag-1(t) ≤ Bt ≤  Af-1(t) , for all t, 0 < t < 1.

Lemma 6.1  Let A = (At)0<t<1 , B = (Bt)0<t<1 be two intertwining collections as in the definition.
Let
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A1 =
d )A(& t

1t0 <<
   and B1 =

d )B(& t
1t0 <<

 .   Then,  A1 = B1.  Hence, if one is nonvacuous, so will be the

other.

Proof:    A1 = )A(& t
1t0 <<

 ≤ )B(& g(t)
1t0 <<

= )B(& t
1t0 <<

 = B1 ≤  )A(&
(t)f1t0

1-
<<

 = )A(& t
1t0 <<

= A1.                  n

Theorem 6.5.   Intertwining  and almost intertwining of  At’s, Bt’s, Ct’s as given in eqs.(6.1),
(6.3), (6.5).

Since the At’s, Bt’s, Ct’s are sets of probability vectors (the P’s or the X’s in our notation), we use
ordinary subset notation here.  Under the same assumptions of Theorem 6.3, the following
relations hold for any t, 0 < t < 1,

                  At ⊆ B1- (1-t)card(J)  ⊆  C1- (1-t)card(J) ,    A1-(1-t)/card(J)  ⊆ Βt     ⊆ Ct   ,                                   (6.2.14)

noting that Ct’s in eq.(6.2.14) dominate all subset inclusions.  As a partial converse, where g(t) is
provided from Theorem 6.3,
                             Prob (X in Ag(t)-(1-g(t))1/3| X in Ct) ≥  1 – (1-g(t))1/3,
i.e.,

          Prob( Ct   ⊆  Ag(t)-(1-g(t))1/3)    ≥  1 – (1-g(t))1/3.            (6.2.15)

  
Proof: Straightforward use of FHH inequalities (see eqs. (1.1.5) and (5.22)) and Theorem 6.4.

        n

Theorem 6.6.  Closed-form expression for E(P| P(a|b) = t)

Make the Basic Assumption I, where now J = {1}, A(t) = {P: P(a|b) = t}, and vector partition X as
XT = (x1,...,xm) = (X(1)

T, X(2)
T, X(3)

T) , X(1)
T = (x1,...,xn), X(2)

T = (xn+1,...,n+p),
X(3)

T = (xn+p+1,...,xm), where, as usual xj = P(αj), xm+1 = 1- sum(X), etc.  Suppose also that X is
distributed over Sm as Dirichlet dir(τ), where τ = (t1,...,tm,tm+1) > 0m+1.   Then, E(P| P(a|b) = t) =
E(X | X in A(t)) is in A(t) and

E(X| X in A(t))
T = E(P | P(a|b) = t)T = ( E(X(1) |  A(t))

T, E( X(2) | A(t))
T , E(X(3) | A(t))

T ),
where

 E(X(1) |  A(t))
T = t.w(1)

.(w1,...wn) , E(X(2) |  A(t))
T = (1-t).w(1)

.(wn+1,...wn+p) ,
 E(X(3) | A(t))

T = w(2)
.(wn+p+1,...,wm) , E(xm+1 | A(t)) = 1- sum(E(X|A(t))) = 1-w(1)-w(2) = w(3),

where
        w(1) =

d (τ(1) + τ(2)) / (τ(1) + τ(2) + τ(3) + τm+1) , w(2) = τ(3) / (τ(1) + τ(2) + τ(3) + τm+1),
        w(3) = τm+1 / (τ(1) + τ(2) + τ(3) + τm+1),
        τ(1) =

d τ1+...+τn,   τ(2) =
d τn+1+...+τn+p,   τ(3) =

d τn+p+1+...+τm

        w1 =
d (1/τ(1)).τ1,..., wn =

d (1/τ(1)).τn ;   wn+1 =
d (1/τ(2)).τn+1,..., wn+p =

d (1/τ(2)).τn+p,

        wn+p+1 =
d(1/τ(3)).τn+p+1,..., wm =d (1/τ(3)).τm..
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Proof: Since A(t) is a (closed ) convex set, E(X | X in A(t)) is also in A(t).  Next, consider three
cases: xi for i = 1,...,m, letting U = sum(X(1)), V = sum(X(2)), W = sum(X(3)), and in this notation,
A(t) holds iff  U/(U + V) = t:

Case 1. i = 1,..., n.

