
19th%ICCRTS%

Set%Reconciliation%in%Two%Rounds%of%Communication%

%

%

Primary%Topic:%Data,%Information,%and%Knowledge%

Alternate%Topic%1:%Cyberspace,%Communications,%and%Information%Networks%

Alternate%Topic%2:%Modeling%and%Simulation%

Name%of%Author(s):%Ryan%Gabrys%and%Ayodeji%Coker%

POC%Name:%Ryan%Gabrys%

POC%Organization:%SSC%Pacific%

POC%Address:%53560%Hull%Street%San%Diego,%CA%%92152R5001%

POC%Telephone:%847%308%9893%

POC%ERmail:%gabrys@spawar.navy.mil%
!
!
!
!
!

%Abstract%
!
In!this!work,!we!propose!an!approach,!known!as!the!C2SS4BF!method,!to!
synchronizing!similar!sets!of!data!that!uses!an!Invertible!Bloom!Filter!(IBF).!The!
C2SS4BF!method!builds!on!previous!work!by!Eppstein!et!al.!in![6].!By!allowing!two!
rounds!of!communication,!we!show!that!in!many!cases!the!proposed!approach!
requires!substantially!less!throughput!than!the!algorithm!proposed!in![6].!The!C2SS4
BF!compares!favorably!to!the!work!by!Guo!and!Li!in![9],!and,!in!particular,!it!
requires!less!computational!complexity!and!throughput.!

1

Set Reconciliation in Two Rounds of
Communication
Ryan Gabrys and Ayodeji Coker
Spawar Systems Center, San Diego

gabrys@spawar.navy.mil, ayodeji.coker@navy.mil

Abstract—In this work, we propose an approach, known as

the C2SS-BF method, to synchronizing similar sets of data that

uses an Invertible Bloom Filter (IBF). The C2SS-BF method

builds on previous work by Eppstein et al. in [6]. By allowing

two rounds of communication, we show that in many cases the

proposed approach requires substantially less throughput than

the algorithm proposed in [6]. The C2SS-BF compares favorably

to the work by Guo and Li in [9], and, in particular, it requires

less computational complexity and throughput.

I. INTRODUCTION

There has been an increasing need to maintain a Common
Operational Picture (COP) between a collection of hosts
within a disconnected, intermittent and low-bandwidth (DIL)
maritime environment. Existing Command and Control (C2)
systems that use event-based protocols may conserve band-
width, but they do not guarantee a COP in a DIL environment.
The purpose of the Command and Control Data Synchroniza-
tion Service (CS22) is to develop synchronization tools that
not only ensure synchronization occurs, but also guarantee
synchronization is achievable within a DIL environment. In
particular, the unreliable nature of the DIL environment is
accounted for in our framework by ensuring that our method
addresses the following core properties:

1) The method uses minimal communication rounds, and
2) The throughput between any two hosts on the network

is limited.
The document is organized as follows. In Section II, we

review the current approach to reconciling data sets used by
C2SS and detail our contribution. In Section III we define the
notation to be used in this paper. In Section IV we describe
our approach to synchronizing similar sets of data. In Sec-
tion V, we provide simulation results comparing our proposed
algorithm to existing approaches. Section VI concludes the
paper.

II. CURRENT APPROACH TO RECONCILING DATA IN C2SS
AND OUR CONTRIBUTION

Suppose there are two hosts A and B where Host A has
access to the set SA ✓ GF (2)

b and Host B has access to
the set SB ✓ GF (2)

b. The set reconciliation problem is
to determine which information must be sent between Host
A and Host B so that each host can compute SA [SB .

We use the terms set reconciliation, data reconciliation, and
synchronization to refer to the process by which Host A and
Host B compute SA [SB .

In [6], [10], and [13] the authors considered the set recon-
ciliation problem under the additional constraint that only a
single round of communication was allowed. The goal in this
work is to provide a solution to the set reconciliation problem
that requires two rounds of communication. It is also desirable
that any proposed algorithm posses low encoding/decoding
complexity properties.

