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The Common J Staff System (CJSS) is the means mhwilitary staff headquarters
across NATO and the Coalition are structured shahdtaff internally (to the
headquarters) and externally (from another headensarare able to implicitly
coordinate work. A key challenge of such structuseseir tendency to fall into
extreme dynamical modes. One is a ‘two-speed’ matiere units interacting with
longer term planning, led by the J5 Planning Brafalinto a slow cycle of work,
while those entities interacting predominately wifferations management, led by the
J3 Operations Branch, are caught in separate vedest cycles. At another extreme
is the mode where the reactivity of the J3 overwisethe whole headquarters,
disrupting the ability of the J5 to focus on defdte planning.

In this paper we examine these dynamics by drawpamn our work on spontaneous
synchronisation of phase oscillators on networksgl on the celebrated Kuramoto
Model. In particular, we have recently addressed hoise injected into different
sub-structures of a general network may disrupatiikty of the network to achieve
synchronisation. One of us has previously mappedtiramoto Model to the C2
context, by viewing it as a representation of neked linked agents undertaking
Boyd’s Observe-Orient-Decide-Act (OODA) loop. Wephpthis approach to an
ersatz headquarters to examine the capacity of statienJ6 Branch to achieve
synchronisation with appropriate members of stafPersonnel (J1), Intelligence (J2),
Logistics (J4) and Communications (J6) Brancheslevdiso undergoing stochastic
interactions with the J3. We explore the rangeyofaghics under changes in key
variables of the model: coupling strengths, the siznoise fluctuations and the
degree of inter-Branch links. With validation iresjfic instances, this model may
enable testing the agility of alternate structustatf numbers and informal (or
network centric) linkages.



1. Introduction

In [Kalloniatis 2008, 2012] one of us proposed & meathematical model for networked
Command and Control (C2) systems whose elementngaged in iterative cycling through
continuous Observe-Orient-Decide-Act (OODA) looBsyd 1987]. This proposal draws
upon the well-known Kuramoto model in the matheo@ttomplex systems literature that
displays the phenomenon of “self-synchronisati@ien the significance of that term in the
drive to network-enable military forces throughstpast decade, its application to Network
Centric Warfare (NCW) seemed an obvious thing tewtake; curiously, such an application
was missing in the C2 literature until recent yeAsssome C2 researchers have pointed out,
including Boyd [1987], the adversary is often netge when analysing a C2 system and this
was the main motivation in [Kalloniatis 2008, 2012hdapting the Kuramoto model to the
case of two rival C2 systems, which has been tetimeoyd-Kuramoto Model'. In this
paper we use the Kuramoto model in a spirit closéts recent use elsewhere in the C2
community [Dekker 2007, van der Wal 2010, Dekket dor a single system engaged in
some aspect of an internal process (choosing foptidns’ in Dekker and sensor fusion in
van der Wal). Specifically, we shall give a prodbtoncept that the Kuramoto model can be
applied to traditionally structured J-staff milganeadquarters to test whether the different
time-frames of planners (J5) and operators (J3Jestge synchronisation within the many
supporting branches, such as Personnel (J1),i¢@ede (J2), Logistics (J4) and
Communications (J6).

The model is expressed as a set of coupled nonidierential equations. There already
exists a diversity of models of C2. The simplestigidor C2 is the wiring diagram. Social
Network models enrich this to capture informal iations. Both are static representations.
Business process models, also frequently usedsfadduarters analysis [Kalloniatis and
Wong 2007; Grant 2008], try to incorporate the tuliteension but represent ‘tasks’ with
little more than resource (personnel, informatigouits) and time requirements as attributes.
Agent-based distillations offer more sophisticatin are often tactically focused and link a
rudimentary decision process with kinetic activitya representation of physical space. In
any case, no single model of a complex system, asithe C2 enterprise, has universal
validity. The determination of the ‘truth’ of anyothesis for C2 requires cross-validation
between diverse models [Schreiber 2002] acrossgbetrum of model types [Harré1970]. To
that end, the mathematical model expressed inoitme 6f partial differential equations
proposed here fills a gap across the spectrumistimx models of headquarters.

To this end, the present model combines a numbelleaients considered important in C2 in
the organisational theory. Boyd’s OODA loop basedis experience of US fighter pilots in
the Korean War is now used across the Defence asth&ss environments as a simple but
effective model for the iterative and cognitive esfs of decision-making of individuals and
organisations; we mention a former Australian Chiejoint Operations who spoke of the
OODA cycle of his entire headquarters. An OODA eytalkes an amount of time that
depends on the intrinsic ability of the individwalunit to internally ‘process’ and the
pressures to keep pace with other units (and oetirecadversary, if Red is included as in
[Kalloniatis 2008, 2012]). The property of self-simonisation — that local interactions
between networked agents can amplify across a edgyistem in order to achieve global
effects — has been highlighted with the formulattéNCW; the Kuramoto model is the
mathematical representation of tha excellence. The Kuramoto model also captures the
dimension of ‘coupling’, an organisational propemtgognised by theorists such as Perrow
[1984], Mintzberg [1979] and others of the Contingg Theory School [Donaldson 2001]:
connected nodes in a C2 network can have quiterdiit strengths of coupling or degrees of
responsiveness to state changes. The model wesgr@pables an exploration of the balance
between ‘dynamism’ (expressed in a frequency specfor individual performance of the
OODA loop), ‘structure’ (expressed in the netwaaky ‘coupling’.