E(xi|A(t)) = E((xi/U).(U/(U+V)).(U+V) | U/(U+V) = t).

But, from the theory of Dirichlet distributions (see, again, [Wilks, 1963] or [Goodman &
Nguyen, 1999a]), the random variables (xi/U), U/(U+V), (U+V) are all independent of each other
and have the beta distribution.  Since the middle one is determined from the antecedent of the
expectation to be t, we need only specify the first, which is
beta(τι,τ(1)-ti) and the third which is beta(τ(1)+τ(2),τ(3)+τm+1), so that
                            E(xi|A(t)) = (τι/τ(1)).t.((τ(1)+τ(2))/(τ(1)+τ(2)+τ(3)+τm+1)).
Case 2. i=n+1,...,n+p.

E(xi|A(t)) = E((xi/V).(V/(U+V)).(U+V) | U/(U+V) = t)
              = E((xi/V).(1-(U/(U+V))).(U+V) | U/(U+V) = t),

noting the mutual independence and beta distributions of (xi/V),. U/(U+V), (U+V), with the
middle term determined from the antecedent of the expectation as 1-t. Again,  as in case 1, the
beta distribution expectations are readily obtained.

Case 3.  i=n+p+1,...,m

E(xi|A(t)) = E((xi/W).W| U/(U+V) = t),

noting the mutual independence and computable beta distributions of (xi/W), W, U/(U+V).       n

Theorem 6.7.   Plug-in evaluation P#(c|d) relative to P# =d E(P | P(a|b) = t).

Under the same hypothesis as Theorem 6.6, noting again P# = E(P | P(a|b) = t) is a legitimate
probability vector in A(t) because of the closed convexity of A(t) = {P: P(a|b) = t}.  Using the
multivariable notation Σ(W)I(c) for ∑

I(c) in j
j )(w , where I(c) ⊆ {1,...,m+1} is the index set for c with

respect to set of atoms Ao,

P#(c|d) = N# / D# ;

N# = P#(c) = P#(ac) + P#(a′bc) + P#(b′c)
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     =  t.w(1)
.Σ(w)I(ac)  + (1-t) .w(1)

.Σ(w)I(a′bc)  + w(2)
.Σ(w)I(b′c) ,

D# = P#(d) = P#(c) + P#(c′d)  = N# + P(ac′d)  + P#(a′bc′d)  + P#(b′c′d)
      =  N# +  t.w(1)

.Σ(w)I(ac′d)  + (1-t) .w(1)
.Σ(w)I(a′bc′d) +  w(2)

.Σ(w)I(b′c′d)

Proof: Straightforward substitution of values from Theorem 6.6 into P#(c|d), using the
decomposition P#(c|d) = P#(c) / (P#(c) + P#(c′d)) , P#(c) = (P#(ac) + P#(a′bc) + P#(b′c)),
P#(c′d) = P#(ac′d) + P#(a′bc′d)  + P#(b′c′d).                  n

7.   Summary of Algebraic Characterization of Asymptotic Form of Expected Surety
      Deduction for Common Threshold Case

Apropos to the discussion in Section 6.2 concerning the difficulty in exactly determining
meanconc functions for the fixed nonlimiting threshold case, quite a different story holds for the
evaluation of these functions when the thresholds are allowed to approach unity.  [Bamber,
2000], under a uniform second order prior distribution assumption, in the same spirit of this
paper, has derived an algebraic characterization for deciding when E(P(c|d) | P in At) approaches
unity as threshold t approaches unity.  This algebraic procedure (involving in Bamber’s
terminology, “rarity functions”) is equivalent to (also, algebraic) deduction-validating procedures
in Pearl’s [1990] System Z and in Lehmann & Magidor’s [1992] rational closure.  (In fact all of
the above work for common threshold t has been extended to non-identical thresholds
approaching unity via some power of one another – see, e.g., [Bamber, 2000] for further details.)
We describe below, in outline form, an equivalent process, which also allows us to obtain the full
asymptotic distributional form associated with meanconc.  This process, is a sequential one,
where in step one given potential EPL conclusion (c|d) is first tested as to which combination of
c&(&(b⇒a)J) and/or  c′d&(&(b⇒a)J) is null or not and then, only if the first level indeterminate
case holds, i.e., c&(&(b⇒a)J) = c′d&(&(b⇒a)J) = ∅, then one proceeds to refine this further by
replacing J in step one by K1 = {i in J: ai &((&(b⇒a)J) = ∅} (involving the SCPL criterion for
the K1 index set – see again, Theorem 5.9).  Then, the procedure is repeated with again one
continuing on to the next level only if the indeterminate case c&(&(b⇒a)K1

