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The J-staff system, Network Synchronisation and Noise 
 
Alexander Kalloniatis, Mathew Zuparic 
Joint & Operations Analysis Division 
DSTO 
Canberra, Australia 
 
The Common J Staff System (CJSS) is the means by which military staff headquarters 
across NATO and the Coalition are structured such that staff internally (to the 
headquarters) and externally (from another headquarters) are able to implicitly 
coordinate work. A key challenge of such structures is their tendency to fall into 
extreme dynamical modes. One is a ‘two-speed’ mode, where units interacting with 
longer term planning, led by the J5 Planning Branch, fall into a slow cycle of work, 
while those entities interacting predominately with operations management, led by the 
J3 Operations Branch, are caught in separate reactive fast cycles. At another extreme 
is the mode where the reactivity of the J3 overwhelms the whole headquarters, 
disrupting the ability of the J5 to focus on deliberate planning.  
 
In this paper we examine these dynamics by drawing upon our work on spontaneous 
synchronisation of phase oscillators on networks, based on the celebrated Kuramoto 
Model. In particular, we have recently addressed how noise injected into different 
sub-structures of a general network may disrupt the ability of the network to achieve 
synchronisation. One of us has previously mapped the Kuramoto Model to the C2 
context, by viewing it as a representation of networked linked agents undertaking 
Boyd’s Observe-Orient-Decide-Act (OODA) loop. We apply this approach to an 
ersatz headquarters to examine the capacity of staff in the J5 Branch to achieve 
synchronisation with appropriate members of staff in Personnel (J1), Intelligence (J2), 
Logistics (J4) and Communications (J6) Branches, while also undergoing stochastic 
interactions with the J3. We explore the range of dynamics under changes in key 
variables of the model: coupling strengths, the size of noise fluctuations and the 
degree of inter-Branch links. With validation in specific instances, this model may 
enable testing the agility of alternate structures, staff numbers and informal (or 
network centric) linkages. 
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1. Introduction 
In [Kalloniatis 2008, 2012] one of us proposed a new mathematical model for networked 
Command and Control (C2) systems whose elements are engaged in iterative cycling through 
continuous Observe-Orient-Decide-Act (OODA) loops [Boyd 1987]. This proposal draws 
upon the well-known Kuramoto model in the mathematical complex systems literature that 
displays the phenomenon of “self-synchronisation”. Given the significance of that term in the 
drive to network-enable military forces through this past decade, its application to Network 
Centric Warfare (NCW) seemed an obvious thing to undertake; curiously, such an application 
was missing in the C2 literature until recent years. As some C2 researchers have pointed out, 
including Boyd [1987], the adversary is often neglected when analysing a C2 system and this 
was the main motivation in [Kalloniatis 2008, 2012] in adapting the Kuramoto model to the 
case of two rival C2 systems, which has been termed the ‘Boyd-Kuramoto Model’. In this 
paper we use the Kuramoto model in a spirit closer to its recent use elsewhere in the C2 
community [Dekker 2007, van der Wal 2010, Dekker 2011] for a single system engaged in 
some aspect of an internal process (choosing from ‘options’ in Dekker and sensor fusion in 
van der Wal). Specifically, we shall give a proof of concept that the Kuramoto model can be 
applied to traditionally structured J-staff military headquarters to test whether the different 
time-frames of planners (J5) and operators (J3) challenge synchronisation within the many 
supporting branches, such as Personnel (J1), Intelligence (J2), Logistics (J4) and 
Communications (J6). 
 
The model is expressed as a set of coupled nonlinear differential equations. There already 
exists a diversity of models of C2. The simplest model for C2 is the wiring diagram. Social 
Network models enrich this to capture informal interactions. Both are static representations. 
Business process models, also frequently used for headquarters analysis [Kalloniatis and 
Wong 2007; Grant 2008], try to incorporate the time dimension but represent ‘tasks’ with 
little more than resource (personnel, information inputs) and time requirements as attributes. 
Agent-based distillations offer more sophistication but are often tactically focused and link a 
rudimentary decision process with kinetic activity in a representation of physical space. In 
any case, no single model of a complex system, such as the C2 enterprise, has universal 
validity. The determination of the ‘truth’ of any hypothesis for C2 requires cross-validation 
between diverse models [Schreiber 2002] across the spectrum of model types [Harré1970]. To 
that end, the mathematical model expressed in the form of partial differential equations 
proposed here fills a gap across the spectrum of existing models of headquarters. 
 