The current approach taken by the C2SS software (for
set reconciliation) is to use a set of hashes along with a
Merkle tree. The hashes are used to represent some unit of
information and the Merkle tree organizes the hashes in a
hierarchical manner to facilitate comparison. For shorthand,
we refer to this approach as the C2SS-HM method. The C2SS-
HM method has been demonstrated to provide very reliable
data synchronization; however, it needs to be optimized in the
following areas:

1) For wide Merkle trees, many hashes need to be com-
pared/exchanged at the same time, and

2) for tall Merkle trees, set reconciliation requires many
rounds of communication.

In this work, we draw from the analysis provided in [12],
which also uses a method similar to the C2SS-HM method. In
the following analysis we assume the Merkle tree is balanced.
Assuming w is the width of the tree and the size of the
symmetric difference is d = |SA 4 SB | = |(SA \ SB) [
(SB \ SA)|, it was shown in [12] that the expected number
of rounds of communication (or the height of the tree) is
O(2 logw(

d
¯d+1

)) +O(1) for some positive integer ¯d. We note
that given the unreliable nature of a DIL environment, a
protocol with fewer rounds of communication is desirable. In
addition, the C2SS-HM method also requires maintaining a
tree structure (preferably balanced) in memory.

The purpose of this document will be to discuss a new
approach to set reconciliation that overcomes several of the
drawbacks to the C2SS-HM method. More specifically, we
propose an approach to set reconciliation that requires at most
two rounds of communication and does not require a tree
structure. The principal tool used in our proposed method is
a Bloom Filter and so we refer to our method as the C2SS-
BF method. The basic idea behind the C2SS-BF method is

2

similar to that proposed in [6] and [9]. We compute a hash on
Host A and a hash on Host B. Then, Host A and B exchange
their hashes. On Host A we determine SA \ SB and similarly
on Host B we determine SB \ SA. Finally, the information
SA \SB and SB \SA is exchanged between Host A and Host
B.

The C2SS-BF method has the following important at-
tributes:

1) Requires less throughput than current approaches to set
reconciliation ([6], [13]).

2) Requires only two rounds of communication.
In Section V and Appendix B, we provide comparisons

between existing approaches in the literature and the proposed
algorithm in this paper.

III. SOME NOTATION

The following is a description of the notations used in the
remainder of this paper. We assume that f

1

, . . . , fk are hash
functions where for any i 2 {1, 2, . . . , k}, fi : GF (2)

b !
{(i � 1) · d(k+1)

k + 1, (i � 1) · d(k+1)

k + 2, . . . , i · d(k+1)

k }
for positive integers d, k. For an element x 2 GF (2)

b, let
fk

(x) = (f
1

(x), f
2

(x), . . . , fk(x)). We refer to the vector
fk

(x) = (f
1

(x), f
2

(x), . . . , fk(x)) as the locations of the
element x.

IV. THE C2SS-BF METHOD

In this section, we begin by describing at a high level
the basic ideas behind the C2SS-BF method. Afterwards, we
describe in detail the algorithm for computing SA [SB .

Recall, our problem is that given two hosts A and B where
Host A has access to the set SA ✓ GF (2)

b and Host B
has access to the set SB ✓ GF (2)

b to determine which
information must be sent between Host A and Host B using
two rounds of communication so that Host B and Host A
can each compute SA [SB . Let t = |SB | � |SA| and let
d = |SA4SB |. We assume that t and d are known to both Host
A and Host B. We note that estimates of d can be obtained
using sampling techniques such as those described in [6] and
[7]. After two rounds of communication, the result is that Host
A and Host B will recover SA 4 SB (and consequently can
determine SA [SB) with probability O(d�k+2

).
In Section IV-A, we describe the encoding process followed

by the decoding process in Section IV-B. Afterwards, we com-
ment on the encoding/decoding complexity and the throughput
required for the C2SS-BF method.

The algorithm proceeds as follows:
1) Host A inserts all the elements in SA into a Bloom Filter

(BF), denoted hSA . Host B inserts the elements from SB

into a Bloom Filter, denoted hSB .
2) Host A transmits hSA to Host B and Host B transmits

hSB to Host A.
3) Host B receives hSA and uses it to compute SB \ SA,

and Host A receives hSB and uses it to compute SA\SB .

4) Host B transmits SB \ SA to Host A, and Host A
transmits SA \ SB to Host B.

Since SA[SB = SA[(SB \SA) = SB [(SA \SB), after the
completion of step 4), both Host A and Host B can determine
SA [SB .