) = c′d&(&(b⇒a)K1
)

= ∅.  Re-examining the above a little more closely and making the usual general Dirichlet
second order prior probability assumption for P (or X), one can readily obtain the full asymptotic
limiting distribution of (P(c|d) | At) as t approaches unity: Returning to the first stage, consider

Step 1, Case 1. c&(&(b⇒a)J) ≠ ∅  and c′d&(&(b⇒a)J) ≠ ∅.  By simply decomposing c and c′d
relative to P(c|d) into their intersections with &(b⇒a)J) and its complement ∨(a′b)J) and noting
that the constraints in At show that for t close to unity any probability assigned to anything
intersecting some aj′bj will be negligible (unless all probabilities are so).  This shows that a
typical P(c|d) is essentially the same as

                                  P(c&(&(b⇒a)J)) / [P(c&(&(b⇒a)J)) +  P(c′d&(&(b⇒a)J))]

which has no further constraints upon it as t approaches unity and, from basic Dirichlet family
properties, as a random variable has a beta distribution with nontrivial computable parameters.
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Hence, in general, for this case neither unity nor zero mass point asymptotic distributions occur
in general.

Step 1, Case 2. c&(&(b⇒a)J) = ∅, i.e., c ≤ (∨(a′b)J), and  c′d&(&(b⇒a)J) ≠ ∅.

By reasoning similar to Case 1, the asymptotic form of a typical P(c|d) must be

                                 P(c&(∨(a′b)J) / [P(c&(∨(a′b)J) + P(c′d&(∨(a′b)J)],

where clearly P(c&(∨(a′b)J) approaches zero, but P(c′d&(∨(a′b)J)] remains independent of t.
Hence, this case stochastically leads to a zero mass-point for the limiting form of (P(c|d) | At).

Step 1, Case 3. c&(&(b⇒a)J) ≠ ∅,  and  c′d&(&(b⇒a)J) = ∅. i.e., c′d ≤ ∨(a′b)J.

The asymptotic limiting form here for (P(c|d)|At) is
P(c&(&(b⇒a)J) / P(c&(&(b⇒a)J),

i.e., a unity mass-point distribution.

Step 1, Case 4. c&(&(b⇒a)J) =  c′d&(&(b⇒a)J) = ∅.

Replacing J above in the four cases of Step 1 by K1, leads to the following possibilities:

Step 2, Case 1. c&(&(b⇒a)K1
) ≠ ∅,  and  c′d&(&(b⇒a)K1

) ≠ ∅. 
yet,
                         c&(&(b⇒a)J) = ∅,  and  c′d&(&(b⇒a)J) = ∅.

Then, analogous to the reasoning for Step 1, Case 1, while both numerator and denominator of
P(c|d) go to zero as t approaches unity, the rate of convergence to zero for P(c&(&(b⇒a)K1

) and

P(c′d&(&(b⇒a)K1
) remain an order of magnitude less than the complement terms.  Whence, the

same formal situation once more holds in that the dominating expression for P(c|d) is

 P(c&(&(b⇒a)K1
) / [P(c&(&(b⇒a)K1

)  + P(c′d&(&(b⇒a)K1
)]

which is beta distributed asymptotically, etc.

One then continues, just as in each Case of Step 1, establishing the lower rate of zero convergent
expressions.  If Case 4 of Step 2 holds, then we must refine even further, replacing now K1 by K2

= {i in K1: ai &((&(b⇒a)K1
) = ∅} and continuing the process which is guaranteed to end in a

finite number of steps.
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8.  Closing Remarks and Some Research Issues.