In addressing military headquarters designed viagh@ommon J Staff System (CJSS), we
meet another phenomenon that can be recast in tdreysichronisation. Recent examples
with the United Kingdom’s Permanent Joint Headgrar{PJHQ), Australia’s Headquarters
Joint Operations Command (HQJOC) and New Zealajultg Force Headquarters
(NZJFHQ) see small or shrinking military establigmts mirroring — for reasons of
interoperability — within their constraints thewsttures of the larger USA and NATO. To do
this, they have elevated the Planning J5 and Opasad3 Branches with the others providing
enabling functions, for example the J15 sectiodifegg Personnel input into planning
activities, and the J13 working to the operatotanfing fundamentally should be proactive
but potentially sensitive to real-time events, whilperations is unavoidably predominately
reactive. This imposes quite different time-scaleshe enabling branches, say, the J1 Branch
head who must somehow straddle these two time-Bafrireese pressures continue up to the
Commander (JO), which then flow back down to thard® J3 themselves challenging their
attention, and that of their staff, to their tintarhes. It is reasonable then to consider that
planners and their enablers need to synchronidelier timely plans. We will not get too
caught up in whether it slf-synchronisation or not: in real headquarters efdherarchy,
formal and informal teams and Chiefs-of-Staff asediso that the network is complex.
Synchronisation is also important for operatorsoare driven by the 24 hour Battle-
Rhythm. However, on the time-scales of a delibgpéaning cycle, operator activity can
appear quite ‘chaotic’. For that reason we apgdlyrter innovation to the Kuramoto model,
recently explored theoretically by us [Zuparic, Idalatis 2013]: the model subject to noise.
In that sense, our focus in this paper is whethectsonisation of OODA cycles can be
achieved for planners and their enablers in the-Soales relevant to thegiven the

stochastic nature of operator OODA cycles.

Resolving the time pressures can lead to two uradgsiextremes. One is that planners and
operators decouple and work oblivious of each otlaich may be termed a ‘two-speed
headquarters’. The other is that coupling is songtithat one or the other is driven to the
time-frame of the other: planners fail to be proagtor operators fail to meet the short term
requirements of the Battle-Rhythm. This meansith#iis context complete synchronisation
is not necessarily ‘good behaviour’, indeed is mgistent with C2 agility given its
characteristics of flexibility, and responsiveng$¢aTO 2006]. However, the literature
recognises two incomplete forms of synchronisati@artial synchronisation’ is where many
nodes are locked together while others are sutjeeindom behaviour with respect to the
locked core, and ‘sub-synchronisation’ is whereasoohay form into two or three sizeable
and internally locked clusters but each cluster @sowith its own frequency [Kalloniatis
2010]. Each of these behaviours may be more use&ulC2 context as an indicator of C2
agility. Moreover, elsewhere one of us [Kalloni&&10] has shown that sub-synchronisation
is consistent with the property of ‘emergence’edde-of-chaos’. Our aim nevertheless is to
demonstrate the broad value of the model rathertihapply it to a specific situation.

The paper is structured as follows. Section 2 dessithe Kuramoto model and the measure
of synchronisation, while Section 3 explains thetaff networks that will be examined in this
paper. Section 4 presents some extreme scenaria® dbrces respectively in the incoherent
and fully self-synchronised states as an aid teetstdnding of the basic patterns of
behaviour. Section 5 explores some sub-synchrotiskdviours and demonstrates
unexpected behaviours that, in retrospect, camberstood. The paper closes with
conclusions and suggestions for future enhancenoérite model.

2. The Kuramoto Model

Deterministic Moddl . The literature on self-synchronisation in mathenadly defined
cooperative systems is large, going back to Wig@s1] and Winfree [1967] and scattered
across mathematical, physical, biological and caafpanal scientific journals. It was
Kuramoto [1984] who succeeded in distilling thegbassentials of such models into the first



order differential equation whose network geneadili;: we introduce shortl}Ve useg to
represent a time-dependghiase associated with nodeof a complete network & nodes,

B, is the angular rotation speed via the derivativhefphase with respect to time
t, «, represents a ‘natural’ or ‘intrinsic’ frequencyualy randomly chosen from a statistical
distribution, ando is a coupling constant. The role gf as a phase is seen when it is

reinserted in the complex variaWIe =e'% . A general network is represented using the

adjacency matri¥y, whose elements take value one if a link (or eég&ts between nodes

andj and are zero otherwise; for simplicity we remaithim the bounds of undirected
graphs, though further generalisations are possiile governing time evolution equation is
then:

B =w+a)y Asin@ -8). (1)
j=1

The behaviour of the system can be visualised as points moving hbautit circle as in
Figure 1. At any point in time each oscillator will be represd by a point on that circle.
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Figure 1 Visualising the individual oscillators as pointstdibuted on the unit circle at a snapshot in
time for different values of coupling: weak cougliftop), strong coupling (middle) and very strong
coupling (bottom).