To this end, the present model combines a number of elements considered important in C2 in 
the organisational theory. Boyd’s OODA loop based on his experience of US fighter pilots in 
the Korean War is now used across the Defence and Business environments as a simple but 
effective model for the iterative and cognitive aspects of decision-making of individuals and 
organisations; we mention a former Australian Chief of Joint Operations who spoke of the 
OODA cycle of his entire headquarters. An OODA cycle takes an amount of time that 
depends on the intrinsic ability of the individual or unit to internally ‘process’ and the 
pressures to keep pace with other units (and outpace the adversary, if Red is included as in 
[Kalloniatis 2008, 2012]). The property of self-synchronisation – that local interactions 
between networked agents can amplify across a coupled system in order to achieve global 
effects – has been highlighted with the formulation of NCW; the Kuramoto model is the 
mathematical representation of this par excellence.  The Kuramoto model also captures the 
dimension of ‘coupling’, an organisational property recognised by theorists such as Perrow 
[1984], Mintzberg [1979] and others of the Contingency Theory School [Donaldson 2001]: 
connected nodes in a C2 network can have quite different strengths of coupling or degrees of 
responsiveness to state changes. The model we propose enables an exploration of the balance 
between ‘dynamism’ (expressed in a frequency spectrum for individual performance of the 
OODA loop), ‘structure’ (expressed in the network) and ‘coupling’. 
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In addressing military headquarters designed with the Common J Staff System (CJSS), we 
meet another phenomenon that can be recast in terms of synchronisation. Recent examples 
with the United Kingdom’s Permanent Joint Headquarters (PJHQ), Australia’s Headquarters 
Joint Operations Command (HQJOC) and New Zealand’s Joint Force Headquarters 
(NZJFHQ) see small or shrinking military establishments mirroring – for reasons of 
interoperability – within their constraints the structures of the larger USA and NATO. To do 
this, they have elevated the Planning J5 and Operations J3 Branches with the others providing 
enabling functions, for example the J15 section feeding Personnel input into planning 
activities, and the J13 working to the operators. Planning fundamentally should be proactive 
but potentially sensitive to real-time events, while Operations is unavoidably predominately 
reactive. This imposes quite different time-scales on the enabling branches, say, the J1 Branch 
head who must somehow straddle these two time-frames. These pressures continue up to the 
Commander (J0), which then flow back down to the J5 and J3 themselves challenging their 
attention, and that of their staff, to their time-frames. It is reasonable then to consider that 
planners and their enablers need to synchronise to deliver timely plans. We will not get too 
caught up in whether it is self-synchronisation or not: in real headquarters each of hierarchy, 
formal and informal teams and Chiefs-of-Staff are used so that the network is complex. 
Synchronisation is also important for operators, who are driven by the 24 hour Battle-
Rhythm. However, on the time-scales of a deliberate planning cycle, operator activity can 
appear quite ‘chaotic’. For that reason we apply a further innovation to the Kuramoto model, 
recently explored theoretically by us [Zuparic, Kalloniatis 2013]: the model subject to noise. 
In that sense, our focus in this paper is whether synchronisation of OODA cycles can be 
achieved for planners and their enablers in the time-scales relevant to them given the 
stochastic nature of operator OODA cycles. 
 
Resolving the time pressures can lead to two undesirable extremes. One is that planners and 
operators decouple and work oblivious of each other, which may be termed a ‘two-speed 
headquarters’. The other is that coupling is so strong that one or the other is driven to the 
time-frame of the other: planners fail to be proactive, or operators fail to meet the short term 
requirements of the Battle-Rhythm. This means that in this context complete synchronisation 
is not necessarily ‘good behaviour’, indeed is inconsistent with C2 agility given its 
characteristics of flexibility, and responsiveness [NATO 2006]. However, the literature 
recognises two incomplete forms of synchronisation. ‘Partial synchronisation’ is where many 
nodes are locked together while others are subject to random behaviour with respect to the 
locked core, and ‘sub-synchronisation’ is where nodes may form into two or three sizeable 
and internally locked clusters but each cluster moves with its own frequency [Kalloniatis 
2010]. Each of these behaviours may be more useful in a C2 context as an indicator of C2 
agility. Moreover, elsewhere one of us [Kalloniatis 2010] has shown that sub-synchronisation 
is consistent with the property of ‘emergence’ or ‘edge-of-chaos’. Our aim nevertheless is to 
demonstrate the broad value of the model rather than to apply it to a specific situation.  
 
The paper is structured as follows. Section 2 describes the Kuramoto model and the measure 
of synchronisation, while Section 3 explains the J-staff networks that will be examined in this 
paper. Section 4 presents some extreme scenarios of two forces respectively in the incoherent 
and fully self-synchronised states as an aid to understanding of the basic patterns of 
behaviour. Section 5 explores some sub-synchronised behaviours and demonstrates 
unexpected behaviours that, in retrospect, can be understood. The paper closes with 
conclusions and suggestions for future enhancements of the model.  
 
2. The Kuramoto Model 
Deterministic Model. The literature on self-synchronisation in mathematically defined 
cooperative systems is large, going back to Wiener [1961] and Winfree [1967] and scattered 
across mathematical, physical, biological and computational scientific journals. It was 
Kuramoto [1984] who succeeded in distilling the bare essentials of such models into the first 
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order differential equation whose network generalisation we introduce shortly. We use iβ to 
represent a time-dependent phase associated with node i of a complete network of N nodes, 

iβ& is the angular rotation speed via the derivative of the phase with respect to time 

t, iω represents a ‘natural’ or ‘intrinsic’ frequency, usually randomly chosen from a statistical 

distribution, and σ is a coupling constant. The role of iβ  as a phase is seen when it is 

reinserted in the complex variable iiei
βχ = . A general network is represented using the 

adjacency matrix ijA  whose elements take value one if a link (or edge) exists between nodes i 

and j and are zero otherwise; for simplicity we remain within the bounds of undirected 
graphs, though further generalisations are possible. The governing time evolution equation is 
then: 

∑
=

−+=
N

j
ijijii A

1

)sin( ββσωβ& . (1) 

The behaviour of the system can be visualised as points moving about the unit circle as in 
Figure 1. At any point in time each oscillator will be represented by a point on that circle.  
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Figure 1 Visualising the individual oscillators as points distributed on the unit circle at a snapshot in 
time for different values of coupling: weak coupling (top), strong coupling (middle) and very strong 

coupling (bottom). 
 