Analogous to Section 5, where various relations were established between the weak and strong
forms of HPL and CPL deduction, one can determine various relations between EPL deduction
and HPL and CPL deduction. At the outset, as in Theorem 5.12 for CPL and HPL, EPL
deduction reduces to classical logic deduction relative to premise and potential conclusion
consisting of only unconditional events. For simplicity, we have tacitly only considered the
strong form of EPL, where all conditional probabilities involved are well-defined and will
continue to consider that case here for HPL and CPL, as well, when possible.  First, it is clear
from the very definition of minconc and meanconc (see Section 3) that we always have

      minconc((a|b)J;(c|d)(t) ≤ meanconc((a|b)J;(c|d)(t),  for 0< t ≤ 1.        (8.1)

Eq.(8.1) immediately implies that

(a|b)≤HPL (c|d)    implies   (a|b) ≤EPL (c|d),                     (8.2)

where the converse does not hold in general as seen in Table 1, with transitivity, contraposition,
and strengthening being examples of EPL deductions but not HPL ones.  On the other hand,
Theorem 6.2(iv) shows that

(a|b)≤EPL (c|d)    implies   (a|b) ≤CPL (c|d).                 (8.3)

As in eq.(8.2), the implication in eq.(8.3) is not reversible in general.  A case where CPL (weak)
deduction is valid, but EPL is not, is provided by the Nixon diamond scheme (number 23 in
Table 1).   (Bamber [2000] has also considered relations between EPL, HPL, and CPL deduction
validity.)

We illustrate here the nonmonotonicity of EPL vs. the monotonicity of HPL and CPL, where
again, it should be noted that, by their very definitions, once a valid deduction holds in the sense
of HPL or CPL, with respect to P(c|d) for given (a|b)J, it must hold in the same sense for any
given increased premise set (a|b) J∪K.  Consider the Penguin Triangle Deduction Scheme
(number 17 of Table 1), where in our general deduction notation (c|d) is (a′b |c), J = {1,2,3,4},
with (a1|b1) being (a|b), (a2|b2) being (b|c), (a3|b3) being (d|c), and (a4|b4) being (a′b |d), with as in
all of Table 1, a, b, c, d not otherwise constrained (as opposed to Assumption I)  First, form
&(b⇒a)J = b′c′d′ ∨ abc′d′.  Then, as in the procedure in Section 7, test for which case holds in
Step 1 for &(b⇒a)J conjoining here, nonvacuously or not, a′c, ac.  Thus, only Step 1, Case 4
holds where both intersections are null.  Then, form K1 = {i in J: ai & (b′c′d′ ∨ abc′d′) = ∅} =
{2,3,4}.  In turn, now form &(b⇒a)K1 = c′d ∨ a′bd and retest for which possible nonvacuous-

vacuous combination with a′bc, abc holds.  This yields only Step 2, Case 3, since a′bc&c′d (c′d ∨
a′bd) = a′bcd ≠∅, abc&( d ∨ a′bd) = ∅.  Hence, in the limit as t approaches 1, (P(c|d)|At)
approaches the mass-point 1, i.e., E(P(c|d)|At) approaches 1 and EPL validity holds, where At

corresponds to J={1,2,3,4} here.
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On the other hand, for the same potential conclusion (a′b |c), but smaller premise set than above,
consisting only of that part of At corresponding to J = {1,2}, we know from the transitivity
property (number 13, Table 1), that (a|c) is EPL-deduced from {(a|b), (b|c)} and hence

1t

(limit
↑

E(P(a|c) | P(a|b), P(c|d) ≥ t)) = 1 and thus 
1t

(limit
↑

E(P(a′b |c) | P(a|b), P(c|d) ≥ t)) = 0,

showing invalidity for the same conclusion with the smaller premise class.