For weak coupling the points will be randomly distributed arounditoke (Figure 1, top),
given the random individual frequencies. For strong couplingdiregpmove with the same



angular speed and group increasingly together as the couplimgeased (Figure 1, middle
and bottom). To measure the degree of synchronisation we ad@whéto's order
parameter:

r :iewi N )
j=1

At strong couplingr converges to one (‘complete synchronisation’ as in Figure Torbptt
while at weak coupling it zig-zags around the value zerodtiecence’ Figure 1, top).
Special cases of this order parameter can be selected bsuomiying over specific sets of
nodes, for example ‘planners’ separately from ‘operators’clivivie define, respectively, as

reandrg.

Mapping to C2. Translating this to the C2 context, the ph#ké) represents the pointin a

continuous decision (or OODA) cycle of agérit some timé. The network represents the

C2 structure itself: the relationships of agents who needitoatty adjust their individual

decision cycles. The coupling is a somewhat more abstract concept but can be seen as how
“quickly’ one agent should adjust their progress through the deagabe given a change in

the progress by any other. Theeriodicity of the sine function is appropriate in that it

locally synchronises decision cycles within the ‘current phas$e. frequency, is how

many decision cycles per unit time can be achieved by agdiftis is chosen from a random
distribution, representing the underlying heterogeneity betweevidodl decision makers in
the C2 system. Training and discipline can narrow that disiitsutamely, introducing more
homogeneity in the population of decision makers. But the irgeminetheless to retain some
degree of heterogeneity. Moreover, one does not have the loixunanaging’ that
heterogeneity: the C2 system is not designed with individualsrédin frequencies placed
deliberately at certain nodes.

Certainly in the NCW literature, such as [Alberts and I$&83@07] and references therein, the
desired self-synchronisation is appliecattivity in the external environment. | am proposing
that the precursor to this is synchronisatiodlezision cycles and therein mapping the phase
of the Kuramoto model to the decision cycle; another implementafithe Kuramoto model
is possible at the level of activity and is that used in [DeRké&7, 2011]. These two options
are not very far apart: a decision cycle in a context as@headquarters will very often
leave a trail of external artefacts (draft documentsilspchat or verbal communication) that
indicate the stage of OODA of a unit or individual; thesefacts are thus points of reference
for another in the same organisation in synchronising their dycteher words, even the
cognitive stages of Observe-Orient-Decide involve sonma fafrsocial enterprise, when one
steps beyond Boyd’s original application to the isolated figbitet alone in the cockpit.

Applying Noise. The Kuramoto deterministic system is transformed intoehststic
differential equation (or ‘Langevin equation’) by adding terms t¢1gdhat involve functions
of time whose valueare not correlated between time instances. In our case we introduce two

forms of noise, additivé’, and multiplicativd™,,, whose values are drawn from a Gaussian

distribution of mean zero and unit variance (Gaussian WhiteelNdite additive noise will
be applied to individual nodes as a time-dependent addititve toetquencies, . The

multiplicative noise is applied across links between nodefslllithen, the stochastic system
takes the form:

B=w+y It +0) Ajsingd = B)+y, > R BT". ©)
j=1 j=1

The quantitiesy,, y,, are coupling constants and the matRxis a further adjacency matrix
representing the network of interactions across which muhkiflie noise is applied.



Noise in C2 systems. Interpreting this noise for the C2 context is differenttfer additive and
multiplicative cases, but at heart both represent the degweeich the human dimension
cannot be microscopically tracked and modelled, analogous iithescopic collisions of
suspend colloid particles in the original observation of Brownian modidditive noise
specifically means there is a random time-dependent elémbotv fast a cycle is

completed: no individual processes information or makes decisitimshe same speed in
every instance as individual internal factors (such asx@ample, mood and health) may vary
from instance to instance. (Note that #xternal influences are captured through the network
interactions.) Multiplicative noise represents the clasfthe interaction between individual
nodes and therefore impacts on the coupling strength. Indeedsbeaih clarity is obscured
in states of heightened activity we apply this term to theabpes. Thus we may see the
application of multiplicative noise as the onset of a<tis which the headquarters must
respond. As with many real instances of crisis, thesstemg lived as staff initially scramble
to develop a response but then gradually the managementresgumse folds into a more
sustainable steady-state. Thus we will apply noise only fdaefperiods of time.

Note that, because our focus in this proof of concept model sytiuhironisation of planners,
we have not built in an interaction for operators that idlpsgnchronising (such as a sine
function): in the absence of noise operators will synchronisetorthe degree their Branch
heads are synchronised through the planning interactions (ireipegct it is genuinely not
self-synchronisation).

