Automatic Generation of Best Emergency Routes
and Procedureson a Brazilian Frigate

David L. L. Sicuro
Grupo de Sistemas Digitais
Instituto de Pesquisas da Marinha
Rualpiru 2 - IlThado Governador
Rio de Janeiro, RJ 20931-000 BRAZIL
phone: (55) 21 396-2004
sicuro@ipgm.mar.mil.br

Neil C. Rowe
Department of Computer Science
U.S. Naval Postgraduate School
Monterey, CA 93943 USA
phone: (831) 656-2462
Fax: (831) 656-2814
rowe@cs.nps.navy.mil

Abstract

We describe prototype software we have written that addresses the serious problem of
management of damage control on naval vessels. Human reasoning and judgment may be
strongly affected by stress and panic when several simultaneous events occur in a damaged-ship
environment. Thus it would be helpful in times of emergency to dispassionately calculate the
best courses of action to follow and suggest them to personnel.

We describe two tested modules for the decision-aid system of the new Niteroi-Class Frigate
Damage Control System project: an emergency-route generator for people and casualties, and a
smoke-extraction-procedure generator. Our modules gather and organize sensor data and reports
about rooms, gateways and equipment. They reason automatically to determine the best routes
and procedures, and can present the damage-related information in a concise manner to users
both in the command center and throughout the ship.

This system is implemented as an expert system using the CLIPS shell. The ship is represented
as a graph where the compartments are nodes and the doors and hatches are the edges between
them; costs reflect the difficulty in passing from a compartment to another. For finding
emergency routes for people, a cost-minimizing search is done using the current ship data. A
different search is done for smoke extraction to determine routes for ventilation of the smoke,
with processing that checks conditions and fills in details.

" This work was sponsored by the Brazilian Naval Commission in Washington, DC, USA.



1. Introduction

Damage control is a serious issue on naval vessels because of the frequent remoteness of the
vessel from support facilities, the presence of highly flammable materials, and the consequences
of combat [U.S. Navy, 1999]. Damage control thus requires careful planning and continual
training, even more so than with civilian situations [FEMA, 1999; New Y ork Times, 2000].

The Brazilian Navy is extensively modernizing its Niteroi class (Mk 10 type) frigates. These are
vessels of around 3700 tons displacement with a crew of around 200. Upgrades are being done
on a wide variety of ship systems and include increased capabilities to monitor ship operations
and damage control. This provides an opportunity to try out new methods and procedures,
including ideas that the U.S. Navy has not tried. The ships are small enough as to make good
|aboratories for experiments, while not too large as to make experiments unwieldy.

This paper describes prototype software that is part of the new Niteroi-Class Frigate Damage
Control System project named CAVFRAG. This project is being developed in the Brazilian
Navy Research Institute. The CAVFRAG project attempts to update the current damage-control
system and simplify damage-control procedures. Its objectives are to make data acquisition more
reliable and complete; make the system-operator interaction easier and more user-friendly
through the effective use of computer graphics, provide damage-related information to the
command center and throughout the ship; and provide intelligent guidance to the operator in
emergency situations. The work reported here addresses the last requirement.

2. Problem Definition

We first investigated how a decision-aid system could be useful in a damage-control system.
After several interviews with the damage-control operators, we concluded that they had very
good skills and training and knew exactly what to do during a damage event. However, under
stress and panic conditions, when several damage events are happening at the same time, how
much is their reasoning and judgement affected? It is difficult to say, but it may well be hard for
them to tell which ship sectors would be safe or use all remediation tools with maximum
effectiveness.

Our first idea was to build a decision aid to help the operator in tasks directly related to life-
saving. Based on statistics, smoke is the main cause of death on naval vessels. So two modules
were developed: a route generator for people and casualties, that finds the best safe routes for
moving inside the ship, and a smoke extraction procedures generator, that finds the best
extraction routes, procedures, and equipment.

3. Decision Aid System Design

If a decision-aid system is to assume some of the job of a person, it should have tranquility,
coolness, quick reasoning, and a deep knowledge of the ship plan, so that it may be a
dispassionate and quick expert. We decided to implement such a decision-aid system as an
expert system, an artificial-intelligence module, inside of CAVFRAG.