For weak coupling the points will be randomly distributed around the circle (Figure 1, top), 
given the random individual frequencies. For strong coupling the points move with the same 
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angular speed and group increasingly together as the coupling is increased (Figure 1, middle 
and bottom). To measure the degree of synchronisation we adopt Kuramoto’s order 
parameter: 

∑
=

=
N

j

i jer
1

β . (2) 

At strong coupling r  converges to one (‘complete synchronisation’ as in Figure 1, bottom), 
while at weak coupling it zig-zags around the value zero (‘incoherence’ Figure 1, top). 
Special cases of this order parameter can be selected by only summing over specific sets of 
nodes, for example ‘planners’ separately from ‘operators’, which we define, respectively, as 

Pr and Or . 

 
Mapping to C2. Translating this to the C2 context, the phase )(tiβ  represents the point in a 

continuous decision (or OODA) cycle of agent i at some time t. The network represents the 
C2 structure itself: the relationships of agents who need to mutually adjust their individual 
decision cycles. The coupling σ  is a somewhat more abstract concept but can be seen as how 
`quickly’ one agent should adjust their progress through the decision cycle given a change in 
the progress by any other. The 2π-periodicity of the sine function is appropriate in that it 
locally synchronises decision cycles within the ‘current phase’. The frequency iω is how 

many decision cycles per unit time can be achieved by agent i . This is chosen from a random 
distribution, representing the underlying heterogeneity between individual decision makers in 
the C2 system. Training and discipline can narrow that distribution; namely, introducing more 
homogeneity in the population of decision makers. But the intent is nonetheless to retain some 
degree of heterogeneity. Moreover, one does not have the luxury of ‘managing’ that 
heterogeneity: the C2 system is not designed with individuals of certain frequencies placed 
deliberately at certain nodes. 
 
Certainly in the NCW literature, such as [Alberts and Hayes 2007] and references therein, the 
desired self-synchronisation is applied to activity in the external environment. I am proposing 
that the precursor to this is synchronisation of decision cycles and therein mapping the phase 
of the Kuramoto model to the decision cycle; another implementation of the Kuramoto model 
is possible at the level of activity and is that used in [Dekker 2007, 2011]. These two options 
are not very far apart: a decision cycle in a context such as a headquarters will very often 
leave a trail of external artefacts (draft documents, emails, chat or verbal communication) that 
indicate the stage of OODA of a unit or individual; these artefacts are thus points of reference 
for another in the same organisation in synchronising their cycle. In other words, even the 
cognitive stages of Observe-Orient-Decide involve some form of social enterprise, when one 
steps beyond Boyd’s original application to the isolated fighter pilot alone in the cockpit. 
 
Applying Noise. The Kuramoto deterministic system is transformed into a stochastic 
differential equation (or ‘Langevin equation’) by adding terms to Eq.(1) that involve functions 
of time whose values are not correlated between time instances. In our case we introduce two 
forms of noise, additive aΓ and multiplicative mΓ , whose values are drawn from a Gaussian 

distribution of mean zero and unit variance (Gaussian White Noise). The additive noise will 
be applied to individual nodes as a time-dependent addition to the frequencies iω . The 

multiplicative noise is applied across links between nodes. In full then, the stochastic system 
takes the form: 

∑∑
==

Γ+−+Γ+=
N

j

m
ijijm

N

j
ijij

a
iaii RA

11

)sin( βγββσγωβ& . (3) 

The quantities ma γγ ,  are coupling constants and the matrix ijR is a further adjacency matrix 

representing the network of interactions across which multiplicative noise is applied.  
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Noise in C2 systems. Interpreting this noise for the C2 context is different for the additive and 
multiplicative cases, but at heart both represent the degree to which the human dimension 
cannot be microscopically tracked and modelled, analogous to the microscopic collisions of 
suspend colloid particles in the original observation of Brownian motion. Additive noise 
specifically means there is a random time-dependent element to how fast a cycle is 
completed: no individual processes information or makes decisions with the same speed in 
every instance as individual internal factors (such as, for example, mood and health) may vary 
from instance to instance. (Note that the external influences are captured through the network 
interactions.) Multiplicative noise represents the clarity of the interaction between individual 
nodes and therefore impacts on the coupling strength. Indeed, because such clarity is obscured 
in states of heightened activity we apply this term to the operators. Thus we may see the 
application of multiplicative noise as the onset of a crisis to which the headquarters must 
respond. As with many real instances of crisis, these are short lived as staff initially scramble 
to develop a response but then gradually the management of the response folds into a more 
sustainable steady-state. Thus we will apply noise only for finite periods of time.  
 
Note that, because our focus in this proof of concept model is the synchronisation of planners, 
we have not built in an interaction for operators that is locally synchronising (such as a sine 
function): in the absence of noise operators will synchronise only to the degree their Branch 
heads are synchronised through the planning interactions (in that respect it is genuinely not 
self-synchronisation).  
 
