
The Join of a Geographical Situation Display System and
a Platform Independent C2 Information System

Gerhard Bühler & Heinz Faßbender
Research Establishment for Applied Sciences

Research Institute for Communication, Information Processing, and Ergonomics
Neuenahrer Straße 20

D-53343 Wachtberg-Werthhoven
Germany

Telephone numbers: (+49) 228/9435 376 & (+49) 228/9435 640
E-mail addresses: buehler@fgan.de & fassbender@fgan.de

Abstract

We describe concepts and experiences we have made in an ongoing project of our institute by
joining a geographical situation display system and a platform independent experimental C2
information system. In implementing the joined system, the middleware standard CORBA and
the internet programming language Java are applied such that also the joined system can be used
totally platform independent and with minimal requirements to the system resources.

1. Introduction

By an ongoing project of our institute we join a geographical situation display system called
GSD and the platform independent experimental C2 information system INFIS [Bühler &
Faßbender, 1999] in such a way that the join fulfils the following two requirements:

1. The access to the integrated system is totally platform independent

2. with minimal requirements to the system resources.

The two requirements are realized by using

• internet technologies as web browsers and Java applets [Java] and

• middleware technologies as CORBA [CORBA]

Obviously, a system which fulfils these requirements, has maximal flexibility and the expense
for applying and maintaining such a system is minimal.

In the following we want to describe the ideas we have produced and the experiences we have
made in the described project and furthermore, we develop a general strategy for extending the
platform independent C2 information system by additional functionality in such a way that the
resulting system can also be used totally platform independently where only a very small amount
of system resources is required.

For this purpose, we have structured the paper as follows: We start with an overview over the
existing versions of the experimental C2 information system and the geographical situation
display system. Than we design an architecture which enables the integration of the two systems
into a unique system in such a way that it fulfils the two requirements above. Furthermore, we
describe our experiences in implementing this architecture. Finally, we conclude and mention
some further research topics.

2. The Experimental C2 Information System INFIS and GSD

In this section we present a short overview over the two systems which will be joined, where we
only describe the components of the systems which are important for the joining process. We
start with the description of the architecture of INFIS.

2.1 INFIS

The experimental system INFIS is a distributed C2 information system. Its purpose is to support
the work of head quarters of an army. Furthermore, INFIS serves as platform for flexible
command and control information systems. It shall be incrementally extended by additional
functionality. The join with GSD is one example for extending the functionality of INFIS and it
shall illustrate how INFIS can be simply extended by using standard communcation mechanisms.

INFIS results from reengeneering the former experimental system EIGER which is described in
[Bühler, 1998]. 90% of EIGER have been coded in Ada83. The other 10% have been coded in C
and handle the communication of the system’s components. In [Bühler & Faßbender, 1999] we
have developed the new implementation of EIGER which is called INFIS by applying Ada95
[Barnes, 1995], CORBA, and Java such that the system fulfils the requirements above. The
architecture of the resulting system is demonstrated in Figure 1.

INFIS-
GUI

INFIS-
GUI

Browser Browser

INFIS-
Controller

...Graphical User Interfaces

Application Logic

Data Model Data

Figure 1: Architecture of INFIS

It is designed as 3-tier architecture corresponding to the model view controller design-pattern
[Gamma et al., 1994], i.e. INFIS architecture consists of:

1. a data base system in the base level which is organized corresponding to the underlying
ATCCIS [Wagner and Markmann, 1996] data model. By this fact, it is interoperable to other
command and control information systems which are also organized by the ATCCIS data
model.

2. a controller in the middle level which controls computations and communications of the
other system components and to other command and control information systems.
Furthermore, the controller implements the complete application logic of the system.

3. and at least one graphical user interface GUI in the upper level. The GUIs are implemented
as thin clients which supports a simple and cost-efficient maintenance of the clients and
thereby of the complete system.

The two requirements mentioned above are fulfilled by implementing the architecture of INFIS
by the following two concepts:

1. The graphical user interface is implemented as Java Applet. Due to that, the complete system
can be applied on every arbitrary system which includes a web browser.

2. The communication between the controller and the graphical user interfaces is handled by a
CORBA connection. This also amplifies the platform independence of the system.

2.2 GSD

Today the chosen GSD (xIRIS, established by Research Institute for Communication,
Information Processing, and Ergonomics) is completely implemented in C++ on Windows
systems. Its architecture is illustrated in Figure 2. In its original version, also GSD is a 3-tier
architecture. But, since we need only the two uppermost levels, we only illustrate these levels in
Figure 2. It consists of graphical user interfaces which are controlled by the GSD-Server.

Due to the fact, that the complete system is implemented in C++ on Windows systems, it can
only be applied on Windows systems. For fulfilling the two requirements mentioned above, the

GSD-
GUI

GSD-
GUI

...Graphical User Interfaces

Application Logic GSD-

Server

Figure 2: Architecture of GSD

system has to be reimplemented corresponding to the implementation of the architecture of
INFIS by the following two concepts:

1. The GSD-GUIs are reimplemented as Java Applet. Then they can also be executed in every
Browser.

2. The communication between the GSD-Server and the GSD-GUIs is handled by a CORBA
connection.

In the following chapter, we describe how GSD will be joined with INFIS.