The computation of hSA and hSB are identical and are
described in Section IV-A.

A. Encoding

On each host, we begin by creating a special type of Bloom
Filter known as an Invertible Bloom Filter (IBF). Our IBF is
comprised of a collection of n = d(k + 1) cells where d =

|SA4SB | and k is some integer. We assume, for convenience,
that n is a power of two. As before, we refer to the IBF on
Host A as hSA and similarly we refer to the IBF on Host B
as hSB . We use the terms hash and IBF interchangeably for
the remainder of the paper.

To encode hSA (and similarly for hSB) we simply insert all
the elements in SA (or SB) into an IBF. In the following, we
let S = SA if the procedure is being performed on Host A
and S = SB if the procedure is being performed on Host B.

When an element is inserted into an IBF it is hashed to k
different cells, and we assume the hash functions f

1

, . . . , fk
are the same on both Host A and Host B. Let q be a positive
integer to be defined later. Each cell contains two fields:

1) c: an integer which is simply the number of times the
cell has been hashed to modulo q.

2) l: the sum of all the element locations that have hashed
into the cell modulo n.

To fix ideas, we include the encoding algorithm for the
C2SS-BF method below along with an example. We refer to
k-th cell in the IBF below as hS [k]. We assume that hS [k] is
initialized so that the count field for every cell is zero and the
locations field is simply all-zeros.

Algorithm 1: C2SS-BF Encode
input : The set S ⇢ GF (2)

b

output: The IBF hS

1 for every x 2 S do

2 for i = 1 : k do

3 hS [fi(x)].c = hS [fi(x)].c+ 1 mod q;
hS [fi(x)].l = hS [fi(x)].l + fk

(x) mod n;
4 end

5 end

Example1. Assume d = 4, k = 2 and S = {(0, 0, 0), (1, 1, 0)}
where f

1

((0, 0, 0)) = 5, f
2

((0, 0, 0)) = 8, f
1

((1, 1, 0)) = 5,
and f

2

((1, 1, 0)) = 9. Assume that Algorithm 1 is performed
on the elements from S resulting in the IBF hS . Then, hS
would appear as shown in Figure 1.

We have the following corollary.

3

Cell$
Cell1

c:0
l:$(0,0)$

Cell$
Cell2

c:0
l:$(0,0)$

Cell$
Cell3

c:0
l:$(0,0)$

Cell$
Cell4

c:0
l:$(0,0)$

Cell$
Cell5

c:2
l:$(10,5)$

Cell$
Cell6

c:0
l:$(0,0)$

Cell$
Cell7

c:0
l:$(0,0)$

Cell$
Cell8

c:0
l:$(5,8)$

Cell$
Cell9

c:1
l:$(5,9)$

Cell$
Cell10

c:0
l:$(0,0)$

Cell$
Cell11

c:0
l:$(0,0)$

Cell$
Cell12

c:0
l:$(0,0)$

Fig. 1. IBF hS when S = {(0, 0, 0), (1, 1, 0)}

Corollary 1. The hash hS contains

d(k + 1) (log

2

(q) + k log
2

(d(k + 1)))

bits of information.

Proof: According the encoding procedure, the hash hS is
comprised of two fields. The first field (c field) requires log

2

(q)
bits of information and the second field (l field) requires
k log

2

(n(k + 1)) bits of information.
In the next subsection, we show how compute SA 4 SB

from hSA , hSB .

B. Decoding

In this subsection, we enumerate the decoding procedure
for the C2SS-BF method performed on Host B or Host A
given hSA , hSB . For the purposes of this section, we assume
the local host is Host B; however the algorithm is identical
for the case where the decoding takes place on Host A.

We now explain in words the decoding algorithm. Let
hSB .c = (hSB [1].c, hSB [2].c, . . . , hSB [n].c) and hSA .c =

(hSA [1].c, hSA [2].c, . . . , hSA [n].c). To determine SB \SA, we
first compute the vector hc = hSB .c� hSA .c.

We now consider the following scenario. Suppose x 2 SA\
SB . If x hashes to cell i in hSB (that is, if there exists some
j 2 [k], where fj(x) = i), then since Host A and B have
the same hash functions, x would also be hashed to cell i in
hSA since x 2 SA. Thus, any increments to the vector hSB .c
caused by x 2 SB are canceled out in hc since the same
increments are made to the vector hSA .c since x 2 SA.