3. The J-staff model 
Networks. Formally we work with a headquarters of 19 members: the Commander J0, 6 
Branch heads (J1-J6, we ignore here the less universally implemented J7-J9), and individual 
staff J13, J15 and so on. At the lowest level whole teams may be inserted, but the modelling 
principle remains the same. This hierarchy is represented in the wiring diagram of Figure 2. 
Note that in this, and subsequent, diagrams the arrow is only used to order the layers in the 
construction of the network – it plays no operational role in the mathematical formulation 
which is always undirected graphs. 

J0

J1 J2 J3 J4 J5 J6

J13 J15 J23 J25 J33 J35 J43 J45 J53 J55 J63 J65  
Figure 2 The J-staff hierarchy of the model 

 
This hierarchical representation belies the manner in which this C2 organisation works. In our 
model planning interactions take place according to the network in Figure 3: the J5 is 
responsible to the Commander for drawing together the overall operational plan, with the staff 
work conducted by the J53 subordinate, who in turns draws upon contributions from peers in 
other branches, the J15, J25, J45, J65. However these junior officers in turn work to their 
branch heads who in turn report to the Commander. Note that here we exclude the J55 who 
would work to even longer term, strategic, time-frames to which the operational planning 
cycle may be subordinate; this requires modelling nested loops which we do not address here. 
 
In military doctrine this staff dynamic is articulated as the Operational Planning Process 
(OPP) or (in Australia) Military Appreciation Process (MAP), where key logical ‘gates’ such 
as Mission Analysis and Course of Action Analysis are stepped through. One may see such 
processes as an elaboration again of the OODA loop. Therefore we shall represent the 
completion of a cycle of planning as one OODA cycle, and the time for this will be captured 
as the inverse frequency of the planning nodes to be discussed further below. 
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J0

J1 J2 J4

J5

J6

J15 J25 J45

J53

J65

 
Figure 3 The planning interaction network 

 
Operators interact according to the network in Figure 4. The J33, focused on real time 
operations, interactions with the J3 who turns to the J35 for rapid planning but reports issues 
to the Commander. This officer in turn seeks rapid input from the other Branch specialists 
(J13, J23, J43, J63), who seek guidance from their Branch heads.  

J0

J3

J1

J13

J2

J23

J4

J43

J33 J35 J6

J63

 
Figure 4 The operations interaction network 

 
This process may be seen as reflecting a Daily Battle-Rhythm but where the Commander 
prefers to receive a briefing only from the J3. There are many alternatives to this, such as a 
daily brief with the J3 and J2, or indeed with all Branch heads. All of these are 
straightforwardly implementable in this model. As has been said many times already, our aim 
here is to show how any such network may be integrated into a mathematical model of 
synchronisation and its outputs used to make judgements about the success of that network in 
C2. 
 
Frequencies. The frequency, or inverse period, reflects the speed through a decision cycle. 
Unlike the traditional Kuramoto model which draws frequencies from some statistical 
distribution, here we shall choose quite regular values and put the randomness in the additive 
noise. We set a time scale by assigning a period of 1 time unit to operators and in turn 15 time 
units to a planning cycle. Thus, given the daily battle-rhythm, we may see 1 time unit roughly 
as a day and planners in turn work to a roughly two week planning cycle. The periods are then 
assigned as shown in Table 1. 
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Table 1 Periods for a decision cycle 
J staff units Period (time units) 

J33 0.5 
J0, J1, J2, J3, J4, J6, J13, J23, J35, J43, J63 1 

J15, J25, J45, J5, J53, J65 15 
J55 30 

Note that the J33 real-time operations staff has a much shorter period of 0.5 units and, 
conversely, the J55 strategic planner a longer period of 30 units. But both of these nodes are 
quite peripheral to the present model. More significantly, the J5 works to the same intrinsic 
period as their subordinate J53 in this model. The model could also test what changes if the J5 
worked to the same period as the other Branch heads. Frequencies are then the inverse period. 
 
4. Tuning and basic behaviours of the model 
We solve Eq.(3) numerically using Mathematica with 106 discretisation points. Calculations 
take between a few seconds to a few minutes (for extreme noise cases, for which there can be 
memory issues) on a standard desktop Windows XP or 7 workstation. Before applying noise, 
and with network structure and frequencies fixed, the only free parameter is the couplingσ . 
We tune this by requiring that in the absence of noise the planners achieve a stable behaviour 
of total synchronisation with 1≈Pr . This is thus consistent with a steady pattern in which 
planners can be proactive in thinking through a plan. This is achieved at 3.0=σ . We then 
apply noise to the operators – reflecting their focus on short-time disruptions - (technically, 
by introducing step functions in the defining Eq.(3)) for finite amounts of time. Indeed, to see 
the change in behaviour between the onset of additive noise and multiplicative noise we first 
switch on the additive noise, then the multiplicative noise, which is then sustained for some 
finite period of time to provide opportunity for the dynamic behaviour to settle down. Then 
the noises are switched off in reverse order. We equate the noise constants, γγγ ≡= ma , and 
examine the behaviours for different values of γ . We show in Figure 5 a typical instance of 
the dynamical behaviour for a weak value of noise parameter, 1.0=γ , in terms of plots of the 

three order parameters, OP rrr ,, , for the whole headquarters, the planners and the operators 
respectively, as functions of time. In this case the noise is sufficiently strong to weakly 
perturb the planners but strongly perturb the operators. 