Expert systems are defined as any software that embodies non-trivial expertise, knowledge that is
known by only a few people in the world, and can reason about it [Gonzalez and Dankel, 1993].
Building an expert system is “knowledge engineering”. Expert systems can use many kinds of
artificial-intelligence ideas -- rule-based systems, search, blackboards, relaxation, resolution, etc.
-- but rule-based systems are the most popular. The main categories of expert-system
applications are diagnosis, inferring causes of observations, classification, inferring categories
that apply to observations; control, monitoring and acting in real time; problem-solving, heuristic
searching to find an answer; design, and construction of a multi-part solution to a problem
[Rowe, 1988].

Rule-based systems have a non-procedural interpretation. This means there is no pre-established
program sequence to be followed as in procedural languages like C, Pascal, or Java. Rule-based
systems comprise rules, facts and an inference engine. Facts are the “truths’ of the system at a
certain moment of the program execution; rules are structures that combine facts to produce an
action. A rule has the structure of “if <condition> then <action>" and the action can produce new
facts that can be used in other rules. The exact order in which rules are tried depends on the
particular inference engine used. The expert’'s knowledge is embedded in these facts and rules,
called collectively a*knowledge base”.

Expert-system shells provide assistance in developing rule-based systems. The shell used in this
project is a forward-chaining one caled CLIPS [Giarratano, 1998]. The C Language Integrated
Production System (CLIPS) is an expert-systems tool developed by Software Technology
Branch (STB) of the U.S. NASA (Nationa Aeronautics and Space Administration) organization
at the Lyndon B. Johnson Space Center. Since its first release in 1986, CLIPS has undergone
continua refinement and improvement. It is now used by thousands of people around the world.
CLIPS is designed to facilitate the development of software to model human knowledge or
expertise.

4. Knowledge Base
For expert systems, it is important to define the structure of the knowledge base.

In the route generator for people and casualties, knowledge concerns the structura plan of
the ship, the difficulty of using gateways such as doors, hatches, and stairs, how difficulty is
affected by the presence of casualties, and the difficulty of traversing damaged (e.g. flooded
or smokey) rooms. Sensor data acquired over the ship is also included in the knowledge base.

In the smoke-extraction procedure generator, knowledge concerns a different aspect of the
structural plan of the ship. Here we consider the ship as a set of sealed sectors, each including
many compartments. Expertise concerns the paths by which smoke be safely removed by
flowing through a sequence of sectors, and how to optimize the use of ventilation and
extraction devices. Sensor datais also used.

The frigates of the Niteroi class have almost identical structural plans. This plan is represented in
the knowledge base by a graph. Each node of this graph is a representative point in three-



dimensional space (X, y, and z) for a ship compartment. The representative points are
approximately the centers of compartments, and were obtained from measurements on a
blueprint of the ship plan. An undirected edge connects two nodes of the graph if at least one real
“gateway” (passage, stairway, door, normal hatch, or scuttle hatch) lies directly between the
corresponding compartments. Long corridors were split into virtual subcompartments to improve
the accuracy of distance calculation, and some outdoors areas were included as virtua
compartments. The ship plan we considered had about 300 compartments and 300 gateways.

The cost of traversing a path in this graph is intended to predict the time to follow it in a crisis
gituation. The cost is based on several factors that were defined and parameterized after
discussions with experts on board a frigate. The primary factor is proportional to the distance
between compartments along a path:

dio = (X1 —Xx2) + (Y1 —Y2)? + (2 — 22)*)

where (X1, Y1, z1) and (X2, Y2, Z2) are the coordinates of the representative points of two
compartments. This is multiplied by two constants v (the “speed of people’) and Kg; (the
compartment-status multiplier) to get the cost. This v was assumed constant over personnel, but a
more sophisticated model could distinguish rates of different kinds of people. Smokey and
flooded room multipliers (ks and k¢, respectively) are applied to half of the distance between
compartments di, since on average, the gateway is midway between the compartments. (Smokey
and flooded compartments can also be excluded from the graph at the choice of the operator
during setup.) So the cost related to compartment status Ces IS

Ces=%v (Kci + Kq' ) dio

where Kq = Kg,if compartment i is smokey, ks if compartment i is flooded, ks ks if compartment |
is both smokey and flooded, and 1 otherwise.

