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Abstract

This paper presents a library of algorithms to solve a broad range of optimization problems arising
in the normative design of organizations to execute a specific mission.  The use of specific
optimization algorithms for different phases of the design process leads to an efficient matching
between the mission structure and that of an organization and its resources/constraints.
This library of algorithms forms the core of our design software environment for synthesizing
organizations that are congruent with their missions.  It allows an analyst to obtain an acceptable
trade-off among multiple objectives and constraints, as well as between computational complexity
and solution efficiency (desired degree of sub-optimality).

1.  Introduction

1.1 Motivation

The optimal organizational design problem is one of finding both the optimal organizational
structure (e.g., decision hierarchy, allocation of resources and functions to decision-makers
(DMs), communication structure, etc.) and strategy (allocation of tasks to DMs, sequence of task
execution, etc.) that allow the organization to achieve superior performance while conducting a
specific mission ([Levchuk et al., 1999a]).  Over the years, research in organizational decision-
making has demonstrated that there exists a strong functional dependency between the specific
structure of a mission environment and the concomitant optimal organizational design.
Subsequently, it has been concluded that the optimality of an organizational design ultimately
depends on the actual mission parameters (and organizational constraints).  This premise led to
the application of systems engineering techniques to the design of human teams. This approach
advocates the use of normative algorithms for optimizing human team performance (e.g., [Pete et
al., 1993, 1998], [Levchuk et al., 1996, 1997, 1999a,b]).



1.2 Related Research

When modeling a complex mission and designing the corresponding organization, the variety of
mission dimensions (e.g., functional, geographical, terrain), together with the required depth of
model granularity, determine the complexity of the design process.  Our mission modeling and
organizational design methodology allow one to overcome the computational complexity by
synthesizing an organizational structure via an iterative solution of a sequence of smaller and well-
defined optimization problems ([Levchuk et al., 1997]). The above methodology was used to
specify an organizational design software environment, outlined in [Levchuk et al., 1999b], to
assist a user in representing complex missions and synthesizing the organizations. The component
structure of our software environment allows an analyst to mix and match different optimization
algorithms at different stages of the design process.
Our mission modeling and a three-phase iterative organizational design process, first proposed in
[Levchuk et al., 1997] and later enhanced in [Levchuk et al., 1998], is graphically represented in
Figure 1.
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Figure 1. The 3-phase Organizational Design Process

The 3-phase design process of Figure 1 solves three distinct optimization sub-problems:

Phase I. Scheduling Phase.
In this phase, an optimal task-resource allocation is established. It is defined in terms of a
platform-to-task assignment matrix. The objective function (mission completion time or a
combined objective function assembled from individual mission objectives such as the completion
time, accuracy, workload, expended resources, external coordination, etc.) is minimized subject to
assignment, resource availability, platform velocity and graph-related (such as precedence and
synchronization) constraints.



Phase II. Clustering Phase.
In this phase, an optimal DM-resource allocation is determined. It is referred to as DM-platform
assignment matrix. The objective function (weighted sum of the maximum internal and external
workloads or a combined objective function constructed from individual mission objectives such
as the number of decision-makers, their expertise, available platforms and their resident resources,
etc.) is minimized subject to assignment and DM workload constraints.

Phase III. Structural Optimization Phase.
In this phase, an optimal organizational hierarchy is found. It is represented in the form of a
directed tree with directed arcs specifying supported-supporting relations. The objective function
(maximal hierarchy workload induced by direct (one-to-one) and indirect coordination or a
combined objective function gleaned from the identified mission objectives such as the number of
communication links available for each DM, depth of organizational hierarchy, information flow,
etc.) is minimized subject to the graph-related (information access and hierarchy structure)
constraints.

On-line Adaptation Phase. In case of an asset or a decision node failure, the application of a
branch-and-bound method to the task-resource allocation-preference matrix generates the next
best assignments (the new task-resource allocation strategy).  This method provides a quick and
efficient search for adaptation options. The dynamic scheduling accounts for on-line changes
without having to completely resolve the problem. If the newly obtained task-resource assignment
matrix violates the organizational constraints, Phases II and III of the algorithm are used to
generate the new organizational structure. In this case, Phase II is completed in an evolutionary
mode (platform clusters are obtained by regrouping the old platform groups, rather than
generating entirely new ones from scratch). Finally, if the process of generating a feasible
organizational structure fails, the mission must be aborted (see [Levchuk et al., 98] for details).

1.3 Scope and Organization of Paper

In section 2, we provide an overview of our mission modeling and organizational design
environment. In section 3, the optimization algorithms associated with the three optimization
stages are described. Section 4 concludes with a summary and plans for future research.

2.  Multi-objective Optimization and Organizational Design Software Environment

Recently, we have begun the process of implementing our modeling and design methodology in
software to fully automate the organizational design process, while allowing for iterative user-
defined modifications at various stages of the design process.  To assist an analyst, our software
environment is designed to display the metrics of organizational performance, characterize the
attainment of mission objectives, and specify the workload distribution across the organizational
elements of interest.



Our modeling and design environment ([Shlapak et al., 2000]) includes the following seven key
components (Fig.2):

(1) Asset/Resource Description;
(2) DM Structure Profiler;
(3) Mission Modeling;
(4) Performance Criteria/Measures;
(5) Schedule Generation;
(6) Resource Allocation;  and
(7) Hierarchy Construction.
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Figure 2. Component Architecture of Our Software Environment

2.1  Modeling Components

The first three components of our design environment (Asset/Resource Description, DM
Structure Profiler, and Mission Modeling) are devised to assist an analyst in developing mission
models (of various complexity) and organizational constraints.  These serve as inputs to our
design process.  The Performance Criteria/Measures component is used to stipulate objective
functions for the design process and to define a cost function that combines mission objectives
and design parameters.