From the previous paragraph, if cell i in hc has a value
+1 it follows that one of the elements from SB that hashed
to cell i in hSB is from the set SB \ SA. Let y 2 SB \ SA

be an element that hashed to cell i. In this case, we produce
an estimate for y 2 SB \ SA by finding an element ˆ

y 2 SB

where fk
(

ˆ

y) = hSB [i].l. We will show in Appendix A that
with high probability, y =

ˆ

y. If an element ˆ

y can be found,
then we proceed by removing the contribution of ˆy from hSB .
In other words, we decrement all the c fields for cells where
ˆ

y hashed to and we subtract fk
(

ˆ

y) from all the l fields for
cells where ˆ

y hashed to.
Now suppose cell i in hc has a value �1. From the

discussion, it follows that one of the elements, say y

0 2 SA,
that hashed to cell i in hSA is such that y0 2 SA\SB . Since we
assumed the decoding is being performed on SB , we do not
produce an estimate of y

0. However, with high probability,
we have that fk

(y

0
) = hSA [i].l. Since fk

(y

0
) contains the

locations y

0 hashed to, we proceed in this case by removing
the contribution of y0 from hSA .

The algorithm thus proceeds by successively searching for
positions where hc is equal to ±1 and removing the elements
(as described in the previous two paragraphs) from either hSA

or hSB until both hSA and hSB are empty. The details are
provided in Algorithm 2.

Algorithm 2: C2SS-BF Decode
input : SB , hSA , hSB

output: An estimate F of SB \ SA

1 F = ;;
2 ` = 1;
3 while `  n do

4 hc = hSB .c� hSA .c;
5 if hc[`] = 1 then

6 if 9!ˆy 2 SB : fk
(

ˆ

y) = hSB [i].` then

7 Add ˆ

y to F ;
8 for i = 1 : k do

9 hSB [fi(ˆy)].c = hSB [fi(ˆy)].c� 1 mod q;
10 hSB [fi(ˆy)].l = hSB [fi(ˆy)].l � fk

(

ˆ

y)

mod n;
11 end

12 end

13 else

14 STOP. A decoding error occurred.
15 end

16 ` = 0;
17 end

18 else if hc[`] = �1 then

19 (j
1

, j
2

, . . . , jk) = hSA [`].l;
20 for i = 1 : k do

21 hSA [ji].c = hSA [ji].c� 1 mod q;
22 hSA [ji].l = hSA [ji].l � (j

1

, j
2

, . . . , jk)
mod n;

23 end

24 ` = 0;
25 end

26 ` = `+ 1;
27 end

28 If hc does not contains all-zeros, then a decoding error
has occurred.

We note that for every element y 2 SA 4SB , Algorithm 2
requires that, in order to produce the estimate ˆ

y, we have to
search through the elements in SB . Assuming the elements SB

are sorted, each search operation would require O(log(|SB |)
operations, and so the total complexity of Algorithm 2 is
O(d log(|SB |). Furthermore, as described in the theorem be-
low, the probability of incorrect synchronization is O(d�k+2

).
The proof of the theorem is included in Appendix A.

Theorem 1. If |SB |  k
log2(

1
d)

log2(1� kk

dk(k+1)k
)

and q  k loge(d)+

e � 1, then with probability O(d�k+2

), the output of Algo-
rithm 2 is such that F 6= SB \ SA.

4

In the next section, we present simulation results illustrating
some properties of the C2SS-BF method.

V. SIMULATION RESULTS

In this section, we evaluate the C2SS-BF method against
the set reconciliation algorithms from [9], [13]. We assumed
that there were two hosts A and B where Host A has access
to the set SA ✓ GF (2)

131072 and Host B has access the the
set SB ✓ GF (2)

131072 where |SA| = 200, |SB | = 200. We
chose to test the synchronization of bit-strings of size 131072

(16 kilobytes). The choice of 16 kilobytes was motivated
by the setup where two databases are synchronizing their
pages (which are usually between 4KB and 32KB [3]). We
then tested the performance of the algorithms for varying
sizes of d = |SA 4 SB |. For every value of d from the
set {10, 20, 30, 40, 50, 60, 70, 80}, we ran 10, 000 trials where
we attempted to synchronize the sets SA,SB given that
|SA 4 SB | = d. In other words, for every trial we attempted
to compute SA [SB on both Host A and Host B.