Additional cost factors are defined for gateways. To reflect the expected additional time that will
be spent in their usage. Parameter ty measures the time to traverse the gateway when open (which
is larger for narrow hatchways), to which is added a parameter t. if the gateway is closed,
representing the additional time to open the hatchway and close it after passing through. A cost
Cqc IS assigned for casuaty-removal to gateways between decks of the ship (i.e. stairs and
ladders) since it is hard to transfer a casualty from one deck to another. A cost Cy, is added for
some gateways to model internal policies (as when orders are given to avoid a door, or when
environmental conditions do not permit travel outdoors) or other miscellaneous factors (as when
adoor is broken). In total, the gateway cost Cg is:

CG:V(tg+tc)+Cdc +C33
Then the total cost of an edge Cr is:

Cr=Ccs +Co



When an operator requests a route from our system, costs for each edge are calculated from the
current sensor information. For instance, sensors will tell us compartments that have smoke and
whether certain important doors are open. Our system assumes reasonable default values when
sensors are absent or nonfunctioning, to provide a degree of robustness. The modernization of
the Niteroi classis providing additional sensors that we can use.

If the request is for a smoke-extraction route, a smaller graph is built where the nodes represent
sealed sectors of the ship. Sealed sectors are bounded by gateways with sedled closings. The
smoke will flow through a sequence of sealed sectors as it is being removed. The cost attributed
to this traversal is the distance between centers of sectors plus a factor that reflects the difficulty
of smoke passing through that gateway, as estimated by our experts.

5. Cost-minimizing Search

Once the ship is fully represented by a graph, we need a search algorithm to find the lowest-cost
path. There are two basic search types, blind or random search and direct or knowledge-based
search. Blind is a systematic search that uses no knowledge of how close we are to a solution in
picking the path to follow our current location to a new location. In direct search we have some
information that provides the best new location to choose.

Because the number of nodes of the ship was limited, we used the blind-search method of
branch-and-bound for our task. (On alarger ship, the A* algorithm would be more appropriate.)
Branch-and-bound at each step extends a path from the most promising node in the solution tree
regardless of where this node is in the tree [Gonzalez and Dankel, 1993]. If a subsequent better
route is found to a state, the route to there is updated.

As we implemented branch-and-bound in CLIPS (based on the Prolog implementation of the A*
algorithm in [Rowe, 1988]), it uses these kinds of input facts:

(edge nodel node2 cost) - definesthe edges of the graph

(start node-0) - definesthe start node of the route

(end node-N) - definesthe end node of the route

It produces the auxiliary facts:

(agenda node cost-to-here backpointer) - storesinformation for nodes to which routes
have been already found, but from which subsequent travel has not been analyzed,
together with the best cost found there so far and the predecessor node

(bestagenda node cost-to-here backpointer) - storesthe current best agenda fact

It al'so produces output facts:

(oldagenda node cost-to-here backpointer) - storesthe cost of the best route found to a
node, together with the name of the predecessor node on that best route



Search begins with a single agenda fact for the starting compartment. Search ends when the best
state on the agenda is the goal compartment. Then the backpointers are followed to find the route
back to the starting compartment; this list is reversed and returned as the answer. If aroute to the
goal compartment cannot be found, a special answer is returned.

Our CLIPS implementation produces an answer in a very acceptable amount of time. In the
worst case, including the graph construction and the trandation of the room list to natural
language, the program needs about four seconds to return the answer in a 400MHz Pentium 11
platform.

6. Application Module Descriptions

We now describe how requests are made and how answers are given to the operator for both
application modules of the decision-aid system.

The CLIPS code is easily integrated to the rest of CAVFRAG system program since CLIPS is
written in C. The whole system runs under QNX real time operating system which is based on
message interchange. An interface between CAVFRAG Monitoring System and the CLIPS
program exchanges:

Status changes of sensors (to permit updating the knowledge base);

Requests for the personal -route and smoke-extraction modules; and

Calculated best routes and plans.

6.1 Route Generator for People and Casualties
6.1.1 Start and End Compartments of the Route

Starting and ending compartments for the route are obtained through a mouse selection sequence
on a graphic display showing the ship plan of all decks, part of the basic CAVFRAG Monitoring
System. “Waypoint” compartments that must be visited between start and end compartments can
optionally be specified; then the program solves a set of subproblems and combines their results
into asingle path.

6.1.2 Route Restrictions

When starting and ending compartments are selected, the operator must fix details of the search
by answering a set of questions in the monitoring-system window:

Isit aroute for casualty removal?

Must it comply with designated one-way paths?

Can it use scuttle hatches?

Can it use outdoors areas?

Can it use smokey rooms?

Can it use flooded rooms?