3. The Join of INFIS and GSD

The architecture of the join of the two described implementations of INFIS an GSD is illustrated
in Figure 3.

Since the system is only an experimental system, the GUIs of GSD and INFIS are executed in
parallel in the user’s browser. In further developments we will consider an integration of the two
GUIs.

There will be no immediate connection between the two corresponding GUIs. The only way of
communication of the joined systems is the CORBA connection between the GSD-Server and
the INFIS-Controller, i.e., if the user chooses the application of situation display in his INFIS-
GUI, then a message is sent from the INFIS-GUI to the INFIS-Controller. The INFIS-Controller
prepares the data which are needed to display the current situation. For this purpose, the INFIS-
Controller consults its data base. Then it prepares the data in such a way that it can be sent to the
GSD-Server by using services which are implemented by the GSD-Server. These services are

GSD-

Server
INFIS-

Controller

INFIS-
GUI

GSD-
GUI

INFIS-
GUI

GSD-
GUI

...

CORBA

Java-
Applets

Browser Browser
GUIs

Application Logic

Data Model

CORBA

Data

Figure 3: Architecture of the join of INFIS and GSD

specified as interface MapServer in CORBA’s Interface Definition Language (IDL)
[CORBA].

The important components of the interface are specified in Figure 4.

The interface MapServer specifies four functions which are implemented by the GSD-Server
in C++ and which are called by the INFIS-Controller in Ada95. The two different programming
languages at the ends of the CORBA connection are one important reason for defining a CORBA
connection instead of e.g. an RMI connection. The four functions of the interface are
implemented by the GSD-Server where in its turn it uses services of the GSD-GUI which are
also defined as an interface in IDL. In the following we will describe the semantics of the four
functions in the interface MapServer:

• LoadMap displays a map which can be specified either by the coordinates of its corners
which are sent to the GSD-Server by the parameters left, right, top, bottom, or
by the name or a description of the map in the fifth parameter description.

• InsertMilSymbol displays a military symbol as a unit, a feature, or a facility on the
displayed map. This symbol is referenced by its unique object identification oid which is
sent as first parameter of the function to the GSD-Server. The complete information which is
needed to display the symbol, is sent in the second parameter milsymb. For example, this
parameter contains information about the position and the type of a unit and display
informations.

interface MapServer {

string LoadMap (in double left,
in double right,
in double top,
in double bottom,
in string description);

string InsertMilSymbol (in string oid,
in MilSymbol milsymb);

string UpdateMilSymbol (in string oid,
in MilSymbol milsymb);

string DeleteMilSymbol (in string oid);

};

Figure 4: Interface MapServer in IDL

• UpdateMilSymbol updates a former displayed symbol. For example, if the position of a
unit or feature has changed, then the function is called with the oid and with complete
information for updating its presentation on the map in the parameter milsymb.

• DeleteMilSymbol deletes a former displayed symbol from the current map. For
example, if a unit is no longer in the area of the map, then the symbol is deleted. The only
information that is needed, is the unique oid.

Each of the four functions yields a string as return value. By this string exceptions or successful
results in computing the function are sent to the INFIS-Controller.

4. Conclusions and Further Work

We have developed an architecture for joining a geographical situation display system and a
platform independent experimental C2 information system. By this experiment, we have shown
that the two systems can be joined and the whole system can be used totally platform
independent with minimal requirements to the system resources. Furthermore, the experiment
describes the following general approach for joining systems which are implemented in different
languages and on different platforms:

Identify the system which is the server for the other one and describe an interface in CORBA’s
IDL that specifies the services which are implemented by the server and called from the other
system.

In further research activities we want to integrate the two GUIs immediately into one single GUI
in order to increase the comfort of the system handling. Nevertheless, we will not integrate the
GSD-Server and the INFIS-Controller, since we favour a well-distributed architecture.
Furthermore, for increasing the efficiency of the system, the GSD-Server and the INFIS-
Controller may run on the same computer.

Additionally, we will checked the validity of the presented general approach by extending the
joined system by further functionality, e.g., managing unstructured information like office
applications (power point presentations, word texts, ...).

5. References

[Barnes, 1995] John Barnes . Programming in Ada°95. Addison-Wesley, 1995.

[Bühler, 1998] Gerhard Bühler. Einsatz von Ada im Experimentellen Führungsinformations-
system EIGER. in Workshop „Entwicklung von Software-Systemen mit Ada“, Bremen,
Germany, Ada Germany, 1998.

[Bühler & Faßbender, 1999] Gerhard Bühler & Heinz Faßbender. Making a C2 Information
System Platform Independent by Using Internet and Middleware Technologies. in: Proceedings
of the Command & Control Research & Technology Symposium 1999, Naval War College,
Rhode Island, USA, Vol.2, pp. 1098-1108, 1999.

[CORBA, 1999] see http://www.omg.org.

[Gamma et al., 1994] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

[Java, 1999] see http://www.javasoft.com

[Wagner and Markmann, 1996] Karlheinz Wagner & Günther Markmann. Interoperability
Aspects of Command & Control Information Systems with Respect to International Standards
and Emphasis on ATCCIS. Report No. 469 of the Forschungsinstitut für Funk und Mathematik,
Wachtberg-Werthhoven, Germany, 1996.