 

  
Figure 5 Plots of the three order parameters as functions of time for coupling sufficient to allow 

planners to synchronise 3.0=σ and weak noise 1.0=γ . In light shaded regions only additive noise is 
applied while in darker regions both additive and multiplicative noise is applied. 
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More specifically, we observe that in the absence of noise the overall system shows quite 
extreme but slow periodic fluctuations inr . We comment on these further as we progress. But 
these do not change in character with additive noise (light shaded region), but become quite 
rapid with both forms of noise applied in the dark shaded region (Figure 5, top). As noises are 
switched off the original behaviour is restored. Contrastingly, the planners, whose order 
parameter is shown in Figure 5 (bottom, left) synchronise in less than 10 time units which 
clearly has reached a plateau 1=Pr (as intended by the setting of the coupling constant) by 
the time additive noise is applied at 15=t  (in other words by the time of their second cycle). 
With the additive noise there is a slight drift which is not seriously exacerbated with the 
application of multiplicative noise. However, for the operators ((Figure 5, bottom, right) there 
is also some degree of synchronisation in the absence of noise. This synchronisation is local 
to them but not synchronised with the planners hence the initial fluctuations in the top part of 
Figure 5 whose periodicity will be seen to reflect a clustering into two groups. Moreover, 
because the operators are not subject to the sine interaction in Eq.(3), it is a second order 
consequence of the coupling of the Branch heads to their planners. The noise, unsurprisingly, 
completely disrupts this local synchronisation as it is applied directly across their links. 
Overall we could say that Figure 5 represents a ‘two speed’ headquarters – one part of the 
staff are barely affected by disruptions to other parts though there are second order effects in 
play. 
 
At the other extreme, we show the behaviour for relatively strong noise constant 9.0=γ in 
Figure 6. Again, before noise is applied overall there are periodic fluctuations (top) because 
planners and operators have separately synchronised to a high degree (Pr and Or close to one 
respectively in the bottom left and right figures). Up this point it is another instance of the 
behaviour seen before the noise for weak noise constant. When additive noise is applied (light 
shaded regions) even the planners are disrupted strongly – in this instance their order 
parameter zig-zags twice in the time interval. Finally the multiplicative noise strongly disrupts 
the operators, to whom it is directly applied, but even the planners undergo erratic behaviour 
with some modulation suggestive of its origin as a second order effect. This is precisely 
because of the flow: J33→J3→J0→J5→J53 and beyond.  

 

  
Figure 6 Plots of the three order parameters as functions of time for coupling sufficient to allow 

planners to synchronise 3.0=σ and strong noise 9.0=γ . In light shaded regions only additive noise is 

applied while in darker regions both additive and multiplicative noise is applied 
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5. Analytic Behaviour and Mean First Passage Time 
There is value in understanding analytically, where possible, some aspects of the dynamics. 
The case of multiplicative noise is beyond our powers presently, however we can understand 
at a deeper level the behaviour arising from the additive noise on the operators. We achieve 
this by examining the equations in the vicinity of a fixed point for phase synchronisation 
where some approximations of the non-linear equations can be made. Then the stability, 
namely exponential decay of fluctuations back to the fixed point, or instability, namely 
exponential divergence of fluctuations, can be analysed. 
 
Specifically, we consider the connected network of planners at the instant additive noise is 
switched on. As we have seen, we have chosen the coupling constant such that the system 
always reaches phase synchronisation without the noise. In this setting the planners phases 
obey the fixed point relationship ji ββ ≈ , which allows us to approximate the sine interaction 

by its leading linear behaviour. This allows us to express the interaction term as 

∑∑
==

−≈−
PP N

j
jij

N

j
ijij LA

11

)sin( βββ , 

where PN  is the number of planners and we have introduced the graph Laplacian 

matrix, ijijij ADL −= .The eigenvalues and eigenvectors of the Laplacian are particularly 

useful for understanding dynamical systems on a network [Bollobás 1998]. For example, the 
eigenvalues, denotedsλ , )1,,1,0( −= PNs K , are zero or positive 1100 −≤≤≤=

PNλλλ K ; the 

number of zero eigenvalues in fact corresponds to the number of disconnected components a 
network breaks up into. For the planners network the spectrum of eigenvalues is shown in 
Figure 7, showing the one zero value (the planners network does not have disconnected 
components) and a number of degenerate values which reveal symmetries in the planners 
network. 
 