2.2  Design Optimization Components and Algorithms

After the Performance Criteria/Measures component is used to define objective functions for the
design process, the last three components of our software environment (Schedule Generation,
Resource Allocation, and Hierarchy Construction) allow an analyst to perform a step-by-step
design of the organizational structure, while implementing, if desired, the user-defined design
modifications at various stages of the design process to adjust the metrics of organizational
performance (e.g., weights on objective function, workload distribution, etc.).  These design
optimization components present a step-by-step visualization of our organizational design
process. Specifically, the Schedule Generation component produces the task-resource allocation
schedule that corresponds to Phase I of our organizational design algorithm.   The Resource
Allocation component (Phase II)  defines DM functionality by grouping platforms and provides a
balance between internal and external coordination.  Finally, the Hierarchy Construction
component (Phase III) derives organizational hierarchy to minimize the workload due to indirect
external coordination induced by the hierarchy structure.

In general, the three sub-problems of Schedule Generation, Resource Allocation, and Hierarchy
Construction are NP hard (optimal algorithms take exponential time). Thus, efficient (near-
optimal) heuristics need to be explored to effectively solve large-scale organizational design
problems.  The modular structure of our software environment allows one to apply different
algorithms (both optimal and heuristic) at different stages of the design process to handle the
complexity of a specific problem at hand.  The iterative application of the corresponding
algorithms allows us to simultaneously optimize multiple performance criteria, subject to an
acceptable trade-off among design objectives.

The organizational structure, an outcome of the design process, prescribes the relationships
among the organizational entities by specifying:

•  Task-resource schedule;
•  DM-resource access/allocation;
•  DM organizational hierarchy;
•  Inter-DM coordination structure.

The organizational structure defines each individual DM’s capabilities (by assigning each DM a
share of the information and resources) and specifies the rules that regulate inter-DM
coordination. The organizational structure, together with a set of thresholds constraining a DM
workload, determines the boundaries of the space of feasible organizational strategies (i.e., all
feasible DM-task-resource assignments and coordination strategies), from which the organization
can choose a particular strategy for implementation.  The feasible strategy space delimits the
strategy adaptations that an organization can undertake without having to undertake major
structural reconfigurations.



3.  Library of Optimization Algorithms

In this section, we present the library of optimization algorithms used in our organizational design
software environment. The library is constantly evolving and new algorithms and performance
measures are being added to enlarge the scope of applicability of our software environment.

3.1 Scheduling

3.1.1 Problem Definition

Scheduling concerns the allocation of limited resources to tasks over time. The resources and
tasks may take many forms. The resources may be platforms, human teams, surveillance assets,
information sources, etc. The tasks may be landings or take-offs, evaluations or executions,
operational or informational. They can be aggregated or independent, defensive or offensive. Each
task may have a different priority level and opportunity window.

Scheduling is a decision-making process that has as its goal to optimize one or more objectives.
The objectives may take many forms. One possible objective is the minimization of mission
completion time, and another is task deadline violation.

The scheduling phase of the organizational design process can be generally described as follows.
A set of tasks with specified processing times, resource requirements, locations and precedence
relations among them need to be executed by a given set of platforms with specified resource
capabilities, ranges of operation and velocities. Resource requirements and resource capabilities
are represented via vectors of the same length with each entry corresponding to a particular
resource type. Tasks are assigned to groups of platforms in such a way that, for each such
assignment, the vector of task’s resource requirements is component-wise less than or equal to
the aggregated resource capability of the group of platforms assigned to it. The task can begin to
be processed only when all its predecessors are completed and all platforms from the group
assigned to it arrive at its location. A resource can process only one task at a time. Platforms are
to be routed among the tasks so that the overall completion time (called Mission Completion
Time – the completion time of the last task) is minimized.

3.1.2 Example

A joint group of Navy and Marine Forces is assigned to complete a military mission that includes
capturing a seaport and airport to allow for the introduction of follow-on forces. There are two
suitable landing beaches designated "North" and "South", with a road leading from the North
Beach to the seaport, and another road leading from the South Beach to the airport. From
intelligence sources, the approximate concentration of the hostile forces is known, and counter-
strikes are anticipated. The commander devises a plan for the mission that includes the completion
of tasks shown in Figure 3. The following 8 resource requirements/capabilities are modeled:
AAW (Anti-Air Warfare), ASUW (Anti-Submarine Warfare), ASW (Anti-Sea Warfare), GASLT
(Ground Assault), FIRE (Firing Squad), ARM (Armory), MINE (Mine Clearing), DES



(Destroyer). In Figure 4, mission tasks, the assets (platforms) available for operation, resource
requirement vector for each task, resource capability vector for each platform and other relevant
parameters are presented.
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Figure 3. Task-precedence graph for Example 1.
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Figure 4. Task Requirement and Platform Capability Data for Example 1



3.1.3 Related Research

The scheduling problem arising in organizational design extends to a large set of well-known
problems. When there exists only one platform, it is related to the Traveling Salesman Problem
(TSP) and its extensions (such as Time-dependent TSP, TSP with precedence relations, etc. – for
review, see [Lawler et al., 1985], for latest results, see [Mingozzi et al., 1997], [Zweig et al.,
1995], [Fischetti et al., 1997], [Franca, 1995]). When any platform can process any task, the
problem simplifies to Multiple TSP with precedence relations. If, in addition, the processing of a
task can be separated in time among different platforms, our problem is related to the Vehicle
Routing problem and its extensions (for review, see [Malandraki et al.,1992], [Golden et al.,
1988], for latest results, see [Fisher et al., 1994], [Dumas et al., 1995], [Taillard et al., 1997]).

Another related useful problem is the Dial-a-Ride problem (see [Madsen et al., 1995]). In the case
when travel times among task locations are much smaller than the task processing times (and
therefore can be ignored), the problem reduces to a Multiprocessor Scheduling problem with
Precedence Constraints (for review, see [El-Rewini, 1994], [Cheng et al., 1990], for recent
studies see [Chan, 1998], [Van De Velde, 1993], [Baruah, 1998]). For a review of general
scheduling problems, see [Pinedo, 1995], [El-Rewini, 1994].