3. The J-staff model

Networks. Formally we work with a headquarters of 19 members: tmern@ander JO, 6
Branch heads (J1-J6, we ignore here the less universally impledhJ7-J9), and individual
staff J13, J15 and so on. At the lowest level whole teams miagdréed, but the modelling
principle remains the same. This hierarchy is representie wiring diagram oFigure 2
Note that in this, and subsequent, diagrams the arrow is setiyta order the layers in the
construction of the network — it plays no operational role imiathematical formulation
which is always undirected graphs.

B

J1 J2 3] N3 J5 J6
J13] Ji5 J23 J25 J33 35) J43 J5 J53 J55 J63 J65

Figure 2 The J-staff hierarchy of the model

This hierarchical representation belies the manner in vthistC2 organisation works. In our
model planning interactions take place according to the netwdtigure 3 the J5 is
responsible to the Commander for drawing together the overalltmpedeplan, with the staff
work conducted by the J53 subordinate, who in turns draws upon ctintrgbfrom peers in
other branches, the J15, J25, J45, J65. However these juigeroin turn work to their
branch heads who in turn report to the Commander. Note that hepecluele the J55 who
would work to even longer term, strategic, time-frameshwthe operational planning
cycle may be subordinate; this requires modelling nested lobick we do not address here.

In military doctrine this staff dynamic is articulatedths Operational Planning Process
(OPP) or (in Australia) Military Appreciation Process (M where key logical ‘gates’ such
as Mission Analysis and Course of Action Analysis are steppedgh. One may see such
processes as an elaboration again of the OODA loop. Therefasiealleepresent the
completion of a cycle of planning as one OODA cycle, and thefomihis will be captured
as the inverse frequency of the planning nodes to be discusdest fugtow.
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Figure 3 The planning interaction network
Operators interact according to the networkigure 4 The J33, focused on real time
operations, interactions with the J3 who turns to the J3%fdd planning but reports issues

to the Commander. This officer in turn seeks rapid input fleerother Branch specialists
(313, J23, J43, J63), who seek guidance from their Branch heads.

—~— & <~ 8

| )T/ | ><\ J6
J13 J23 A3 J63

Figure 4 The operations interaction network

This process may be seen as reflecting a Daily Battle-Rhiyttirwhere the Commander
prefers to receive a briefing only from the J3. There ameynalternatives to this, such as a
daily brief with the J3 and J2, or indeed with all Branch beAd of these are
straightforwardly implementable in this model. As has be&hreany times already, our aim
here is to show how any such network may be integrated into amedtbal model of
synchronisation and its outputs used to make judgements aboutdhessatthat network in
C2.

Frequencies. The frequency, or inverse period, reflects the speed throdghision cycle.
Unlike the traditional Kuramoto model which draws frequenciesmfsome statistical
distribution, here we shall choose quite regular values and putithennaess in the additive
noise. We set a time scale by assigning a period of luinitéo operators and in turn 15 time
units to a planning cycle. Thus, given the daily battle-rhythenmay see 1 time unit roughly
as a day and planners in turn work to a roughly two week plannihg dye periods are then
assigned as shown Trable 1



Table 1Periods for a decision cycle

J staff units Period (time units)
J33 0.5
JO, J1, J2, J3, J4, J6, J13, J23, J35, J43 1
J15, J25, J45, J5, J53, J65 15
J55 30

Note that the J33 real-time operations staff has a muctesip@riod of 0.5 units and,
conversely, the J55 strategic planner a longer period of 30 Boitboth of these nodes are
quite peripheral to the present model. More significantly J# works to the same intrinsic
period as their subordinate J53 in this model. The model ctaddest what changes if the J5
worked to the same period as the other Branch heads. Frezgiarethen the inverse period.

4. Tuning and basic behaviours of the model

We solve Eq.(3) numerically using Mathematica with di8cretisation points. Calculations
take between a few seconds to a few minutes (for extreme casss, for which there can be
memory issues) on a standard desktop Windows XP or 7 workstBefore applying noise,
and with network structure and frequencies fixed, the only freevpeter is the coupling.

We tune this by requirinthat in the absence of noise the planners achieve a stable behaviour

of total synchronisation with, =1. This is thus consistent with a steady pattern in which
planners can be proactive in thinking through a plan. This igeethiap = 0.3. We then

apply noise to the operators — reflecting their focus on short-time disruptier(¢echnically,

by introducing step functions in the defining EQ)({@r finite amounts of time. Indeed, to see
the change in behaviour between the onset of addibise and multiplicative noise we first
switch on the additive noise, then the multiplieathoise, which is then sustained for some
finite period of time to provide opportunity forgtldynamic behaviour to settle down. Then
the noises are switched off in reverse order. Wetegthe noise constantg, = y,, =y, and
examine the behaviours for different valuesyofWe show in Figure 5 a typical instance of
the dynamical behaviour for a weak value of nomeameter,y = 0.1, in terms of plots of the
three order parameters,r,,r, , for the whole headquarters, the planners andpkeators
respectively, as functions of time. In this casenbise is sufficiently strong to weakly
perturb the planners but strongly perturb the dpesa
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Figure 5Plots of the three order parameters as functiomisnef for coupling sufficient to allow
planners to synchronise = 0.3and weak noisg/ = 0.1. In light shaded regions only additive noise is
applied while in darker regions both additive andltiplicative noise is applied.