 
Figure 7 Plots of the eigenvalues of the planners Laplacian 

The relevant dynamical equations for the planning network at the instant the additive noise is 
switched on is 

∑
=

−Γ+≈
PN

j
jij

a
iaii L

1

βσγωβ& . (4) 

The orthonormal eigenvectors of the Laplacian, denoted )(sνr , allow the system to be 
diagonalised and solved. The phase angles for the planners are expanded into Laplacian 
‘eigenmodes’ 

∑
−

=

=
1

0

)()()(
PN

s

s
isi txt νβ . (5) 

We then project all the terms in Eq.(4) onto the s-th eigenvector, for example for the noise: 
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∑
−

=

Γ=Γ
1

0

)()()(
PN

s

s
is

a
i tt ν . (6) 

(Such a linear combination of independent uncorrelated Gaussian white noise gives similarly 
uncorrelated Gaussian white noise.) A similar equation defines the frequency projected 

vector )(sω . Applying Eq.(5,6) to Eq.(4), we obtain the decoupled system of linear 
(‘Langevin’) equations for the eigenmodes, where for the moment we make  

sssa
s

s xx σλγω −Γ+= )(
& . (7) 

 
Let us now pause and consider the above sets of equations before ploughing ahead 
analytically. If we consider the above equations in the absence of noise, then each eigenmode 
has the solution of exponential decay in time with decay constant 0>sσλ due to the positive 
semi-definiteness of the eigenvalues. This is consistent with the Kuramoto model showing 
Lyapunov stability about the phase synchronised fixed point. Each eigenmode decays to a 

non-zero constant )/()( )(
s

s
s tx σλω=∞→ . Thus it is assured that the sine approximation we 

applied at the start of this section is valid. In terms of the planners, small fluctuations in their 
cycle are damped and they always relax to their natural planning rhythm. 
 
Consider now the system with noise. It is generally known that in systems with additive noise 
(applied here via the operator nodes) eventually a sequence of fluctuations will arise in the 
random distributions that will be sufficient to knock the system out of the basin of attraction 
of the fixed point [Schuss 2010]. This will apply no less to Eq.(7). This does not mean that the 
overall system (Eq.(3)) will be unstable, but it does mean that at some point in time we expect 
the linear approximations of the sine function used to arrive at Eq.(4) to no longer hold, and 
one has to consider the full non-linear system which may restabilise the behaviour. The 
planners are continually disrupted and there is a time after application of the noise in which 
their natural relaxation to their routine cycle can no longer occur. 
 
The Mean First Passage Time (MFPT), denoted by][τΕ , now enables a probabilistic 
characterisation of this time to instability, or mean (over many instances of noise) time in 
which the planners are driven outside of the basis of attraction of the fixed point of their 
natural cycle. Formally, the MFPT is the expected time the process in Eq.(7) will cross a 
designated boundary such as that for a basin of attraction of a fixed point. In this instance, we 
choose the boundary which leads to the sine approximation to break down. In general, it is 
quite hard to derive exact bounds on the eigenmodes sx  which lead to the phase difference 

ji ββ −  being sufficiently far apart as to break the sine approximation (see Appendix A of 

[Zuparic and Kalloniatis 2013]). However, in our experiences with systems of 20-30 nodes 
[Kalloniatis 2010; Zuparic and Kalloniatis 2013] a sufficient “heuristic” boundary is given 
simply by 1±=sx . 

 
With the boundaries chosen, the MFPT is calculated through solving the Andronov-Vitt-
Pontryagin equation [Schuss 2010], given in the Appendix. From Figures 5 and 6, we know 
that the processes in Eq.(7) have reached steady state by the time the additive noise is 
switched on. Hence the initial values are simply the steady state values of the deterministic 

process )/()(
s

s
sx σλω= . Using this fact about the initial values sx  of the MFPT, we can 

compute a closed form solution, which is given in the Appendix. It turns out that it is 
convenient to view the MFPT as a function of two combinations of the various parameters of 

the model: s
s σλωµ /)(= , 2/ as γσλχ = .(We suppress the subscript ‘a’ in aγ for the remainder 

of this section.) Plotting the MFPT in terms of these parameters we arrive at a surface shown 
in Figure 8. In this plot we indicate as large dots points coinciding with parameter choices of 
interest, for some of which we have numerically solved the full system of equations. In 
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particular, they correspond to the two lowest non-zero eigenvalues of the planners graph 

Laplacian, for which 1)/()( <s
s σλω , meaning that these are the modes ‘closest’ to instability. 

 

 
Figure 8 Plot of the MFPT for the parameters µ  and χ with the frequency ω  set to 1/15 as a function 

of frequency to coupling ratio (x-axis, left-to-right) and coupling to noise strength ratio (y-axis, into the 
page). The surface is divided into two regions, white and blue, with the dividing line between the two 
regions being the line of equi-MFPT (with 5][ =Ε τ ). The dots on the surface are the MFPTs for 
specific parameter choices and graph topology for the planners network. The two brown dots are the 
MFPT for 9.0=γ and 89.0=λ (left brown dot)/ 47.0=λ (right brown dot). The two blue dots are the 

MFPT for 5.0=γ and 89.0=λ (left blue dot)/ 47.0=λ (right blue dot). Finally, the two black dots are 

the MFPT for 3.0=γ and 89.0=λ (left black dot)/ 47.0=λ (right black dot). 