Other variations of problem formulation are possible. For example, there may exist a delay
between processing of two tasks on the same platform (“adjustment” delay). The opposite of this
situation is when the delay occurs only when tasks are processed on different platforms
(communication delays) with no delay for processing by the same platform. This has relevance in
Multiprocessor Scheduling with inter-processor communication delays (see [Baruah, 1998],
[Selvakumar, 1994]). Another variation is the existence of time windows for processing each task
(that is, the earliest start times, called release times, and the latest end-times, called deadlines,
define opportunity windows for tasks).  In this case, the objective function involves the
minimization of earliness-tardiness penalties (that is, the penalties resulting from processing tasks
outside of their time-windows). In our problem, we assume that task-processing times are fixed.
In real life, situations may arise when task-processing times depend on the amount of resources
allocated to them. The objective then is to achieve a tradeoff between processing tasks as fast as
possible and using as little resources as possible [Turek et al., 1992]. Another complication is that
a task can begin to be processed when the assigned platforms are within a specified distance of
this task (depending on the task and the range of the platform).   In this case, the problem assumes
the form of the shortest covering path problem (see [Current, 1994]).  Other realistic constraints,
such as the ability of tasks to move during the mission and platforms having expendable resources
(such as fuel, firepower, supplies, etc.), can be included.

All of these instances of our scheduling problem are proven to be NP-hard, meaning that no
known polynomial algorithms exist for finding their optimal solutions. Therefore, research in this
area has primarily focused on the development of near-optimal algorithms and local search
techniques.



3.1.4 Mathematical Formulation of the Scheduling Problem

The scheduling problem associated with the phase I of our 3-phase organizational design process
is defined by the following parameters:

N = number of tasks to be processed.
K = number of available platforms.
S = number of resource requirement/capability types.
ti = processing time of task i.
vm = velocity of platform m.





=
otherwise 1,

startcan   task before completed bemust   taskif ,0 j i
pij

rml = resource capability of type l on platform m.
Ril = resource requirement of type l for task i.
T = mission completion time found using a heuristic algorithm (or set to infinity).
0 = task that serves as “start-finish” (or “depot”) task.

The following variables are used to define the scheduling problem:
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si = start time of task i.
Y = mission completion time (time when the last task is completed).

The problem constraints can be formulated as follows.  Task i can be assigned to a platform m
only if platform m travels to i directly from some other task j (including the depot task 0) and
travels from this task i to some other task. The traveling of platform m is described by variables
xijm.  A platform can arrive at a task location (leave a task location) only once. Note that variables
xiim = 0 for i=1,..,N (except for x00m which can be 1 if the platform is idle during the entire mission).
Therefore, the following constraints on the problem variables (called assignment constraints) are
introduced:
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If task i must precede task j (that is, pij=0), then task j can begin to be processed only after task i
is completed, that is
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This is true for all predecessors of task j. Also, if any platform m travels directly from task i to
task j (that is, xijm=1), then task j can begin to be processed only after task i is completed plus the
span of time needed for platform m to travel from i to j (this travel time is equal to dij/vm), that is
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Combining these together and noting that   T>si+ti  for any i, we obtain the following constraints
(called precedence constraints):
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These constraints also eliminate cycling. When pij=1 and xijm=0, the precedence constraints are
redundant.

Since the aggregated resource capability vector of a platform group assigned to a task should be
greater than or equal to the task resource requirement vector, we obtain the following constraints
(called resource requirement constraints):
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These constraints also ensure that at least one platform is assigned to any task. The mission
completion time is equal to the maximum among the completion times of all tasks. It is also not
greater than the solution obtained by a heuristic algorithm. Therefore, the following constraints
are introduced (called mission completion time constraints):
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The objective is to minimize the mission completion time. Then, the problem is formulated as
follows:
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This is a mixed-binary (i.e., containing continuous and binary variables) linear programming
(MLP) problem (which is NP-hard). Moreover, even relaxing the constraints on the binary
variables wim, xijm (that is, making them real numbers in the [0,1] range) produces a linear
programming problem (LP) with the number of variables equal to 1)1( 2 +++ NNK , the number
of equality constraints equal to )1(2 +NK  and the number of inequality constraints equal to

)1()1( ++− NSNKN . This creates “curse of dimensionality” and makes it hard to find solutions
to even average-sized and relaxed scheduling problems.

3.1.5 Optimal Solution via Dynamic Programming

The optimal algorithms are based on the mixed-binary linear programming formulation described
in the previous section. For more information on solving integer (binary) linear programming
problems, see [Wosley, 1998], [Fang et al., 1993], [Nemhauser, 1988], [Bertsekas, 1997]. The
primary computational methods for solving mixed-integer programming problems optimally
include the branch-and-bound algorithm, dynamic programming, column generation, and
decomposition algorithms. The dynamic programming formulation for this problem is equivalent
to the branch-and-bound algorithm with the following bounding rule: the nth level of the branch-
and-bound tree corresponds to the assignment of n tasks.

Define a state ),..,,,..,,( 11 KK ffLTLTM , where },..,1{ NM ⊂ , jLT  is the task last processed by

platform j, MLT j ∪∈ }0{ , and jf  is its completion time.  We associate with our problem a state

space Φ of states ),..,,,..,,( 11 KK ffLTLTM , where each state represents a feasible schedule of

tasks from set M on platforms 1,…,K such that the last task to be processed on platform j is jLT ,

and it is completed at time jf . The state space Φ can be decomposed as: Φ=Φ1∪…∪ΦN, where
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Then the solution to the scheduling problem is obtained as
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The states can be propagated from mΦ  to 1+Φm  in the following manner: for each state

mKK ffLTLTM Φ∈),..,,,..,,( 11 , we can create a new state 111 )',..,',',..,','( +Φ∈ mKK ffLTLTM

by assigning a task (such that it can be currently assigned – that is, all its predecessors are in M) to
any of the group of platforms it can be assigned to. The information about the groups of platforms
that can process each task can be either pre-computed off-line, or given as a problem parameter
by the analyst. If task j is assigned to platforms qii ,..,1 , then the new state
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The state space can be reduced by using the following two dominance and bounding tests.