More specifically, we observe that in the abserfaeotse the overall system shows quite
extreme but slow periodic fluctuationsrinWe comment on these further as we progress. But
these do not change in character with additiveen@light shaded region), but become quite
rapid with both forms of noise applied in the dahladed region (Figure 5, top). As noises are
switched off the original behaviour is restoredn@astingly, the planners, whose order
parameter is shown in Figure 5 (bottom, left) synaofse in less than 10 time units which
clearly has reached a plategu=1(as intended by the setting of the coupling corijtan

the time additive noise is appliedtat  {i& other words by the time of their second cycle)
With the additive noise there is a slight drift whiis not seriously exacerbated with the
application of multiplicative noise. However, féretoperators ((Figure 5, bottom, right) there
is also some degree of synchronisation in the algsehnoise. This synchronisation is local
to them but not synchronised with the planners @¢he initial fluctuations in the top part of
Figure Swhose periodicity will be seen to reflect a cluistg into two groups. Moreover,
because the operators are not subject to thergimgction in Eq.(3), it is a second order
consequence of the coupling of the Branch heatlseioplanners. The noise, unsurprisingly,
completely disrupts this local synchronisationtas applied directly across their links.
Overall we could say that Figure 5 represents a §peed’ headquarters — one part of the
staff are barely affected by disruptions to othemtepthough there are second order effects in

play.

At the other extreme, we show the behaviour fatietly strong noise constapt= 0.9in
Figure 6. Again, before noise is applied overadréhare periodic fluctuations (top) because
planners and operators have separately synchrotusetligh degreerf, and r, close to one

respectively in the bottom left and right figurédp this point it is another instance of the
behaviour seen before the noise for weak noiset@ond/Vhen additive noise is applied (light
shaded regions) even the planners are disruptaoighyr— in this instance their order
parameter zig-zags twice in the time interval. Fynlae multiplicative noise strongly disrupts
the operators, to whom it is directly applied, bu¢n the planners undergo erratic behaviour
with some modulation suggestive of its origin ageond order effect. This is precisely
because of the flow: J33J3—J0—J5—J53 and beyond.
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Figure 6 Plots of the three order parameters as functionisnef for coupling sufficient to allow
planners to synchronise = 0.3and strong noisg’ = 0.9. In light shaded regions only additive noise is

applied while in darker regions both additive andltiplicative noise is applied



5. Analytic Behaviour and Mean First Passage Time

There is value in understanding analytically, whavssible, some aspects of the dynamics.
The case of multiplicative noise is beyond our peyeesently, however we can understand
at a deeper level the behaviour arising from thditev@ noise on the operators. We achieve
this by examining the equations in the vicinityadfixed point for phase synchronisation
where some approximations of the non-linear eqoatgan be made. Then the stability,
namely exponential decay of fluctuations back #ftked point, or instability, namely
exponential divergence of fluctuations, can besel.

Specifically, we consider the connected networglafners at the instant additive noise is
switched on. As we have seen, we have chosen tigticg constant such that the system
always reaches phase synchronisation without tisenim this setting the planners phases

obey the fixed point relationshi} = ,8]. , which allows us to approximate the sine interacti
by its leading linear behaviour. This allows ugxpress the interaction term as

S A s, -B)=-3 L5,
j=1 j=1

whereN, is the number of planners and we have introdulcedjtapHh_aplacian

matrix,L; = D; — A;.The eigenvalues and eigenvectors of the Laplamiamparticularly

useful for understanding dynamical systems on waordt [Bollobas 1998]. For example, the
eigenvalues, denoteld,s= (01...,N —1), are zero or positiv@= A, <A, <...< Ay _;; the

number of zero eigenvalues in fact correspondsgmumber of disconnected components a
network breaks up into. For the planners netwoeksibectrum of eigenvalues is shown in
Figure 7 showing the one zero value (the planners netdods not have disconnected
components) and a number of degenerate values wdwelal symmetries in the planners
network.
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Figure 7 Plots of the eigenvalues of the planners Laplacian
The relevant dynamical equations for the plannigigvork at the instant the additive noise is
switched on is

B=w+y,l? _UZP:Lij,Bj . (4

=t

The orthonormal eigenvectors of the Laplacian, tehe® , allow the system to be
diagonalised and solved. The phase angles forlamaers are expanded into Laplacian
‘eigenmodes’

Np—1

B M) =D x v . (5)
s=0

We then project all the terms in Eq.(4) onto thh sigenvector, for example for the noise:

10



Np-1

rAm=>Yrv®. (6)
s=0

(Such a linear combination of independent uncordl&aussian white noise gives similarly
uncorrelated Gaussian white noise.) A similar eiquadefines the frequency projected
vectoraw'® . Applying Eq.(5,6) to Eq.(4), we obtain the decedsystem of linear
(‘Langevin’) equations for the eigenmodes, wheretli@ moment we make

X, = +y, I —oAX,. (7)

Let us now pause and consider the above sets afiega before ploughing ahead
analytically. If we consider the above equationthm absence of noise, then each eigenmode
has the solution of exponential decay in time wigicay constanv/d, >0 due to the positive
semi-definiteness of the eigenvalues. This is @est with the Kuramoto model showing
Lyapunov stability about the phase synchroniseedfigoint. Each eigenmode decays to a

non-zero constant, (t — o) = '® /(g/,). Thus it is assured that the sine approximation we

applied at the start of this section is valid.émts of the plannersmall fluctuationsin their
cycle are damped and they always relax to their natural planning rhythm.

