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Abstract

Intelligence data is a key component to command and control (C2) decisions.  Often
intelligence analysts have to provide commanders with timely data in order for them to
execute their missions.  The Advanced Infrared Countermeasures Assessment Model
(AIRSAM) is a tool used by analysts at the National Air Intelligence Center (NAIC) to
predict the most likely infrared countermeasure (IRCM) response from aircraft when
engaged by a threat using electro-optic (EO) and infrared (IR) weaponry.  The Air Force
Research Laboratory (AFRL) develops this tool for NAIC.  The goal of this tool is to
allow the analyst to perform multiple engagement scenarios involving different
geometries and IRCM responses in a relatively short period of time (e.g. one day).

1. Introduction

The Advanced Infrared countermeasure (IRCM) Assessment Model (AIRSAM) is a
software tool used by National Air Intelligence Center (NAIC) analysts to determine the
most likely IRCM response by an aircraft when engaged by a threat using electro-optic
(EO) IR technology.  The Air Force Research Laboratory has been developing this tool
since 1992.  The goal of AIRSAM is to provide analysts with a flexible user-configurable
tool for rapidly simulating air-to-air and ground-to-air engagements.  The data generated
and presented by AIRSAM is not the end product for the analyst but rather a supplement
to the other intelligence data he or she has.  The intelligence reports generated by the
analysts directly influence the command and control (C2) decisions made by
commanders when planning missions.  NAIC uses this tool in its assessment of IRCM
responses from foreign aircraft.  Their reports help commanders develop plans of attack
with IR guided missiles that maximize the vulnerability of the target aircraft.

There are two key features of AIRSAM that make it attractive as an IRCM assessment
tool.  The first is its run time.  AIRSAM does not model the circuitry of EO-IR systems in



detail.  AIRSAM represents the internal circuitry of EO-IR systems with analytic
functions that simulate the circuit operation at the time steps required for the
aerodynamic models.  This greatly reduces run time and allows the analyst to generate
data rapidly.  This does not impose a limitation on the analyst because he or she is not
interested in the effectiveness of the threat but rather the IRCM response of the target.  In
most cases, the analyst is interested in generating data over a broad range of engagement
scenarios from which he or she will determine the most likely IRCM response by the
target.  Minimal run time is highly desirable for this usage due to the large number of
runs.  When performing a large number of runs over a broad range of scenarios, the
geometry of the engagement and the aerodynamic limitations of the aircraft are the
primary factors in determining the outcome.

The second key feature is flexibility.  A tool with static models of specific systems does
not allow the analyst to use it when assessing new or conceptual IRCM techniques.
AIRSAM contains several models for foreign pyrotechnic flares, foreign aircraft, and
United States (US) IR guided missiles.  In addition to these static models, AIRSAM
contains generic, user configurable IR missile seekers that allow the user to set IRCM
discrimination techniques and IR counter-countermeasure response.  It contains a
separate tool for designing flares for use in AIRSAM.  The flare types include traditional
pyrotechnic flares, tethered flares, spatially extended flares, aerodynamically shaped
flares, and thrusted flares.  AIRSAM includes a generic, user configurable missile
warning receiver (MWR) that detects an incoming threat, initiates IRCMs, and invokes
the target aircraft to maneuver.  The MWR model allows the user to configure the missile
discrimination techniques, detector parameters, and scan parameters.  Such flexibility
helps the analyst assess the credibility of purported capabilities when more thorough
intelligence data is unavailable.

2. History

AIRSAM is a continuing technology development that has evolved through a series of
developments over the past seven years.  It grew from the Threat Engagement Analysis
Model (TEAM) developed by the Air Force Information Warfare Center (AFIWC), Kelly
AFB, TX.  The TEAM model integrated parts or all of each program listed below.

• HOME: A missile seeker model developed and maintained by AFIWC.
• TRAP (Trajectory Analysis Program ): An aircraft and missile aerodynamic model

developed, managed, and maintained by NAIC.
• DISAMS (Digital Infrared Surface-to-Air Missile Simulation): An IR missile

engagement model developed and maintained by Georgia Tech Research Institute
(GTRI).  TEAM extracted DISAMS flare model.