Finally, among the key open problems, mention should be made of that of determining bounds
on the differences between the actual meanconc functions and their asymptotic single rule-plug-
in replacements.  In a similar direction, upper bounds are sought in the general case – for both
fixed thresholds and unity limiting ones -- for the differences between meanconc and alternative
deduction functions, including minconc and maxent.  While some of the discrepancies for certain
specific cases among the three approaches (using meanconc, minconc, maxent) are pointed out in
Tables 1 and 2, a more general study is needed to consider tradeoffs between desirable deduction
properties and computational complexity.  It is also of interest to consider extensions of EPL to a
linguistic setting, as a counterpart to the numerous fuzzy logic approaches to reasoning.  An
outline for the beginning of such an extension is provided in Section 3.3 of [Goodman &
Nguyen, 1999b].
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Appendix A.  Proof of Theorem 5.6.

Lemma A.1.  Make Basic Assumption I, assume WHPL consistency, and for some K, ∅ ≠ K
⊆ J, assume that

             &(b⇒a)K&(∨(b)K) = ∅.    (Α.1)

Then, for any real δ, 0 < δ < 1/(2card(J)), and any P (probability measure over B), the following
statements are equivalent:

(i)   For each j in J, either P(aj|bj) ≥ 1-δ  or P(bj) = 0.
(ii)  For all j in J, P(bj) = 0.

Proof: Obviously, (ii) implies (i).  Suppose (i) holds for some P such that there is a set L, ∅ ≠ L
⊂ K (proper) such that P(aj|bj) ≥ 1-δ, for all j in L and P(bj) = 0, for all j in K¬L (≠ ∅).  By the
FHH lower bound (eq.(5.22)), we must have for PSCEA Po counterpart of P,

   Po(&o(a|b)L) ≥ max(Σ(P(a|b)L) – (card(L)-1), 0) ≥  max(card(L).(1-δ) – (card(L)-1), 0)
              =  max( 1- δ.card(L), 0) = 1- δ.card(L) > ½ > 0.    (A.2)

Then, eq.(A.2) combined with eq.(4.26) and the monotonicity property of probability shows that

              Po(&AC(a|b)L) ≥ Po(&o(a|b)L) > 0.    (Α.3)

From the structure of &AC in eqs.(4.23) and (4.27) combined with eq.(A.3),

P(&(b⇒a)L&(∨(b)L) > 0.    (A.4)

But, the assumption P(bj) = 0, j in K¬L, implies P(&(b′K¬L)) = 1, whence using eq.(A.4),

                 P[&(b⇒a)L&(∨(b)L)&(&(b′K¬L))] > 0.    (A.5)

Now, from the definitions in eqs. (4.16)-(4.18),

      &(b⇒a)L&(∨(b)L)&(&(b′L)) = )( LKL)C(
)(b'&L)C,b;(a, ¬⊆≠∅

γ∨
= )( K)C,b;(a,

L)C(
γ

⊆≠∅
∨  ≤  )( K)C,b;(a,

K)C(
γ

⊆≠∅
∨  =  &(b⇒a)K&(∨(b)K).                                    (A.6)

Thus, applying the monotonicity of probability to eq.(A.6) and combining with eq.(A.5) shows

P(&(b⇒a)K&(∨(b)K)) > 0,

contradicting the assumption that &(b⇒a)K&(∨(b)K)) = ∅.  Hence, no such L can exist.
The only remaining possibilities are L = K or L = ∅.  In the case of L = K, again application of
the FHH lower bounds and again the ordering between &AC and &o in eq.(4.26) shows
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                 Po(&AC(a|b)K) ≥ Po(&o(a|b)K) > 0 ,
which, analogous to eqs.(A.3), (A.4) implies

P(&(b⇒a)K&(∨(b)K)) > 0,

once more, leading to a contradiction of the assumption. Hence, the only possibility is for (ii)
to hold.          n

Lemma A.2.  Under the same assumptions of Lemma A.1 and for the K satisfying eq.(A.1),
assume

&(b⇒a)K ≤ d⇒c.    (A.7)

Then, for any real δ, 0 < δ < 1/(2card(J)), and any P (probability measure over B):

If [for each j in J, either P(aj|bj) ≥ 1-δ  or P(bj) = 0], then [P(d⇒c) = 1].    (A.8)

Proof: The “if” part of eq.(A.8), certainly implies the condition holds for K as a subset of J.
Then, applying Lemma A.1, we must have P(bj) = 0, all j in K, i.e.,