 
To orient ourselves with this figure it is worth appreciating that infinite MFPT means an 
infinite amount of time is required for the first passage of the system across the boundary. 
This may be termed absolute stability in the presence of noise. However, apart from this 
special point, if noise is sustained for long enough eventually stability will be lost. So there is 
only relative stability and the question becomes how long can noise be sustained on average 
before the system is driven from its equilibrium point. Thus the rising peak in Figure 8 is the 
region of higher relative stability. Towards the edges, with small values of MFPT, are regions 
of contrastingly high instability. We have introduced a plane in the plot to show points of 
equal MFPT at 5][ =Ε τ , the time at which multiplicative noise is switched on in our 
numerical solutions of the system. Thus the two black points, for the two lowest eigenvalues 
of the Laplacian, but at the lower value of noise constant 3.0=γ  show high values of MFPT. 
So, small noise means relative stability. In fact, for the even weaker values of noise of 

1.0=γ  for which we solved the equations the MFPT is many orders of magnitude larger and 
off the scale of this plot. This is consistent with the weak response of the system to the noise 
seen in Figure 5. Contrastingly, the two brown points, again for the two lowest eigenvalues, at 
noise constant 9.0=γ  lie in regions of small MFPT in Figure 8. So, increasing noise 
increases the instability. Again, this is consistent with the severe disruption the noise causes 
in Figure 6. In between we show the blue points which lie on the boundary for the time at 
which multiplicative noise is applied. We may describe this as a region of intermediate 
stability. But this value of noise strength leads to further interesting behaviours once 
multiplicative noise is applied.  
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In summary, the planes of equi-MFPT in Fig.8 allow estimation of the average time for which 
planners with specific coupling and frequencies (x-axis) can tolerate noise of specific strength 
(y-axis) propagated through the operators before driven completely from their natural cycle. 
 
6. Emergence 
Emergence is often described as the property of dynamical systems to ‘surprise’ – to exhibit 
unexpected behaviours. Formally, we adopt Laughlin’s [2005] definition of emergence as: 
system qualities or behaviours that are not reducible to the system components but arise from 
their interactions. In this case there are a number of layers in the headquarters design of our 
model: 1) the individual planner and operator oscillators at the nodes of the networks 2) the 
two networks as entities unto themselves, and 3) the collective headquarters system. I shall be 
primarily interested in emergence across these layers; namely, behaviours that are not 
reducible to one of these three layers. 
 
Emergence in dynamical systems is also associated with an intermediate region between order 
and disorder, stability and instability or the ‘Edge of Chaos’. Above we have already 
discussed the role of fixed points for the space of oscillator states. Edge of Chaos sees 
trajectories neither exponentially converging back to the point (Lyapunov stable) nor 
diverging away (Lyapunov unstable) but following power-law dependence on time. Mixed in 
with more standard stable and unstable directions, this gives rise to forms of patterned 
behaviour through collective degrees of freedom. Our colleague Richard Taylor has shown 
that there are thresholds for more types of stable fixed points in the equal frequency 
Kuramoto model than just ‘globally phase synchronised’ [Taylor 2012]. In the Kuramoto 
model with non-equal frequencies, one of us has also identified such fixed points [Kalloniatis 
2010]: for many classes of networks there is an intermediate range of coupling where nodes 
have formed a small number (two to three) of clusters, within which oscillators are locked to a 
common frequency, but across which there remains incoherence; a further increase in 
coupling tips these clusters into forming a single overall cluster. Technically, these 
behaviours occur in a regime of non-vanishing imaginary parts of Lyapunov exponents but 
vanishing real parts of Lyapunov exponents – giving stable limit cycles and the formal Edge 
of Chaos characterisation. Thus a system of many oscillators with random frequencies may 
devolve to a two or three body system of effective modes, the internally locked clusters, 
sufficient to give rise to structured behaviour, depending on the vagaries of how the 
frequencies and connections are distributed: oscillators with nearly identical frequencies 
placed at adjacent nodes will tend to cluster. This clustering as an intermediate regime is 
illustrated in a series of parametric plots for three different values of the coupling σ  in Figure 
9 for such a system.  
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Figure 9 Parametric plots of phase angles over the time duration of cosine and sine of phases divided 
by time for weak (top), intermediate (bottom left), and strong (bottom right) coupling; respectively 

these show incoherence (top), intermediate clustering (bottom left) and complete phase locking (bottom 
right). 

 
Unlike Figure 1, which represents a snapshot in time, we now plot as a series of points the 
cosine and sine of the phase of an oscillator for each moment in time. For any single point one 
would obtain a circular track. Dividing the cosine/sine by the time brings this track, for zero 
coupling, to a single point consistent with the motion of an individual oscillator about the unit 
circle being largely uniform in time. Plotting this for all oscillators, for zero coupling, gives a 
distribution of points lying on the circle (Figure 9, top); unlike the first case in Figure 1, the 
points here are not spread over the entire circle because dividing by the time here exposes the 
individual oscillator frequencies (which for the above case are drawn from a distribution 
between [0,1]). Now, as coupling strength increases there is a transition from the multiple 
points to one single point, corresponding to all oscillators locked to the same phase moving 
with the average frequency (Figure 9, bottom right). In between these extremes is a state of 
two independent clusters (Figure 9, bottom left). This intermediate level clustering gives rise 
to cyclic behaviour of the order parameter r. This explains in more depth why, at coupling 
value 3.0=σ in the absence of noise the overall order parameter shows cyclic behaviour in 
the top plots of Figure 5 and Figure 6: planners and operators have formed their own clusters, 
as alluded earlier. 
 