• IVIEW: A three-dimensional visualization model developed jointly by NAIC and
AFRL.

• LOWTRAN: A low resolution atmospheric transmission model developed,
maintained, and distributed by the Air Force Geophysics Laboratory.



In 1993, NAIC and AFRL (Rome, NY), acquired TEAM and began a series of
developments.  These developments proceeded incrementally based upon funding
availability.  This funding was obtained through AFRL managed programs to develop
tools for NAIC.  Each development has expanded the capabilities of AIRSAM to its
present form and what it will be by 2001.

The initial development by AFRL, NAIC, and Sverdrup added foreign flares, foreign
aircraft, a user-configurable flare ejection systems that simulates actual hardware, generic
missile seekers, and perfect MWR systems.  In addition, this effort upgraded the
atmospheric model from LOWTRAN to MODTRAN.

The next step added the AIM-9M missile and validated the Stinger missile model. A
toolkit was designed and inserted to add aircraft data into AIRSAM.  This effort ported
the software from a Silicon Graphics/IRIX environment into a Sun/Solaris environment.

The next section described the third development effort and section 4 it describes the
ongoing development.  Many of the changes and additions to original TEAM model are
new software code unique to AIRSAM.  Every release of AIRSAM was regression tested
against it predecessor.

3. Recent Developments

Recent work has focussed on providing the analyst with simulation capabilities that offer
insight into developmental IRCM technologies.  The recently concluded work provides
the analyst with an external tool for designing flares for use in AIRSAM, additional flare
models in AIRSAM, a user-configurable MWR, and a missile detect initiated aircraft
maneuver.

3.1 Flare Models and Design Tool

The flare design tool is extremely flexible.  It allows the user to enter aerodynamic
properties of the flare and predict trajectories or enter trajectories and estimate
aerodynamic properties.  The flare model in AIRSAM uses time histories for the mass,
drag force, drag reference area, lift force, lift reference area, and thrust force to predict
the flare trajectory.  The flare design tool implements the same model for compatibility.
There are two limitations to this model.  First, the thrust is not vectored so the trajectory
of the flare, in its own reference coordinates, is two dimensional (from the thrust
direction and gravity).  Second, there is no altitude dependence given to these parameters
except for thrust.  The thrust force works in conjunction with a fixed nozzle aperture and
the ambient atmospheric pressure to give altitude dependence.

When the flare design tool is given a trajectory to predict aerodynamic properties, it can
only determine two parameters.  The tool hardwires the drag and lift forces as variables.
All other parameters are set to constants.  The thrust is zero if the drag force is always
negative otherwise it is set to the largest positive value of the drag force.  If the user



enters time histories for mass, drag reference area, lift reference area, and/or thrust force
prior to entering a trajectory, the tool will use those histories in its prediction of the drag
and lift forces and not set those parameters to constant values.  The user can break the
time space into multiple regions of differing resolutions and enter data for each region
using either method.  It is up to the user to ensure that the data is smooth regions.

The user can define the spectral response using three different methods.  The first method
is time histories for graybody parameters.  Three parameters define the graybody:
Temperature, emissivity, and emitting area.  For some of the modern flare materials, a
graybody spectrum isn’t sufficient.  The flare design tool provides two methods for direct
entry of the spectrum.  The first has the user enter two separate curves.  One is the
absolute intensity versus the wavelength and the other is the relative intensity versus
time.  For this spectral model, the wavelength distribution never changes with time.  The
other method of entry enables the user to enter a time-resolved spectrum.  With this
method, the user enters an absolute spectrum at various time steps.  A cubic spline
interpolation algorithm determines the intensity in between the time steps.  The user can
break up the spectral space into regions of varying resolution and enter data into each
region using any of
the three methods.  The time space regions must match that used for the aerodynamic
data.  It is up to the user to ensure that the data is smooth across regions.

AIRSAM uses a simple model for altitude dependence of the radiated intensity.  A single
curve defines the intensity gain as a function of altitude relative to the sea level intensity.
The design tool has the user enter this data separately from the spectral data.  AIRSAM
also has a gain factor for the off axis intensity for point flares.  The point flare model
assumes the plume is ellipsoidal in shape.  This gain maximizes at 90 degrees where the
major axis of the ellipsoid is perpendicular to the line of sight.  This is where the emitting
area is largest.  The design tool has the user enter this data separately from the spectral
data.