We used the CBF from [9] in a manner analogous to the
usage of the IBF in the C2SS-BF method. In particular, a CBF
from [9] was used to determine the set difference SA \SB on
Host A and a CBF was used to determine the set difference
SB \SA on Host B. Then SA\SB was sent from Host A to B
and similarly SB \ SA was sent from Host B to Host A. For
the results shown in Figures 2 and 3, we constructed CBFs
of the following lengths: 1) 65100 2) 303600 3) 492800 4)

2077200 5) 2698800 6) 3338400 7) 3993300 8) 4661100. The
CBF of length 65100 was used for data reconciliation when
d = 10; the CBF of length 303600 was used to reconcile data
when d = 20, and so on. The CBFs constructed consisted of
simply an array of cells containing binary numbers.

In Figure 2, we plotted the error rates for the C2SS-BF
method and the approach from [9] for varying values of d.
We assumed, for the purposes of the C2SS-BF method, that
d was known and that k = 4. Since the approach from [13]
is exact, the probability of correct synchronization is 1 and so
no data is present for the polynomial interpolation approach
described in [13] in Figure 2. It can be seen from Figure 2
that as d increases, the probability of incorrect synchronization
for the C2SS-BF method decreases, which is consistent with
the analysis from the previous section (since the probability
of incorrect synchronization is O(d�k+2

)). Such a trend did
not seem to hold for the approach from [9] even though the
size of the CBF was increased for larger values of d.

In Figure 3, we plotted the total number of bits that were
sent between Hosts A and B using the C2SS-BF method,
the approach from [9], and the approach from [13]. As a
frame of reference, we also plotted a lower bound of db.
The polynomial interpolation approach from [13] (like the
approaches in [6], [10], [12]) require at least 2db bits of
information exchange since these approaches only require a
single round of communication. The C2SS-BF method as well
as the one from [9] use two rounds of communication and, as

10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

Size of Symmetric Difference

Pr
ob

ab
ilit

y
of

 In
co

rre
ct

 S
yn

ch
ro

ni
za

tio
n

Error Rates of Synchronization Schemes

Counting Bloom Filter [8]
C2SS−BF Method

Student Version of MATLAB

Fig. 2. Error Rates for Synchronization Algorithms

a result, these approaches reduced the total throughput given
our test scenario.

From Figures 2 and 3 it can be seen that the C2SS-BF
method has a lower probability of incorrect synchronization
and it requires less throughput than the approach in [9]. This
lower probability of incorrect synchronization is a result of
using an IBF instead of a CBF. We note that in addition to
requiring the transmission of fewer bits, the C2SS-BF decoder
has complexity O(dmax(log |SA|, log |SB |) whereas the CBF
approach in [9] had decoding complexity O(|SA| + |SB |).
Recall the method from [13] has decoding complexity O(d3),
which in many cases, renders it impractical.

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 107

Size of Symmetric Difference

To
ta

l A
m

ou
nt

 o
f I

nf
or

m
at

io
n

Ex
ch

an
ge

Throughput Comparison

Counting Bloom Filter [8]
C2SS−BF Method
Polynomial Interpolation [12]
Theoretic Lower Bound

Student Version of MATLAB

Fig. 3. Total Throughput for Synchronization Algorithms

VI. CONCLUSION

In this work, we considered an algorithm for synchronizing
similar sets of data. In particular, we considered an approach to
the set reconciliation problem, known as the C2SS-BF method,
which requires only two rounds of communication. It was
demonstrated that the C2SS-BF method has the potential to
reduce the throughput as well as computational complexity of
many alternative schemes in the literature.

We note that one potential limitation of the C2SS-BF
method is that the C2SS-BF method requires an upper bound

5

for d = |SA 4 SB |. Thus, additional communication may be
necessary to produce accurate estimates for d. However, if
accurate upper bounds for d can be determined, the C2SS-BF
method can significantly reduce the rounds of communication
required to determine SA [SB on either Host A or Host B.
Future work involves incorporating our algorithm into future
releases of C2SS and providing mechanisms that estimate the
symmetric difference.