P(&(b′)K) = 1.    (A.9)

But, combining eq.(A.7) with a standard property of the material conditional,

&(b′)K ≤ &(b⇒a)K ≤ d⇒c.  (A.10)

Then, applying P throughout eq.(A.10) and using eq.(A.9) shows the desired result.                   n

Lemma A.3. Make Basic Assumption I, assume WHPL consistency, and for some K, ∅ ≠ K ⊆ J,
assume that

∅ ≠ &(b⇒a)K&(∨(b)K) ≤  c              (Α.11)
and

       &(b⇒a)K ≤ d⇒c.  (A.12)

Then, for that K,

(i)     ∅ο  ≠  &AC(a|b)K  ≤ο  (c|d).

(ii)    For any real δ, 0 < δ < 1/(2card(J)) and any P such that for all j in J, either P(aj|bj) ≥ 1-δ or
P(bj) = 0, then  [P(c|d) ≥ 1 -  δ.card(J)].

Proof: First, the left-hand side of eq.(A.11) shows that &AC(a|b)K must be a proper conditional
event.  (Again, see the discussion following eq.(4.23).)  Using the definition of &AC and
comparing the remaining part of eq.(A.11) and eq.(A.12) with the basic ordering criterion of
PSCEA between proper conditional events given in eq.(4.19) shows the validity of (i).
Next, let KP =d {j in K: P(bj) = 0}.  Thus, by hypothesis, K¬KP = {j in K: P(aj|bj) ≥ 1-δ},
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P(∨(b)K) = P(∨(b)K¬KP
),   P(&(b⇒a)K&(∨(b)K)) = P(&(b⇒a)K¬KP

&(∨(b) K¬KP
)),

implying
         P(&AC(a|b)K) = P(&AC(a|b)K¬KP

).             (A.13)

Case 1.  KP = K. Then, by hypothesis (A.11),
      P(c) ≥ P(&(b⇒a)K&(∨(b)K) = P(&(b′)K) = 1, implying  P(c|d) = 1.

Case 2.  ∅ ⊆ KP ⊂ K (proper).
Subcase 1. P(&(b⇒a)K¬KP

&(∨(b)K¬KP
)) = 0.  But, by Lemma A.1, this condition implies for all j

in K¬KP that P(bj) = 0, contradicting the very meaning of K¬KP.
Subcase 2. P(&(b⇒a)K¬KP

&(∨(b)K¬KP
)) > 0.  Now, again using the FHH lower bound in

eq.(5.22), as in eq.(A.2), replacing L there by K¬KP, combining with the monotonicity property
of Po applied to result (i) and the order relation between &o and &AC, and using eq.(A.13),

P(c|d) ≥ Po(&AC(a|b)K) = Po(&AC(a|b) K¬KP
) ≥   Po(&o(a|b) K¬KP

) ≥ 1 – δ.card(K¬ KP
) ≥ 1 − δ.card(J),

the desired result for (ii).          n

Lemma A.4.  Make Basic Assumption I  and assume (a|b)J is WHPL consistent.  Then,

     Assumption Q implies [ (a|b)J ≤WHPL (c|d) ],
where
Assumption Q :
       (there is some K, ∅ ≠ K ⊆ J)( [&(b⇒a)K&(∨(b)K) ≤ c ]  and  [&(b⇒a)K ≤ d⇒c] ).

Proof: Break up Assumption Q into two parts

     Q1: (there is some K, ∅ ≠ K ⊆ J)( [&(b⇒a)K&(∨(b)K) = ∅ ]  and  [&(b⇒a)K ≤ d⇒c] ),

     Q2: (there is some K, ∅ ≠ K ⊆ J)( [∅ ≠ &(b⇒a)K&(∨(b)K) ≤ c]  and  [&(b⇒a)K ≤ d⇒c] ),

and apply Lemma A.2 to Q1 and Lemma A.3 to Q2.          n

Lemma A.5. Make Basic Assumption I  and assume (a|b)J is WHPL consistent. Then,

            not(Q)  implies  not[(a|b)J ≤WHPL (c|d)].