Once the user has entered in spectral and aerodynamic data, the design tool allows user to
write and install AIRSAM flare data.  The tool saves two sets of data.  One is an internal
set that maintains the original data and the other is the data file for the AIRSAM flare
model.  The internal data can be saved whether the flare definition is complete or not.
The AIRSAM flare model data must be complete to write this set.  Once the user has
saved AIRSAM flare model data, that flare is available for immediate use in AIRSAM.

3.2 User-configurable MWR

AIRSAM inherited several MWR models from the Air Force Information Warfare
Center’s (AFIWC’s) Threat Engagement Analysis Model (TEAM).  Since TEAM doesn’t
model missile signatures, its MWR models estimate probability of detection based upon
the engagement geometry and empirical estimates of the MWR performance.  Some
models estimate the received IR signature based on the missile thrust.  NAIC wanted a
model that could scan a user-defined sector of the surrounding airspace and detect a



missile based upon the received IR signature and user-selectable discrimination
algorithms.

The missile signature model in AIRSAM uses measured plume spectral data, a simple
approximation for angular pattern of the plume, and a simple equilibrium based
thermodynamic model for aerodynamic heating of the missile dome.  This was the best
model we could develop under the constraints of time, budget, and data availability.  We
did not have time history data for the plume signature so we scaled the plume signature to
the thrust.  We implemented this model in AIRSAM, ran the AIRSAM, and recorded the
incident signature on the target versus time and range.  Since we had no verification data,
NAIC reviewed these plots to verify they were subjectively representative of a signal
received by an MWR.

The user-configurable MWR consists of up to four sensors, a detection system, and a
hand-off system.  There are two types of sensors available: scanning array or staring
matrix.  The user can not mix sensor types in a system.  For scanning sensors, the
detector is a linear array of detectors.  It is mechanically raster scanned.  The elevation
field of view (FOV) is the product of the element FOV, the number of elements, and the
number of vertical scans.   The user sets all three of these parameters.  The azimuth FOV
is a single value set by the user.  The staring detector consists of a square matrix of
elements.  It monitors a fixed region of airspace surrounding the aircraft.  Its azimuth and
elevation FOV comes from the number of azimuth and elevation elements and the
element azimuth and elevation FOV.  As with the scanning array, the user defines these
parameters.  The user also sets parameters for the noise equivalent irradiance (NEI) of the
elements, the wavelength passbands (one or two passbands are allowed), and the frame
rate for each sensor type.

The detection system consists of five techniques for discriminating incoming missiles:
intensity threshold, size of the source, the ratio of intensity in two wavelength passbands,
a secondary scan, and the temporal history of the source.  The user can use any
combination of these techniques. The intensity threshold is a simple test that triggers
detects a missile when the received intensity rises above a fixed threshold.  The size
discriminator compares adjacent pixels to see if the signal is from a large source such as a
cloud.  The ratio of intensity in two wavelength passbands is often referred to as a two-
color test.  The missile signature is largely a result of molecular vibrations in the engine
plume.  This technique compares the received intensity between two passbands where the
molecular radiation is most intense and checks that this ratio is within bounds typical for
an engine plume.  The user sets the lower and upper limits for this ratio.  The secondary
scan applies only to scanning sensors.  With this technique, the scanned angle is
decreased and the frame rate increased around a suspected missile.  This allows give the
MWR finer resolution and faster response time to detect the missile.  The final technique
monitors the growth of intensity over time.  This technique applies only to staring sensors
where the frame rates are sufficiently fast enough to gain an accurate profile.  This
technique tries to match the detected intensity to the known behavior of a pursuing
missile.



Hand off consists of either initiating a flare dispense sequence, initiating an evasive
maneuver by the target, or both.  Each sensor can start a unique flare dispense sequence.
The sequence depends upon the countermeasure system of the target.  It can dispense
various types of flares at defined time intervals.  The user defines these parameters.  If the
user chooses have the target initiate a maneuver, the current maneuver stops and the new
maneuver begins.  The user can specify a delay time between missile detection and
initiation of the maneuver.