Consider now the system with noise. It is genetaligwn that in systems with additive noise
(applied here via the operator nodes) eventuadgcmence of fluctuations will arise in the
random distributions that will be sufficient to lalothe system out of the basin of attraction

of the fixed point [Schuss 2010]. This will apply kess to Eq.(7). This does not mean that the
overall system (Eq.(3)) will be unstable, but iedanean that at some point in time we expect
the linear approximations of the sine function uedrrive at Eqg.(4) to no longer hold, and
one has to consider the full non-linear system tviniay restabilise the behavioiihe

planners are continually disrupted and thereis a time after application of the noisein which

their natural relaxation to their routine cycle can no longer occur.

The Mean First Passage Time (MFPT), denote bl, now enables a probabilistic

characterisation of this time to instability, mean (over many instances of noise) timein

which the planners are driven outside of the basis of attraction of the fixed point of their

natural cycle. Formally, the MFPT is the expected time the pssda Eq.(7) will cross a
designated boundary such as that for a basinrafctitin of a fixed point. In this instance, we
choose the boundary which leads to the sine appeiion to break down. In general, it is

quite hard to derive exact bounds on the eigenmagdeshich lead to the phase difference
B — B; being sufficiently far apart as to break the sipproximation (see Appendix A of
[Zuparic and Kalloniatis 2013]). However, in oumpexiences with systems of 20-30 nodes
[Kalloniatis 2010; Zuparic and Kalloniatis 2013}afficient “heuristic” boundary is given
simply byx, = +1.

With the boundaries chosen, the MFPT is calcultiesugh solving thé\ndronov-Vitt-
Pontryagin equation [Schuss 2010], given in the Appendix. From Figiwesd 6, we know
that the processes in Eq.(7) have reached steattylst the time the additive noise is
switched on. Hence thitial values are simply the steady state valdab® deterministic

process, = @' /(gA, ) Using this fact about the initial values of the MFPT, we can

compute a closed form solution, which is givenhia Appendix. It turns out that it is
convenient to view the MFPT as a function of twenbinations of the various parameters of

the modelyu = & / g, x = gA, | y?.(We suppress the subscript ‘a’ jq for the remainder

of this section.) Plotting the MFPT in terms ofdhgarameters we arrive at a surface shown
in Figure 8 In this plot we indicate as large dots pointsic@ing with parameter choices of
interest, for some of which we have numericallywesdithe full system of equations. In
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particular, they correspond to the two lowest nerszigenvalues of the planners graph
Laplacian, for whichw'® /(g/,) <1, meaning that these are the modes ‘closest’ tahiliy.

gl
Figure 8 Plot of the MFPT for the parameters and y with the frequencyte set to 1/15 as a function
of frequency to coupling ratio (x-axis, left-to-hi and coupling to noise strength ratio (y-axipithe
page). The surface is divided into two regions,tevaind blue, with the dividing line between the two
regions being the line of equi-MFPT (witB7] =5). The dots on the surface are the MFPTs for
specific parameter choices and graph topologytferianners network. The two brown dots are the
MFPT for y = 0.9and A = 089(left brown dot)/A = 047 (right brown dot). The two blue dots are the

MFPT for y = 05and A = 089(left blue dot)/A = 047(right blue dot). Finally, the two black dots are
the MFPT for y = 0.3and A = 089(left black dot)/A = 047 (right black dot).

To orient ourselves with this figure it is worthpmpciating that infinite MFPT means an
infinite amount of time is required for the firsigsage of the system across the boundary.
This may be termed absolute stability in the presef noise. However, apart from this
special pointif noiseis sustained for long enough eventually stability will belogt. So there is
only relative stability and the question becomes lang can noise be sustained on average
before the system is driven from its equilibriumimoThus the rising peak in Figure 8 is the
region of higher relative stability. Towards theyed, with small values of MFPT, are regions
of contrastingly high instability. We have introduta plane in the plot to show points of
equal MFPT atHr] =5, the time at which multiplicative noise is switchen in our

numerical solutions of the system. Thus the twalbfaoints, for the two lowest eigenvalues
of the Laplacian, but at the lower value of noisastanty = 0.3 show high values of MFPT.