REFERENCES

[1] “Test Plan for Open Track Manager (OTM) Testing for Trident Warrior
2013 (TW13),” Document Version 0.5, 2013.

[2] “Integrated Shipboard Network System (ISNS) Application Integration
(AI) Test Report,” Open Track Manager (OTM) v1.0, 2013.

[3] “Understanding Pages and Extents,” available at
http://technet.microsoft.com/en-us/library/ms190969(v=sql.105).aspx.

[4] A. Broder and M. Mitzenmacher, “Network applications of Bloom filters:
A survey,” Internet Mathematics, 2004.

[5] J. Canny, “Lecture 10, Chernoff Bounds,” Notes from
CS174 offered at UC Berkeley, 2012, available at
http://www.cs.berkeley.edu/⇠jfc/cs174/lecs/lec10/lec10.pdf.

[6] D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese, “What’s the difference?
Efficient set reconciliation without prior context,” SIGCOMM 2011.

[7] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Computer and System Sciences, 1985.

[8] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom Lookup Tables,”
ArXiv e-prints, 2011.

[9] D. Guo and M. Li, “Set Reconciliation via Counting Bloom Filters,” IEEE
Trans. Knowledge and Data Eng., 2013.

[10] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,” IEEE Trans. Info.
Theory, July 2003.

[11] R. J. Lipton, “Efficient checking of computations,” STACS, 1990.
[12] Y. Minsky and A. Trachtenberg, “Practical set reconciliation,” Tech.

Rep., Department of Electrical and Computer Engineering, Boston Uni-
versity, 2002.

[13] Y. Minsky, A. Trachtenberg, R. Zippel, “Set reconciliation with nearly
optimal communication complexity,” IEEE Trans. Inform. Theory, 2003.

[14] R. Perkins, F. Dejesus, J. Durham, R. Hastings, “C2 Data Synchroniza-
tion in Disconnected, Intermittent, and Low-Bandwidth (DIL) Environ-
ments,” ICCRTS, 2013.

APPENDIX A
PROOF OF THEOREM 1

In this section, we consider the probability the decoding
algorithm described in Section IV fails. There are 3 possible
scenarios under which the decoding algorithm would fail.
First, Algorithm 2 can fail at step 14 if there is any element in
SB that hashes to all the same cells as an element in SA4SB .
Second, the decoding can fail if a cell is hashed to q or more
times by an element in SA 4 SB . Finally, the decoding can
fail at step 28 if the following scenario holds: Suppose S 0 is
a subset of SA 4 SB and suppose L is the set of all cells
hashed to by the elements of S 0. Then, Algorithm 2 can fail
if for any ` 2 L, there are at least two elements in S 0 hash to
`. The three conditions are stated mathematically below:

1) 9x 2 SB , 9y 2 SA 4 SB where fk
(x) = fk

(y).
2) 9i, 1  i  n where |{(x, j) : x 2 SA 4 SB , j 2

{1, . . . , k}, fj(x) = i}| � q.
3) Suppose S 0 ✓ (SA 4 SB) and L = {fi(x) :

i 2 {1, 2, . . . , k},x 2 S 0} and 8` 2 L, 9x, 9y 2
S 0, 9i, 9j 2 {1, . . . , k} where fi(x) = fj(y).

In the following, we refer to the first event listed as item 1)
above as ⇠

1

, the second event as ⇠
2

, and the third event as ⇠
3

.
For any event, & , we let P (&) denote the probability the event
& occurs. Let ⇠ denote the event that F 6= SA 4 SB where
F is computed according to Algorithm 2. Then, by the union
bound we have

P (⇠)  P (⇠
1

) + P (⇠
2

) + P (⇠
3

). (1)

We begin with the following lemma.

Lemma 1. P (⇠
1

)  d(1� kk

dk
(k+1)

k)
|SB |.

Proof: For any y 2 SA 4 SB ,x 2 SB , P (fk
(x) =

fk
(y)) =

⇣
k

d(k+1)

⌘k
=

kk

dk
(k+1)

k . Therefore, for y 2 SA 4
SB ,

P (6 9x 2 SB : fk
(x) = fk

(y)) = (1� kk

dk(k + 1)

k
)

|SB |.