4. Current Developments

Of current interest is the response by a target aircraft when it illuminates an approaching
threat with a high-energy airborne laser.  We call this a laser countermeasure (LCM)
system.  This effort requires the development of models for various electro-optic sensors,
an airborne laser transmitter, laser atmospheric transmission, a target acquisition system,
and a target tracking system.  The goal of this model is to provide the analyst with the
ability to take present and future data from independent sources for LCMs and sensors,
enter them into AIRSAM, and simulate an engagement.  The results of that simulation
will provide analysts with information about how effective particular laser
countermeasure (CM) system is against the sensor.

4.1 Sensor Models

We are currently developing several models for electro-optic (EO) sensor vulnerability
for AIRSAM.  The sensors include the eye of the human pilot, the IR search and track
sensor on the threat aircraft, a forward-looking IR receiver on the threat aircraft, and the
IR sensor of an IR guided missile.  These models assume that their corresponding
systems operate ideally up to a point that the incident laser energy induces temporary or
permanent damage.  It provides the analyst with the following information: The amount
of energy reaching the sensor, the possible effects this level of energy has on system
performance, and the likelihood of damage to the sensor.

The basic model is generic and draws from a database to establish optical parameters and
damage thresholds.  We are currently researching data for laser damage to sensors.  We
will populate the database with this information.  We will also provide the user with
graphical interface so that he or she can enter their own data and continue to grow the
database.

4.2 Laser Transmitter and Atmospheric Propagation

The user will be able to configure parameters for the laser transmitter.  These include the
laser medium, cavity, beam divergence, beam diameter, pulse characteristics, and output
power.  The user can enter line wavelength, refractive index, and linewidth for the laser
medium.  The cavity parameters include length and bandwidth.  The laser medium and
cavity properties determine the precise spectral output of the laser transmitter.



The resolution of the laser spectrum requires that AIRSAM use a new atmospheric
propagation model.  Currently, AIRSAM uses MODTRAN for atmospheric propagation.
MODTRAN has a 2 cm-1 spectral resolution.  This resolution is too coarse for laser
radiation.  AIRSAM will use FASCODE with the HITRAN database to calculate
atmospheric propagation combined with a gaussian beam model.  The propagation model
will include spreading and bending of the gaussian beam but will not incorporate speckle
due to atmospheric aberrations.

4.3 Target Acquisition and Tracking

The fidelity of AIRSAM does not permit detailed models for target acquisition and
tracking systems.  These systems are also of little concern to the analyst unless they don’t
function correctly and render the LCM system ineffective.  We will add two acquisition
models to AIRSAM.  The first is an ideal model based on the perfect MWR systems.
This model would acquire the threat based on whether it was within the FOV of the
acquisition sensor and either its range from the target or the estimated time to intercept.
This simulates an aircrew driven acquisition.  The other acquisition system is the generic
MWR model.  When the target employs a LCM system, the generic MWR will hand the
target off to the target tracking system instead of initiating a flare dispense sequence.

Both of the target acquisition models hand off the threat to the target-tracking model.
AIRSAM will incorporate two target-tracking models.  The first is a passive detector that
functions similarly to the missile seeker.  The tracking sensor will attempt to keep the
laser pointed on the threat.  As the threat moves off axis of the sensor, the laser and
sensor direction will adjust to keep it on axis.  The second system will use the retro-
reflections from a laser to establish the pointing direction.  This system is particularly
useful with pulsed LCM systems against scanned detectors.  The retro-reflected signal
triggers the LCM system for pulsing.

5. Future Development

There are many opportunities to enhance AIRSAM.  Foremost would be the addition of
toolkits to build the aerodynamic data that represent different aircraft and missiles.  The
generic missile seekers could be enhanced to raise their fidelity and provide the user a set
of control blocks that he/she could construct tracking systems from.  Improved seeker
fidelity would allow the simulation of pulsed jamming.  The LCM systems could be
enhanced to simulate pulsed jamming systems.

6. Conclusion

AIRSAM is an effective and evolving tool for determining the IRCM response from
target aircraft.  With this model’s focus on rapid generation of intelligence data, it can
assist analysts in processing intelligence data and ultimately provide commanders with
reports that give them an advantage when planning missions.