Proof: First note that
not(Q)   iff   (for all K, ∅ ≠ K ⊆ J)( IK,1  or  IK,2   or  IK,3 ), (A.14)

where
                     IK,1  =

d (τK&c′d ≠ ∅ ) ; IK,2 =
d ( &(b′)K&c′d ≠ ∅ ) ;   IK,3  =

d (τK&d′ ≠ ∅ );     (A.15)
τK  =

d  &(b⇒a)K&(∨(b)K), ∅ ≠ K ⊆ J.  (A.16)
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Next, proceed to construct mutually disjoint “blocks”, analogous to the procedure in the proof of
Theorem 5.1 ((ii) implies (iv)), but slightly modified, beginning with index set J.  Thus, we
obtain a nonvacuous exhaustive disjoint partitioning {K1,...,KM} of J, for some positive integer
M, with the same notation as in eq.(5.15), such that there is a collection of mutually disjoint
nonvacuous events – which are the blocks - given as

                                       γ(a,b;Kj,J¬K(j))&ηj , j = 1,...,M-1,               (A.17)

and where for the first time, at step M, by definition, either,
Case 1   γ(a,b;KM,J¬K(M))&ηM = &(aKM

)&ηM is also nonvacuous and mutually disjoint with
respect to events in (A.17),

where
          ηj in {c′d, d′},  j = 1,...,M;             (A.18)

or

Case 2    γ(a,b;∅,J¬K(M-1)) = &(b′)J¬K(M-1) is also nonvacuous and mutually
disjoint with respect to events in (A.17), where all γ(a,b;L,K) are defined as usual as in eq.(4.16)
with K replaced by L and J by K, etc.

The procedure ends when either Case 1 or Case 2 first occurs.  (In the construction in the proof
of Theorem 5.1, the conjunctive factors ηj were missing and the procedure ended when Case 1
first occurred –at the Mth step.)  Next, analogous to the construction of P in the proof of
Theorem 5.1 ((iv) implies (I)), assign

    P[γ(a,b;Kj,J¬K(j))&ηj] =
d δj-1 – δj, for j =1,...,M-1;

            P[γ(a,b;KM,J¬K(M-1))&ηM] =d δM, if Case 1 holds;
P[γ(a,b;∅,J¬K(M-1))] =d δM, if Case 2 holds.  (A.19)

Then, analogous to the proof of Theorem 5.1 (see eqs.(5.19)-(5.21)), it follows that

       P(aj|bj) ≥ 1-δ, for all j in J.                (A.20)

In addition, since only either c′d or d′ (but not both) appears explicitly at each blockj, j=1,...,M,
one has only the possibilities:

Situation 1:  There is at least some block j in which c′d appears.  Then, clearly, since P is unity
over the disjunction of all of the blocks,

         P(c′|d) = P(c′d)/P(d) ≥ ∑
≤≤ i)block at  appears dc' M,i(1

i )P(block / ( ∑
≤≤ i)block at  appears dc' M,i(1

i )P(block  ) = 1. (Α.21)

Hence, eqs.(A.20) and (A.21) show that not[(a|b)J ≤WHPL (c|d)], due to the arbitariness of δ.

Situation 2.  There is no block in which c′d appears, i.e., only d′ appears in each of the blocks.
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Thus, in this situation,
  ∅ ≠ τKi

&d′, i = 1,...,M,              (A.22)

But, eq.(A.22) implies
∅ ≠ τKi

, i = 1,...,M. (A.23)

Then, according to Theorem 5.1, eq(A.23) insures that (a|b)J is SHPL consistent.  On the other
hand, eq.(A.22) and the construction of P in eq.(A.19), shows, analgous to eq.(A.21) that

P(d′) = 1. (A.24)

Also, eqs.(A.20) and (A.24) imply that not[(a|b)J ≤SHPL (c|d)] (we need P(c|d) positive and “high”
for SHPL to hold).  In turn, because of SHPL consistency, Theorem 5.4 shows that not[(a|b)J

≤SHPL (c|d)] implies not[(a|b) ≤WHPL (c|d)].  Hence, finally, not[(a|b) ≤WHPL (c|d)] also holds in this
situation.                      n

Finally:

Proof of Theorem 5.6: Simply combine Lemmas A.4 and A.5.          n