Test 1: Dominance.
A state ),..,,,..,,( 11 KK ffLTLTM  is said to dominate state )',..,',',..,','( 11 KK ffLTLTM  if

jj ff '≤  for each j=1,..,K. Clearly, the state )',..,',',..,','( 11 KK ffLTLTM  can be discarded if

such a state ),..,,,..,,( 11 KK ffLTLTM  exists.

Test 2. Bounding.
Let )},..,,,..,,{( 11 KK ffLTLTMlb  denote a lower bound on the solution of the scheduling

problem given that the assignments from state ),..,,,..,,( 11 KK ffLTLTM  are fixed.  It can also be
considered as the solution to the scheduling problem with tasks }:{ Mjj ∉  and each platform m

becoming available at time mf .  If this lower bound is greater than T (which is an upper bound on

the optimal completion time), then this state can be discarded.

Example (continued).

In Figure 5, the state 911 ),..,,,..,,( Φ∈KK ffLTLTM  and its possible propagation is shown.
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Figure 6. Dynamic Programming Algorithm

Different bounds can be used in Test 2. It was found that LP relaxation solution provides a close
bound to the optimal (although the variables at which it is attained are not binary). In addition,
relaxation techniques such as Lagrangian relaxation (described in [Levchuk et al., 2000]) are
used.  Graphically, the dynamic programming algorithm is illustrated in Figure 6. This version of
dynamic programming is equivalent to a breadth-first search in a branch-and-bound tree. It should
be noted that dense precedence structures as well as tight lower and upper bounds substantially
reduce the search space.



3.1.6 Sub-optimal Algorithms

3.1.6.1 Dynamic List Scheduling Method

The dynamic list scheduling (DLS) heuristic has two main Parts:

Part 1: Choose the task to be processed.
Part 2: Select the group of platforms to be assigned to it for processing.

The following notation (together with notations from section 3.1.1) are used throughout this
section.

READY = set of tasks that can be processed at the current time
FREE = set of platforms available for processing tasks at the current time.
OUT(i) = set of direct successors of task i.
IN(i) = set of direct predecessors of task i.
nIn(i) = number of direct predecessors of task i.
nOut(i) = number of direct successors of task i.
CP(i) = critical path of task i (equal to the minimum required time from task i to the end of the mission).
level(i) = level of task i in the task precedence graph.
WL(i) = weighted length of task i.
B(m,i) = amount of resources from platform m used to process task i.

( ) ( )∑
∈

=
READYi

imBmBR ,

l(m) = last task processed on platform m (0 if it has not processed any)
G(i) = group of platforms selected for processing task i.
FT=[f1,..,fM] – finish times of tasks that are currently being processed (assigned but not yet completed).

          Note that more than one task can have identical completion times.
P(i) = priority coefficient assigned to task i in Part 1 of the algorithm.

The following three procedures were used for Part 1.

Critical Path Algorithm (CP). Critical paths CP(i) are calculated for each task given the task
precedence graph and the task processing times. In the list scheduling algorithm, a task from
READY is selected with the largest CP(i). When ties occur, task with the largest number of direct
successors is chosen (or ties are broken arbitrarily). Priority values are set as )()( iCPiP = .

Level Assignment Algorithm (LA). Levels are defined for each task based on the task precedence
graph in a sequential manner. All predecessors of a task can be located only on lower levels (no
task can have a direct successor in the same or lower level). The LA algorithm assigns tasks level
by level. In the scheduling algorithm, a task from READY is chosen with the smallest level. When
ties occur, task with the largest CP(i) is selected. Priority values are set as

{ } )()(max)( iljliP
j

−= .



Weighted Length Algorithm (WL). As described in [Shirazi et al., 1990], the following coefficient
is used to select the tasks:

( ) ( )
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( )

( )
( )jCP

jCP

jCPiCPiWL

iOUTj

iOUTj

iOUTj
∈

∈

∈

∑
++=

max
max

While scheduling, task with the largest WL(i) is selected. If ties occur, task with the largest CP(i)
is chosen (or ties are broken arbitrarily). Priority values are set as )()( iWLiP = .

In Part 1 of the DLS algorithm, an assignment is considered whenever a task (or a group of tasks)
is completed. At that time all the platforms processing the completed task become free (enter
FREE set). All the tasks for which this task was the last processed predecessor become ready
(enter READY set). Then, if there exists a task in READY set such that the aggregated capability
vector of FREE set is component-wise more than or equal to this task requirement vector, an
assignment can be made. Otherwise, the next completion time is considered.

In Part 2 of the DLS algorithm, we select a group of platforms to allocate to a task selected for
processing in Part 1. The idea is to select platforms such that the amount of resources that are
consumed by the task selected in Part 1 should affect the processing of other tasks in the READY
set as little as possible. In addition, we want to choose the “closest” platforms in that the selected
group of platforms can arrive at this task’s location the fastest so as to minimize the completion
time of the selected task. Each platform is assigned a coefficient and assignments are made in
ascending order of these coefficients. The following coefficients were used (if task i is selected for
processing in Part 1):
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Here, sj is the starting time of task j (with s0=0 and t0=0).  After an initial group of platforms is
found, it is then pruned by eliminating platforms from this group in descending order of these
coefficients. The final group (which is irreducible) is allocated to task i and is denoted as G(i).

When the platforms are assigned, the starting time for selected task i is computed as
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Parts 1 and 2 can be formalized as the following DLS algorithm:

DLS Algorithm.

Initialization. READY={ i : nIn(i)=0 }, FREE={1,..,K}, M=0.

STEP 1. Completion time Update. (skipped during initialization stage).