These restrictions affect the graph construction (by eliminating some edges) and cost assignment.



6.1.3 Successful Searches

The solution returned by the route-planning module for a successful search is a sequence of
compartments and gateway codes. This is converted into a set of instructions in simple language
to facilitate understanding by personnel.

6.1.4 Unsuccessful Searches

A helpful expert system must be able to explain why it cannot find an answer when that happens.
So our system does additional reasoning whenever a route to the ending compartment cannot be
found. The "oldagenda" facts then hold all best paths found to compartments, and we save them
in a new data structure. We then redo the search assuming that no restrictions (smokiness,
floodedness, locked gateways, indoor travel, etc.) apply to compartment transitions. This new
search must find a solution path because al compartments of the ship are connected. We then
compare the "oldagenda" facts associated with the solution path to the stored "oldagenda’ facts.
The problem must lie at the first place in the path where the first search could not continue. We
examine this place and summarize the problem for the operator in natural language. For instance,
"The route is blocked between compartments A and B because compartment B is outdoors and
you specified indoor travel." The operator can then modify their restrictions and rerun the search.

6.2 Smoke-Extraction Procedure Generator

The smoke-extraction module is told by the CAVFRAG Monitoring System the compartment
from where the smoke must be removed. This is done by mouse selection on the ship plan on the
screen. The module then finds the sealed sector this compartment belongs to and searches for
possible solution plans. A plan must specify:

The smoke channel, the sequence of sealed sectors through which the smoke will flow.

The gateways that must be opened and the gateways that must be closed to create the smoke
channel.

The fan and extraction devices necessary for this task.

Suggested ship maneuvers (such as turning the ship with respect to the wind to facilitate
smoke extraction).

The sequence of actions that must be followed to accomplish the plan.

To generate a plan, the system uses a knowledge base of extraction procedures (basically,
Standard Operating Procedures) created by ship experts. The procedures are organized by sectors
and have associated conditions of use. We do a branch-and-bound search to find the proposed
extraction route, the smoke channel. This requires finding the sector of the smoke-filled
compartment and searching for a route to outdoors on a graph of sectors rather than
compartments. This is a smaller search graph than for routes of people but it still requires a
nontrivial search.

Each sector has several procedures for desmoking compartments in it, and the procedures are
tested in order of complexity to find the first one whose conditions apply. Conditions include



those on the availability and operability of equipment and the closability of gateways on the
smoke channel. When a plan is found, a description in natural language is provided of:
- Ship maneuvers suggested;

Doors, hatches, and scuttle hatches to be closed,;

Doors, hatches, and scuttle hatches to be opened;

Devices to be used and where; and

Other remarks.

Otherwise, the program will inform the operator that it cannot suggest any procedure to remove
smoke from that sector.

7. Discussion and Conclusions

Expert-systems software appears to be an appropriate way to find people-removal and smoke-
extraction routes on medium-sized ships. The CLIPS expert-system tool showed itself to be easy
to use, and it provided clear and easy-to-maintain programs where the expert’s knowledge was
represented in a very direct way. In severa cases the program obtained routes that were
considered by our experts to be better than those used normally used by ship personnel during
emergency drills. This induced some re-evaluation of current procedures on the ship. The system
appears well accepted by users as it integrates well with the existing software for monitoring of
ship operations. We hope to eventually develop similar onboard decision-aid modules for
subsystems such as those for weapons and machinery control.

8. References

[Gonzalez and Dankel, 1993] Avelino J. Gonzalez and Douglas D. Dankel, The Engineering of
Knowledge-based Systems, Theory and Practice. Prentice-Hall, 1993.

[FEMA, 1999] U. S. Federal Emergency Management Agency (FEMA), “Developing Effective
Standard Operating Procedures for Fire and EMS Departments’, Technica Report, 1999,
available from http://www.fema.gov.

[Giarratano, 1998] Joseph C. Giarratano, CLIPS User’s Guide, Version 6.10, U.S. National
Aeronautics and Space Administration (NASA), 1998.

[New York Times, 2000] New York Times, “A Computer to Outsmart a Raging Fire”, New York
Times, March 7, 2000,

[Rowe, 1988] Neil C. Rowe, Artificial Intelligence through Prolog. Prentice-Hall, 1988.

[U.S. Navy, 1999] U.S. Navy, “Naval Ships Technical Manual”, Volume 1, Chapter 55, “ Surface
Ship Firefighting”, 1999.