Can such behaviour occur for our headquarters model in the presence of noise? Indeed it can, 
and shows up in many instances at 5.0=γ , which led to the intermediate MFPT region in 
Figure 8. We plot one example in Figure 10 where three periodically spaced peaks in the 
order parameter Pr  occur through the application of noise in the dark shaded region of Figure 
10 (bottom, left). We have generated many of these and sometimes two cycles occur and 
sometimes four, infrequently more chaotic or even quiescent appear according to the specific 
instance of the noise. 
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Figure 10 Plots of the three order parameters as functions of time for coupling sufficient to allow 

planners to synchronise 3.0=σ and strong noise 5.0=γ . In light shaded regions only additive noise is 

applied while in darker regions both additive and multiplicative noise is applied 
 
Studying individual cases more carefully suggests that this ‘accidental’ herding of planners 
does not coincide with any natural convergence of their immediate superiors. If anything, in 
Figure 11, which compares the positions of the planners’ cycles with that of their immediate 
superiors at the time at which Pr  reaches one of its periodic maxima, there is evidence of an 
anti-correlation. In that sense the military hierarchy is playing a double role at this 
intermediate noise constant value: it is the path for the noise to disrupt the planners in the first 
place but it indirectly generates a phase shifted convergence of those same planners. 
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Figure 11 Two quad charts showing snapshots of the positions of planners’ J15, J25, J45, J53, J65 

cycle (top left of each set of four) and that of their immediate superiors J1, J2, J4, J6 (bottom left) at the 
time at which the planners order parameter (top right) is close to its peak at the latest time in the right 

hand plots. Note that the relatively well converged planners are half a cycle shifted with respect to their 
(less converged) superiors. 

 
7. Conclusions and Future Work 
Our aim in this paper was to give a proof of concept that the mathematical formulation of the 
Kuramoto model provides a basis for representing the structure and dynamics of a military 
staff headquarters. The basis for this representation is the common feature in both of network 
structure, and cyclicity in the elementary processes of individuals and their units. Drawing on 
our recent research of the influence of noise on phase synchronisation we were able to further 
enrich the model by showing how the unavoidably chaotic, reactive life of operators can flow 
across to planners who seek to work to tighter planning cycles. Solving the equations 
numerically we demonstrated basic behaviours of the model that may be recognised in a 
poorly functioning headquarters: planners who have become so reactive there is no semblance 
of order to their processes, or so oblivious to the reactivity of their operator colleagues they 
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are unresponsive to the external environment. However, we were able to show there is an 
intermediate regime of behaviour where order and chaos are finely balanced, so that the 
planners achieve regular periods of near synchronisation. We argue this is the regime of an 
agile organisation, where it is able to achieve an ordered behaviour that is responsive to the 
circumstances of fluctuations and interactions. Each instance of this order will be different 
according to the specific nature of the noise. We have provided some evidence that the 
hierarchy plays a non-intuitive role in this order. Indeed, the network combines both the peer-
to-peer and hierarchical aspects which, we argue, are necessary for both agility and 
accountability. Further research into the coincidences of structure and frequency can provide 
insight into how such order can be achieved systematically.  
 
Beyond the particular formulation of this model, there are further refinements of this 
Kuramoto-like instantiation of a headquarters model. For example, here we have not provided 
interactions that give the operators scope for locally synchronising, nor, for that matter, the 
J33 or J55 (‘strategic planners’). This is because we lack a formulation for synchronisation 
within nested loops. Within this spirit, there is scope for representing that each unit in a 
headquarters may play a different role in an overall headquarters OODA loop while 
nevertheless undertaking their own local (and nested) decision cycle. For example, the J2 
predominately enables the Observe and Orient phases with respect to the Red force, the 
Commander and Branch Heads play a role in the Decide phase, and deployed units in the Act 
phase. These are elements we anticipate developing in the near future.  
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Appendix: Laplacian eigenvectors and Mean First Passage Time 
In the main body we defined the Laplacian and gave some properties of its eigenvalues. The 

orthonormal Laplacian eigenvectors,)(sνr , satisfy 
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These vectors also reveal aspects of the underlying graph structure. For example, for the 

planners Laplacian the two lowest eigenvectors )0(νr and )1(νr  are shown in Figure 12. Observe 

that for the zero eigenvector all nodes participate in the vector with value PN/1 while that 

eigenvector for the first non-zero eigenvalues picks out certain nodes non-uniformly. In fact 
these expose the nodes most susceptible to become disconnected with minimal link removals. 
 

  
Figure 12 Plots of the eigenvector component values for the normalised “zeroeth” (left) and “first” 

(right) eigenvectors of the planners Laplacian. 
 
With the boundaries 1±=sx , the MFPT is a solution to the Andronov-Vitt-Pontryagin 
equation [Schuss 2010], given for this instance by, 
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with the boundary conditions 0][][ 11 == −== xsxs EE ττ . Reiterating, the MFPT is the expected 
time taken for the stochastic process in Eq.(7) to hit the boundary given that the process 
begins in the domain 11 ≤≤− sx . The boundary conditions simply state that a process which 
begins on the boundary takes zero time to cross it. From Figures 5 and 6, we know that the 
processes in Eq.(8) have reached steady state by the time the additive noise is switched on. 
Hence the initial values are simply the steady state values of the deterministic process, 

)/()(
s

s
sx σλω= . Using this fact about the initial values sx  of the MFPT, the closed form 

solution of Eq.(9) is given by (see Appendix C of [Zuparic and Kalloniatis 2013]), 
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where erfi is the imaginary error function and H is the generalised hypergeometric function: 
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