Pick ( )t
FTf

ff
t∈

= min

FT←FT\{f}
Let FG be the corresponding group of tasks.
FREE←FREE∪ G(FG)
for each i∈FG

for each j∈OUT(i)
nIn(j) ← nIn(j)-1;
if nIn(j)=0
   READY←READY∪ {j}
end if

end for
end for

STEP 2. Assignment Possibility Check.

if ∀ i∈READY il
FREEm

ml Rrs ≤∃ ∑
∈

:

GO TO Step 1.
else GO TO Step 3
end if

STEP 3. Task Selection.
if READY=∅

GO TO Step 1.
end if
Find the set


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READY←READY\{i}

STEP 4. Platform Group Selection.
Find the set
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do until SlRr il
TGm

ml ,..,1, =∀≥∑
∈

( ){ }mVn
FREEm

2
1

maxarg
∈

=

FREE1←FREE1\{m}
TG←TG∪{n}

end do

STEP 5. Platform Group Pruning.
( ){ }mVn

TGm
2minarg

∈
=

TG1=TG
while TG1≠∅

( ){ }mVn
TGm

2
1

minarg
∈

=

TG1←TG1\{n}

if SlRr il
nTGm
ml ,..,1,
}\{

=∀≥∑
∈

TG←TG\{n}
end if

end while

STEP 6. Group Assignment.
G(i)=TG
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ii tsf +=
if f∉FT

FT←FT∪{f}
end if
GO TO Step 3.

Graphically, the process is illustrated in Figure 7.
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Figure 7. Dynamic List Scheduling Algorithm

Example (continued).

Consider the steps of DLS algorithm with the scheduling results shown as a Gantt chart in Fig. 8.
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Note that a particular assignment for tasks 1 and 2 follows from the need to use platform 2 in
processing both of them. The finish time of 30.0752 time units is considered (this is a finish time
of task 7). Platforms 5,10,11, and 12 are  freed and the available platform set becomes
FREE={1,4,5,7,9,10,11,12,13,14,15,17,1,19,20}. The set of processed tasks becomes
{1,3,4,5,6,7,17, 18} and the set of assigned tasks becomes {1,2,3,4,5, 6,7,9,17,18}. Task 7 is the
last processed predecessor of tasks 8 and 11, so READY={8,11}. Both these tasks can be
scheduled at this time by assigning them to platform groups {9,11,13,18} and {7,14} respectively.
Moreover, task 8 is assigned first (because CP(8)=55 and CP(11)=25). The groups are chosen
according to the coefficients V2(⋅) for platforms defined at this step. For task 8, the corresponding
platforms that can be assigned to it and their coefficients are shown in Figure 9.

The new schedule is shown in Figure 10 and the next completion time to be considered is 40 time
units corresponding to the completion time of task 9. By completing task 9, task 13 becomes
available for processing. Note that, although the current mission processing time is 90.1, we are
“working inside” the mission.

The final scheduling results obtained by DLS are shown in Figure 11.
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Figure 9. Platforms that can be used in processing task 8 and their preference coefficients.
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Figure 11. The Output of Scheduling Phase

3.1.6.2 Pair-wise Exchange Improvement

The DLS algorithm of subsection 3.1.5.1 produces sub-optimal solutions. It is expected that the
sequence with which the tasks are assigned according to DLS is near-optimal. Suppose that the
sequence of scheduling obtained from DLS is Nii ,..,1 . Then, the following algorithm is used to

improve the scheduling results.

for n=1:N-1
do

Select j∈{n+1,..,N} such that the scheduling sequence  Njnjnjn iiiiiiii ,...,,,,...,,,,..., 11111 +−+−   is

feasible and the schedule obtained using platform allocation from DLS algorithm is the shortest one.

Then NjnjnjnN iiiiiiiiii ,...,,,,...,,,,...,,..., 111111 +−+−←   (permute tasks in and ij in the scheduling

sequence).
end for

An exchange of tasks in and ij is feasible (n<j) if

a) },...,{)( 11 −⊂ nj iiiIN

b) },...,{)( 1 Njn iiiOUT +⊂



Typically, the pair-wise exchange heuristic produces 10 to 20% improvement in the completion
time. However, in cases when DLS is already optimal or close to optimal, no improvement is
obtained. In example 1, pair-wise exchange does not result in improvement. We can conclude that
the output of DLS algorithm for example 1 is close to optimal.

Analyzing the scheduling results and resource requirement/capability data for example 1 proves
that the schedule in Fig. 11 is optimal. It follows from the fact that tasks 1 and 2 have to be
processed on platform 2. Therefore, the fastest way to process these tasks is such that their finish
times are 30 and 90.14 time units (since platform 2 must travel from one of them to another).
When finish time of task 2 is 90.14, the earliest finish time for task 16 is 135.14 time units (which
is equal to the mission completion time in Fig. 11). When finish time of task 1 is 90.14, then the
earliest finish time for task 15 is equal to the mission completion time of Fig. 11, making it
impossible to create a shorter schedule.

3.2 Resource Allocation to DM Nodes (Clustering)

A cluster is comprised of a number of similar objects grouped together. In phase II of our
organizational design process, the assignment results obtained in phase I are used to allocate
platforms to decision-makers (DMs). A platform-task assignment gives us information about
required coordination among platforms. This coordination among platforms stems from the need
to process the same task; it is carried out through DMs assigned to these platforms as
information/decision carriers. The coordination that occurs is one of information, decision, and
action. Any two DMs are said to coordinate in processing a task if they are “owners” of platforms
that are required simultaneously to process this task. Note that coordination of this sort can be
avoided by assigning all the platforms (from a platform group assigned to process the task) to a
single DM. In this case, many platforms may be assigned to a single DM. It results in increased
coordination between the DM and the platforms processing a task.  This is termed internal
coordination of a DM.  Conversely, the coordination among DMs is termed external
coordination. This external coordination stems from two sources: direct one-to-one coordination
among DMs and indirect coordination due to information flow through the DM hierarchy.  In
Phase II, only the workload due to direct one-to-one coordination among DMs is considered.
Mathematical definitions of internal and external coordination are presented in subsection 3.2.1.
For a review of clustering algorithms, see [Jain and Dubes, 1988].

Given the data from phase I, platforms are clustered into groups to be assigned to DMs. The
objective is to minimize the DM coordination workload associated with DM-platform-task
assignment. The workload is defined as a weighted sum of the internal and direct one-to-one
external coordination, as well as  the task workload.

3.2.1 Problem Formulation

The following definitions are used to quantify the problem.

DM internal workload is defined as the number of platforms assigned to a DM.
DM-to-DM direct external coordination is equal to the number of identical tasks assigned to two DMs.