So, small noise means relative stability. In fémt,the even weaker values of noise of
y = 01 for which we solved the equations the MFPT is marders of magnitude larger and

off the scale of this plot. This is consistent witle weak response of the system to the noise
seen in Figure 5. Contrastingly, the two brown pmiagain for the two lowest eigenvalues, at
noise constany = 09 lie in regions of small MFPT in Figure 8. So, ieasing noise

increases the instability. Again, this is consisteith the severe disruption the noise causes
in Figure 6. In between we show the blue pointscivitie on the boundary for the time at
which multiplicative noise is applied. We may déserthis as a region of intermediate
stability. But this value of noise strength leanl$urther interesting behaviours once
multiplicative noise is applied.
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In summary, the planes of equi-MFPT in Fig.8 allestvmation of the average time for which
planners with specific coupling and frequencies (x-axis) can tolerate noise of specific srength
(y-axis) propagated through the operators before driven completely from their natural cycle.

6. Emergence

Emergence is often described as the property cdimyeal systems to ‘surprise’ — to exhibit
unexpected behaviours. Formally, we adopt Laughli005] definition of emergence as:
system qualities or behaviours that are not redeitdbthe system components but arise from
their interactions. In this case there are a nurobkyers in the headquarters design of our
model: 1) the individual planner and operator d¢simls at the nodes of the networks 2) the
two networks as entities unto themselves, andegttiective headquarters system. | shall be
primarily interested in emergence across thesadapamely, behaviours that are not
reducible to one of these three layers.

Emergence in dynamical systems is also associathcaw intermediate region between order
and disorder, stability and instability or the ‘Edgf Chaos’. Above we have already
discussed the role of fixed points for the spacesafllator states. Edge of Chaos sees
trajectories neither exponentially converging bckhe point (Lyapunov stable) nor
diverging away (Lyapunov unstable) but followingyer-law dependence on time. Mixed in
with more standard stable and unstable directitns gives rise to forms of patterned
behaviour through collective degrees of freedom. @lleague Richard Taylor has shown
that there are thresholds for more types of stikdel points in the equal frequency
Kuramoto model than just ‘globally phase synchredigTaylor 2012]. In the Kuramoto
model with non-equal frequencies, one of us hasidkEntified such fixed points [Kalloniatis
2010]: for many classes of networks there is agrinediate range of coupling where nodes
have formed a small number (two to three) of chssteithin which oscillators are locked to a
common frequency, but across which there remaitshierence; a further increase in
coupling tips these clusters into forming a sirmferall cluster. Technically, these
behaviours occur in a regime of non-vanishing imagr parts of Lyapunov exponents but
vanishing real parts of Lyapunov exponents — giatadple limit cycles and the formal Edge
of Chaos characterisation. Thus a system of macijlaisrs with random frequenci@say
devolve to a two or three body system of effecthaes, the internally locked clusters,
sufficient to give rise to structured behavioumpeleding on the vagaries of how the
frequencies and connections are distributed: asoit with nearly identical frequencies
placed at adjacent nodes will tend to cluster. Thistering as an intermediate regime is
illustrated in a series of parametric plots foethdifferent values of the couplir in Figure
9 for such a system.
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Figure 9 Parametric plots of phase angles over the timetiduraf cosine and sine of phases divided
by time for weak (top), intermediate (bottom leéthd strong (bottom right) coupling; respectively
these show incoherence (top), intermediate clusgdibottom left) and complete phase locking (bottom

right).

Unlike Figure 1, which represents a snapshot ir tiwe now plot as a series of points the
cosine and sine of the phase of an oscillgioeach moment in time. For any single point one
would obtain a circular track. Dividing the cosisiagby the time brings this track, for zero
coupling, to a single point consistent with the imof an individual oscillator about the unit
circle being largely uniform in time. Plotting tHigr all oscillators, for zero coupling, gives a
distribution of points lying on the circle (Figu8etop); unlike the first case in Figure 1, the
points here are not spread over the entire cietabse dividing by the time here exposes the
individual oscillator frequencies (which for thecale case are drawn from a distribution
between [0,1]). Now, as coupling strength incrediseee is a transition from the multiple
points to one single point, corresponding to adiltetors locked to the same phase moving
with the average frequency (Figure 9, bottom rigintpbetween these extremes is a state of
two independent clusters (Figure 9, bottom lefhjisTintermediate level clustering gives rise
to cyclic behaviour of the order parameteiThis explains in more depth why, at coupling
valueo = 0.3in the absence of noise the overall order parameter shows cyclic behaviour

the top plots of Figure 5 and Figure 6: planneis gperators have formed their own clusters,
as alluded earlier.

Can such behaviour occur for our headquarters niodke presence of noise? Indeed it can,
and shows up in many instancey at 0.5, which led to the intermediate MFPT region in

Figure 8 We plot one example in Figure 10 where three pé&#dly spaced peaks in the
order parameter, occur through the application of noise in the detrteded region of Figure