Then, since |Sd| = d we have P (⇠
1

)  d(1� kk

dk
(k+1)

k)
|SB |

as desired.
The following corollary follows from Lemma 1.

Corollary 2. If |SB |  k
log2(

1
d)

log2(1� kk

dk(k+1)k
)

, then P (⇠
1

) 

d�k+1.

We next bound the probability of the P (⇠
2

).

Lemma 2. If q  k loge(d)+ e�1, then P (⇠
2

)  O(d�k+2

).

Proof: For some integer i where 1  i  d(k + 1) and
any x 2 SA 4 SB , let X be a random variable that is equal
to 1 when fj(x) = i and 0 otherwise for j = d i

d(k+1)
k

e. Then

X is a Bernoulli random variable with parameter p =

k
d(k+1)

.
Let Xi be a a random variable that has value |{x 2

SA 4 SB , j = {1, 2, . . . , k} : fj(x) = i}|. Notice that since
X is a Bernoulli random variable, Xi is a Poisson random
variable with mean � =

dk
d(k+1)

. Applying the Chernoff bound
(c.f. [5]), which states that P (Xi � a)  e�taMXi(t) where
MXi(t) denotes the moment generating function for Xi, gives
P (Xi � q)  e�tqe�(e

t�1). Letting t = 1 and substituting
q = k loge(d) + e� 1, gives that

P (Xi � q)  d1�k 1

ee�1

e�(e�1)

 ed�k.

Since there are d(k + 1) possibilities for the index i, the
probability that there exists an i where |{x 2 SA 4 SB , j =

d i
d(k+1)

k

e : fj(x) = i}| � q is at most (k + 1)d · ed�k
=

O(d�k+2

) as desired.
Finally, we bound the probability of the third event in (1).

Lemma 3. P (⇠
3

)  O(d�k+2

).

Proof: The probability of such an event occurring is
equivalent to the probability a 2-core exists in a hypergraph

6

(see [8]). This probability was shown to be at most O(d�k+2

).

Combining Equation 1 along with Lemmas 1, 2, and 3, we
have the result.

Theorem 1. If |SB |  k
log2(

1
d)

log2(1� kk

dk(k+1)k
)

and q  k loge(d)+

e� 1, then P (⇠)  O(d�k+2

).

APPENDIX B
ANALYTIC COMPARISON OF PROPOSED APPROACH WITH

EXISTING APPROACHES

In this section, we provide an analytic comparison of the
approach proposed in this paper with existing approaches to
set reconciliation. We begin by considering the properties of
our set reconciliation algorithm (as described in Section IV).
Recall SA,SB ✓ GF (2)

b and the size of the symmetric
difference is d = |SA 4 SB | = |(SA \ SB) [(SB \ SA)|.
Let k be a positive integer and suppose t = |SB | � |SA|
and t  k

log2(
1
d)

log2(1� kk

dk(k+1)k
)

, where e is the base of the

natural log. Our proposed approach requires approximately
2d(k+1)(log

2

(k loge(d)+e�1)+k log
2

(d(k+1)))+db total
bits of information exchange and the probability of incorrect
synchronization (or the probability the algorithm fails) is
O(d�k+2

). For the case where t, d << 2

b, our approach
requires approximately db(1 + �) total bits of information
exchange where 0 < � < 1 so that our approach is close to the
optimum total number of bits that must be exchanged which
is db. Furthermore, our approach has decoding complexity
O(d log(t)) and encoding complexity O(t).

Recall that our algorithm requires an additional round of
communication. As a result, in many cases our algorithm
reduces the throughput required in both [6] and [13]. Recall
that, if the methods from [6] and [13] are used, then the
throughput is at least 2Kdb for some positive integer K.

If the approach from [9] is used with a Counting Bloom
Filter (CBF) of size d(k+1) (which is the size of the Bloom
Filter used in our approach), then from equation (8) in [9]
we have that the probability of incorrect synchronization is
approximately O(1� (1� 1

d(k+1)

)

kd � (kd/2)2(1� 1
d(k+1))

kd

(m�1)

2)

k
)

which is much larger than O(d�k+2

) for small k and large d.
In addition, the CBF method in [9] has decoding complexity
O(|SA|+ |SB |) which, for the case where |SA|+ |SB | is large,
may be prohibitively expensive.

