

TASP C2 Computational Modeling

ICCRTS Alexandria, VA June 2014 Mark E. Nissen & W. David Place Naval Postgraduate School

- AS are increasingly sophisticated —Robots, UxVs, ICS, fraud, trading
 - —Autonomous UxVs: Global Hawk, X-47B, Google
- Who's in charge?
 - —No pilot/driver: CDR/manager? Engineer/mfgr?—Technology beyond authority
- AS or people?
 - —Consistency, memory, processing, endurance—Adaptability, innovation, judgment, uncertainty
- AS and people?

- Teams of Autonomous Systems & People —More than people using/controlling machines —People & machines are teammates
- Open C2 research questions

 When should people work for robots/AS?
 When should squadrons/orgs be integrated?
 C2 (adr,poi,doi,...) = f(t,m,s,...)?
- Hard RQs
 - -Negligible theory or experience
 - -Expensive & risky to test systematically

Computational Modeling

- Model TASP C2 orgs

 Different levels of tech & integration
 Different missions & environs
 Vary C2 approaches over mission & time
- Address open C2 RQs systematically

 Virtual C2 org prototypes
 1000s of experiments: quickly, cheaply, nonrisky
 - -Novel insight, understanding, theory, TTPs/SOPs
- Where to find TASP C2 modeling environ?

POWer Ontology

Adapted from Stanford VDT Group (2004) and Rolands & Associates (2010)

CENTER FOR

POWer Model Examples

JTF: Machine Bureaucracy

JTF: Edge

Dim 1: Sophistication

Degree	Automobile	UAV
0	No autonomy; continuous human	Manned aircraft; continuous human
	control	control of flight and sensor operation
		(F/A-18, SH-60)
1	Safety features (ABS, ESS, ACC)	Remote manual control of flight and
		sensor operation (Scan Eagle)
2	Limited autonomous driving (lane	Preprogrammed flight; remote manual
	control)	control of sensor operation (Fire Scout)
3	Autopilot (lane & road changes)	Preprogrammed flight and sensor
		operation (Triton or Global Hawk)
4	Full autonomy; human driver not	Autonomous decisions and flight and
	required	sensor operation (Future capability)

Dim 2: Interdependence

Туре	Organization	UAV	
Pooled	Minimal interaction;	Aircraft performing	
	coordination via rules &	surveillance missions in	
	standards	different geographic areas	
Sequential	Outputs from one	Surveillance from one	
	organization unit are inputs	aircraft provides targeting	
	to another; coordination via	information for another	
	plans & schedules		
Reciprocal	Two or more units perform a	Two aircraft defend one	
	common task; coordination	another if either is attacked	
	via feedback & mutual		
	adjustment		
Integrated	Two or more different	Manned and unmanned	
	organizations perform a	aircraft fly together and	
	common task reflecting	defend one another.	
	reciprocal interdependence.		

Scenario Matrix

Interdependence /Degree	Pooled	Sequential	Reciprocal	Integrated
Degree 0	DOP	DOS	DOR	DOI
Degree 1	D1P	D1S	D1R	D1I
Degree 2	D2P	D2S	D2R	D2I
Degree 3	D3P	D3S	D3R	D3I
Degree 4	D4P	D4S	D4R	D4I

Modeling Difficulty

Interdependence /Degree	Pooled	Sequential	Reciprocal	Integrated
Degree 0	DOP	DOS	DOR	DOI
Degree 1	D1P	D1S	D1R	D1I
Degree 2	D2P	D2S	D2R	D2I
Degree 3	D3P	D3S	D3R	D3I
Degree 4	D4P	D4S	D4R	D4I

- CTF organization
 - -1 task network: 20 variations
 - -1 organization network: 20 variations
 - -1 mission-environment: 20 scenarios
- Basic POWer model
 - -Represents CTF organization
 - -D0P & D1P baselines for validation

Extensions

- -POWer models for other scenarios
- -Simulate, analyze & refine

Thank You

- Questions welcome
- MNissen[at]nps.edu

http://faculty.nps.edu/menissen/Welcome.htm