10 (bottom, left). We have generated many of tlegbsometimes two cycles occur and
sometimes four, infrequently more chaotic or eveiescent appear according to the specific
instance of the noise.
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Figure 10 Plots of the three order parameters as functibtime for coupling sufficient to allow
planners to synchronise = 0.3 and strong noisg’ = 05. In light shaded regions only additive noise is

applied while in darker regions both additive andltiplicative noise is applied

Studying individual cases more carefully suggdsas this ‘accidental’ herding of planners
does not coincide with any natural convergencéeif immediate superiors. If anything, in
Figure 11, which compares the positions of thenqsasi cycles with that of their immediate
superiors at the time at whialy reaches one of its periodic maxima, there is exddef an
anti-correlation. In that sense the military hierarchy is playindoable role at this
intermediate noise constant value: it is the pathife noise to disrupt the planners in the first
place but it indirectly generates a phase shiftetvergence of those same planners.
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Figure 11 Two quad charts showing snapshots of the posittbpanners’ J15, J25, J45, J53, J65
cycle (top left of each set of four) and that afitimmediate superiors J1, J2, J4, J6 (botton &fthe
time at which the planners order parameter (toptyig close to its peak at the latest time inrtght
hand plots. Note that the relatively well convergéahners are half a cycle shifted with respec¢héir
(less converged) superiors.

7. Conclusions and Future Work

Our aim in this paper was to give a proof of condkat the mathematical formulation of the
Kuramoto model provides a basis for representiegsthucture and dynamics of a military
staff headquarters. The basis for this represemtigithe common feature in both of network
structure, and cyclicity in the elementary processfandividuals and their units. Drawing on
our recent research of the influence of noise @asplsynchronisation we were able to further
enrich the model by showing how the unavoidablyoticareactive life of operators can flow
across to planners who seek to work to tightermptancycles. Solving the equations
numerically we demonstrated basic behaviours ofrthdel that may be recognised in a
poorly functioning headquarters: planners who Ha@me so reactive there is no semblance
of order to their processes, or so oblivious tordeetivity of their operator colleagues they
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are unresponsive to the external environment. Heweave were able to show there is an
intermediate regime of behaviour where order arabstare finely balanced, so that the
planners achieve regular periods of near synchatinis We argue this is the regime of an
agile organisation, where it is able to achieve an ordered behaviwatrisresponsive to the
circumstances of fluctuations and interactions hEastance of this order will be different
according to the specific nature of the noise. \Bfeehprovided some evidence that the
hierarchy plays a non-intuitive role in this ordexdeed, the network combines both the peer-
to-peer and hierarchical aspects which, we argeenecessary for both agility and
accountability. Further research into the coinca=nof structure and frequency can provide
insight into how such order can be achieved sydieaily.

Beyond the particular formulation of this modekrd are further refinements of this
Kuramoto-like instantiation of a headquarters moBel example, here we have not provided
interactions that give the operators scope forllpsgnchronising, nor, for that matter, the
J33 or J55 (‘strategic planners’). This is becaumsdack a formulation for synchronisation
within nested loops. Within this spirit, there ope for representing that each unitin a
headquarters may play a different role in an oVéealdquarters OODA loop while
nevertheless undertaking their own local (and wstecision cycle. For example, the J2
predominately enables the Observe and Orient phegiesespect to the Red force, the
Commander and Branch Heads play a role in the Eqatidise, and deployed units in the Act
phase. These are elements we anticipate developthg near future.
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Appendix: Laplacian eigenvectors and Mean First Pasage Time
In the main body we defined the Laplacian and garae properties of its eigenvalues. The

orthonormal Laplacian eigenvectars? , satisfy
Np Np
z L”-VJ(S) = /]SVi(S) y ZVi(S)Vi(q) = qu . (8)
j=1 i=1

These vectors also reveal aspects of the undertyimgh structure. For example, for the
planners Laplacian the two lowest eigenveciéfsandi® are shown in Figure 12. Observe
that for the zero eigenvector all nodes participtiae vector with valué/ /N, while that

eigenvector for the first non-zero eigenvalues picut certain nodes non-uniformly. In fact
these expose the nodes most susceptible to bedesommdected with minimal link removals.

-04 -04
Figure 12 Plots of the eigenvector component values for trenalised “zeroeth” (left) and “first”
(right) eigenvectors of the planners Laplacian.

With the boundaries, = +1, the MFPT is a solution to thandronov-Vitt-Pontryagin
equation [Schuss 2010], given for this instance by,

2 2
Y. d (s) d _
42— E][r]+(w” -ol.x.))—E]Jr]=-1, (9
e JL7]+( ss)dxs S[7] 9
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with the boundary conditiong 7],., = EJ7],._, =0. Reiterating, the MFPT is the expected
time taken for the stochastic process in Eq.(Rittthe boundary given that the process
begins in the domair1< X, <1. The boundary conditions simply state that a pgseehich

begins on the boundary takes zero time to crofsdain Figures 5 and 6, we know that the
processes in EQ.(8) have reached steady statesltiyrtb the additive noise is switched on.
Hence thenitial values are simply the steady state valdfdb® deterministic process,

X, = & /(o) . Using this fact about the initial valueg of the MFPT, the closed form
solution of Eq.(9) is given by (see Appendix C dfiparic and Kalloniatis 2013]),

I O L [ e L A el D Ral R S T T
cin= byt ) el ) e AL e )
(10)

whereerfi is the imaginary error function amtlis the generalised hypergeometric function:

H(x):ze[mg,mx].
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