DM direct external workload is equal to the sum of DM’s direct external one-to-one coordination with
other DMs.

The following parameters are used to formulate the problem.

D = number of available DMs
BI = bound on internal coordination workload allowed
BE = bound on external coordination workload allowed
BT = bound on number of tasks that can be assigned to a DM
WI = weight on the internal workload
WE = weight on the external workload
The platform-task assignment obtained in phase I is a matrix [wim] and is used as a parameter.

The following variables are used:





=





=





=

otherwise    0,

 task  process  toassigned is  DM if    ,1

otherwise  0,

over task  coordinate   and  DMs if  ,1

otherwise  0,

  platform assigned is  DM if  ,1

in
dt

imn
ddt

mn
dp

ni

nmi

nm

CW = maximal weighted coordination workload

A DM n is assigned to a task i if and only if it is assigned to some platform which was assigned to
process this task (this information was obtained in phase I). Therefore, the following constraints
are introduced (called DM assignment constraints):

Kmdpwdt nmimni ,..,1   =∀⋅≥

Inequality in this formulation would become tight for some platform m. That is, we would have
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max  after optimization (which is exactly the definition of variable dtni).

Two DMs n and m coordinate through task i if and only if they are assigned this task. It means
that ( )mininmi dtdtddt ,min= . Therefore, the following constraints are introduced (called DM

external coordination constraints):
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introduced (constraints on the number of tasks assigned to a DM, number of internal and external
coordinations):
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Consequently, the constraints for maximal weighted coordination workload are
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The objective of Phase II is to minimize CW. This results in a binary linear programming problem:
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Note that the variables [dpnm] determine all the parameters (other variables and all the constraints)
in the problem. This kind of problem structure makes it easier to apply optimal algorithms. Again,
as in section 3.1.2, optimal algorithms such as dynamic programming and decomposition
algorithms can be used to find the optimal solution.



3.2.2 Sub-optimal Algorithm: Hierarchical Clustering

Assume that two DMs (n and m) are assigned the platform sets },...,{ 1 Unn  and },...,{ 1 Vmm

respectively with the corresponding internal workloads U and V. We define the  assignment
signature vector for each such DM (group of platforms):

[ ]nNnnn IIqQ ,...,, 1=

where qn = number of platforms in the group (assigned to DM), Ini = 1 if DM n is assigned task i.

Here, variables Ini are determined as in
DMn

ni wI   max
∈

= . Then, U=qn, V=qm and external

communication between DMs n and m is ( )∑
=
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i
mini II

1

,max .

Suppose that two platform groups },...,{ 11 UnnC =  and },...,{ 12 VmmC =  are to be combined into

a new cluster at the next step of the algorithm. This would produce a decrease in external
coordination for other DMs (because the coordination with one of them is eliminated). The
decrease would be the most if vectors [ ]nNn II ,...,1  and [ ]mNm II ,...,1  were the same and equal to

[1,…,1].

Clearly, we would want to combine the groups which are “close” under these conditions (carry
close assignment signatures). Note that if these vectors have all distinct entries, then other DMs’
external workloads would not decrease after these two groups are joined together. The
“closeness” is defined as the number of 1’s in the same places in the signature vectors [ ]nNn II ,...,1

and [ ]mNm II ,...,1 . Also, when two groups are combined, the number of platforms (that is, internal

workload) in the new group is the sum of the two old group sizes. We want to obtain a tradeoff
between maximizing the “closeness” between the groups and minimizing the new group size. It is
done by minimizing a weighted function using weights for internal and external coordination. The
distance between two clusters },...,{ 1 Unn  and },...,{ 1 Vmm  is then defined as
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The method of combining clusters in this way is called hierarchal clustering. The algorithm is as
follows.

Step 1. Begin by assigning each platform to a distinct cluster. Define assignment signature vector for each cluster
m=1,..,K as [ ]Nmmm wwQ ,...,,1 1=  (where wim are platform-task assignment variables obtained in phase I).

Define the distance between any two clusters as in (∗).



Step 2. Choose two clusters with minimum distance between them and combine them into a single cluster. Update
the signature vectors and the distance matrix. If two clusters with signature vectors [ ]nNnnn IIqQ ,...,, 1=  and

[ ]mNmmm IIqQ ,...,, 1=  are to be joined together, the new cluster with the following signature is obtained:

( ) ( )[ ]mNnNmnmn IIIIqqQ ,max,...,,max, 11+= .

Step 3. If the number of clusters is equal to D (numbers of available DMs), the algorithm terminates.

Example (continued).

Given the results obtained in the scheduling phase, platforms are hierarchally clustered into D=5
clusters to be assigned to 5 available DMs. For internal and external coordination workload
weights WI=1 and WE=2, the resulting coordination network is shown in figure 12. For workload
weights WI=3 and WE=2, the resulting coordination network is a tree shown in Figure 13. DM-
platform assignment and cluster signature vectors for these two examples are shown in Figure 14.
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Figure 14. Platform clusters and their signature vectors

3.3 Organizational Hierarchy

In phase II, allocation of DMs to resources (platforms) is obtained. An external DM-DM
coordination is determined based on joint task processing. DMs with their inter-DM coordination
represent a network, where nodes are the DMs and edges denote coordination induced by joint
task processing. Edge weights are equal to the required amount of coordination.

Hierarchical organizations eliminate decision-making confusion by imposing superior-subordinate
(supported-supporting) relations. This means that organizations represent a layered structure
where DMs from the lower level have exactly one link to the preceding level. The hierarchy
consists of links through which it is permitted to communicate inside the hierarchy. These links
form a tree in the network of DM nodes. The goal is to match the organizational hierarchy to the
coordination network that is necessary for completing the mission. Different definitions of
matching create different formulations of the hierarchy construction problem. When the necessary
communication link between two DMs is not in the hierarchy, the information required for their
coordination is passed through nodes on the path between them in the hierarchy. Such a path is
unique for tree-structured systems. The communication value between these DMs is then added to
each DM on the path between them as an additional workload. It is called indirect coordination.
The external coordination workload is then the sum of direct (one-to-one) and indirect (through
an intermediary) coordination. Evidently, this workload should be minimized in some sense.  Here
we present two problem formulations based on two main definitions of minimization:
minimization of the maximal DM external coordination workload and minimization of the overall
indirect (additional) coordination induced by the hierarchy.

3.3.1 Min-Max Problem Formulation



When the objective is to minimize the maximal external coordination workload, we impose
additional constraints on the information flow. We restrict the indirect communication to go
through only one intermediate DM. Information can be distorted while in transit, and additional
intermediate nodes on the information path would increase the decision delay. Hence it is justified
to consider restrictions, such as a single intermediate DM, to make organizations more
responsive.

In the problem formulation, we introduce the dummy node 0 that would serve as a single-link root
node.  After the optimization is done, it is deleted from the tree while maintaining the tree
structure.

The following variables are used to formulate the problem:


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otherwise  0,
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zijk

WMAX = maximal DM hierarchy workload

The fact that we would use “direct” links accounts for the need to structure the hierarchy level by
level. Then, direct links exist only from the higher level to the next lower level. In fact, the level
structure of the hierarchy would be changed afterwards to place the DM with the smallest
workload at the root of the tree.

The following parameters are used (with the outputs of phase II):

cmn = required coordination between DMs n and m given by ∑
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=
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The number of edges in the tree is equal to the numbers of nodes minus 1. Because of the fact that
we have a dummy root-node, the number of nodes in our graph is D+1. The deletion of the
dummy node should not disconnect the network. Since the structure on the nodes 1,..,D should
also be a tree, the following additional constraint is introduced:

1
1,

−=∑
=
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D
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ij



As mentioned earlier, a node at any level (except for the root) has a single connection to a node in
the previous level. This means that there is only one link into each non-root node (for each i there
exists only one j such that xji=1). Root node does not  have any in-links. Therefore, the following
constraints on the number of “in-edges” are introduced:

Dixx
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j
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00
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==

If node i is at level l and there is a directed edge from i to j (that is, xij=1), then node j is at level
l+1. Therefore, the following constraints are imposed:

( )( ) DjiDxll ijij ,..,0,   ,111 =+−++≥  (note that l0 = 0)

Clearly, when xij=1, 1+≥ ij ll . Otherwise, Dll ij −≥ , which is always true (number of levels

cannot be more than the number of edges, hence the right-hand side is <0). These constraints are
also “non-cycling” implying that they impose a tree-structure on the organization.

If DMs i and j must coordinate, they either are connected directly, or through some other DM k.
This connection is unique. Therefore, we obtain the following constraints:

Djiddzx ij
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k
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Whenever zijk=1, then there are links between i and k and between j and k (in some direction). We
have an edge between nodes i and k if and only if 1=+ kiik xx . Since level-constraints prohibit

having more than two edges (in different directions) between any two nodes, we have the
following relation between variables xij and zijk:

Dkjizxxxx ijkkjjkkiik ,..,1,,   ,2 =≥+++

The total external workload is found adding indirect external workload to the direct external
coordination workload of phase II. Therefore,
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The objective is to minimize WMAX.  Combining all constraints, our problem is a linear binary
programming problem of the following form:
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When the solution to this problem is found, the “dummy” root node is discarded. Then the node

with the smallest workload is found (workload of DM n being calculated as ∑
<

++
ji

ijijnnn czei )

and selected to be at the root of the organizational hierarchy. Other choices lead to different
organizational structures. The levels are then updated accordingly.

3.3.2 Optimal Coordination Tree

In this section, we present the optimal algorithm due to [Hu 82]. The objective is one of
minimizing the additional coordination (indirect) introduced by the hierarchy. When two DMs i
and j coordinate (their coordination equal to cij) and an edge (a communication link) between i
and j exists in the hierarchy tree, coordination is direct and is added to each of the coordinating
DMs. The overall coordination in this case would be 2⋅cij. When there is no direct link,
coordination (indirect) is also added to all the DMs on the path between them (there will be #
edges-1 nodes on this path). Therefore, overall coordination is

cij⋅(# of edges between i and j in the hierarchy tree +1)

Hence, the overall external coordination for any hierarchy tree T is

( ) ( )∑ ∑
= +=

+⋅=
D

i

D

ij
ij TjicTCOM

1 1

1   treein the  and between  edges of #

A tree T that minimizes the function COM(T) is called Gomory-Hu tree (also called optimal
coordination tree). The following algorithm computes the Gomory-Hu tree (from [Hu 82]).

The following definitions are used:



original network – a graph of nodes (DMs) with edge weights cij (coordination between DMs i and j).
residual network – a network derived from the original network and current tree T and processed under the
algorithmic steps; used in changing tree T.
clique – a set of one or more nodes of the original network; a node of the tree T.
condensing: a set of nodes is said to be condensed if it is combined into a single node called aggregated
node. A weight of the edge between this new aggregated node and any other node n in the network is
equal to the sum of edge weights in the original network between n and all nodes in this aggregated node;
when two cliques are condensed, it is equivalent to condensing the set of original network nodes which
constitute these cliques. That is, if two cliques G1={i1,…,ik} and G2={j1,…,jm} are to be condensed, the
new node is G={i1,…,ik,j1,…,jm} and for any node n from the original network, the edge in the residual
network is
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The new node is also a clique. The edge in the residual network between two cliques G1 and G2 is
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expanding: a clique is expanded when all the nodes of the original network it consists of enter the
residual graph as independent nodes.
minimum cut: in the network, minimum cut between two nodes n and m is defined as two sets ( )XX ,

such that XmXn ∈∈ ,  and the amount of flow between these sets, that is ∑
∈∈ XjXi

ijc
,

, is minimal.

The algorithm for finding the optimal coordination tree is as follows.

Initialization. Start with |T|=1, a tree T containing a single clique which consists of all nodes of the original
network from Phase II.

Step 1. Select a clique G in T which consists of more than one node of the original network. Disconnect this
clique in T (remove all edges incident to this clique in T). It breaks T into several connected components.

Step 2. Create a residual network by condensing each connected component into one clique (node) and expanding
selected clique.

Step 3. Pick any two nodes i and j (original nodes) from the selected clique and find minimum cut ( )XX ,  in the

residual network, XjXi ∈∈ , .

Note: X  (and X ) consist of condensed cliques of T and of nodes of the original network (from clique G).

Step 4. Create two new cliques G1, G2 in the tree T replacing selected clique with them:
{ } { }XjGjGXiGiG ∈∈=∈∈= 21 , .

Note that 
21 GGG ∪= . The following edges are created in T between these new cliques and other (old)

cliques of T:
For each clique N∈T connected to G in T:

a) if N∈X, then an edge between N and G1 is created;
b) if N∈ X , then an edge between N and G2 is created;

The edges are updated as described.

Step 5. If all cliques of T contain only single nodes of the original network, STOP.



Graphically, the algorithm is represented in Figure 15.

Select a Clique consisting of
multiple nodes in T
Remove it from T

Create Residual Network
by cliques expansion-compression

Find Min Cut in Residual Network

Update T

OK

NO
Root Selection

End

Figure 15. Optimal Coordination Tree Algorithm.

The complexity of the algorithm is polynomial in the number of nodes of the original network
(number of DMs). In step 3, a min-cut algorithm (min cut=max flow) is used. Algorithms for min-
cut problems include Ford-Fulkerson Algorithm (which can be exponential in the worst case but
performs good in practice), DMKM, and other more sophisticated algorithms with polynomial
complexity (see [Bertsekas, 1998]). When the tree is found, the node with the smallest overall
workload is placed at the root of this tree.

Example (continued).

The network constructed from the coordination data obtained using workload parameters WI=1,
WE=2 is given in Figure 16.

The step-by-step hierarchy structuring process is shown in the Figure 17. In the final step, the
node with minimal workload is chosen to be at the root of the tree. The resulting organizational
structure is shown in Figure 18. (Other choices will result in different organizational structures.)

Choosing the node with smallest weighted workload to be placed at the root of the tree is only
one of the ways to structure the organization. Note that workload parameters WI=3, WE=2
produce tree-structured coordination network. Choosing the node with smallest workload to be a
root results in a hierarchy depicted in Figure 18. On the other hand, choosing DM 3 would result
in a hierarchy which can be viewed as more “responsive” because the commander (the root node)
has closer access to other DMs. Selecting DM 2 to be a root results in an even better hierarchy
with commander having direct access to all but one DM (Figure 21).
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Figure 16. DM-coordination network, WI=1, WE=2
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Figure 18. Organizational hierarchy for minimizing additional communication
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Figure 19. Organizational hierarchy for  WI=3, WE=2 with “min-root”.
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Figure 20. Organizational hierarchy for  WI=3, WE=2 (with DM 3 as the root node).
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Figure 21. Organizational hierarchy for  WI=3, WE=2 (with DM 2 as the root node).

3.3.3 Maximal Spanning Tree Algorithm

An alternative is to use maximal spanning tree algorithm to construct the organizational hierarchy
tree. We obtain the tree T that maximizes 

( ) ( )
∑
∈ TEji

ijc
,

, where E(T) denotes the set of edges of the

tree T. This can be done by applying the minimum spanning tree algorithm. Note that the
maximum spanning tree problem with edge weights cij transforms into a minimum spanning tree
problem with edge weights aij=cmax-cij, where cmax=max{cij}. Methods for finding the minimal
spanning tree include Kruskal, Jarnik-Prim-Dijkstra, and Bor’uvka (see [Bertsekas,98], [Hu,82]).

The algorithm is as follows:

Step 1. Select an edge with maximum coordination such that doesn’t create cycles in the network.

Step 2. If ties occur, select the coordination link connected to the DM with minimal workload.

Step 3. When number of edges in the tree is equal to D (# of DM nodes), STOP.

The idea behind the algorithm is that we try to include the largest coordination links and to make
DMs with largest workload to be at the lowest level of the hierarchy tree.

Example 1 (continued).

Constraining the depth of command to be at most 2, for the workload weights WI=1, WE=2, we
obtain the tree shown in Figure 22.

4.  Summary and Future Research

In this paper, we have presented the formulations and algorithms for three distinct phases of our
organizational design process. Strict mathematical problem formulations provide the foundation
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Figure 22. Organizational hierarchy for WI=3, WE=2 using maximal spanning tree.

for exploring ways to solve these problems with a required degree of optimality and choosing the
specific algorithmic approaches according to available computational resources. Discussed
problems are NP-hard, but their formulations allow one to introduce near-optimal polynomial
algorithms.

Linear mixed-binary programming formulations allow one to construct approximation algorithms
such as Lagrangian relaxation technique (creating a new problem by relaxing the constraints
which are difficult to handle; for example, the resources constraints and precedence constraints in
the scheduling problem formulation) and decomposition algorithms (decoupling the problem and
solving simplified sub-problems, thereby reducing the size and computational complexity).
Formulations of different Lagrangian relaxations and decompositions for scheduling, clustering
and structural optimization phases of organizational design can be found in [Levchuk et al.,
2000]. These methods, together with mechanisms for adaptation, form the basis for our
continuing research in this area.

Our current efforts are focuses on conducting a comparative analysis of various optimization
algorithms in solving specific design problems and defining criteria for classifying multi-objective
optimization problems into groups that require particular optimization sequence. This would
allow us to reduce solution complexity for large-scale organizational design problems.
Quantifying a set of user-defined performance measures provides the criteria for evaluating an
organizational design. The above measures are aggregated to define an objective function for the
design procedure. They also define measures of organizational robustness (i.e., the ability of an
organization to maintain the required level of performance despite variations in its task
environment) and of adaptability (i.e., the ability of an organization to adapt to environmental
changes and functional failures). Developing fast algorithms for real-time analysis of feasible
adaptation options, suggesting suitable forms of adaptation and appropriate transition sequence
for reconfiguration would provide a computational framework for on-line adaptation in C2
systems.
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