

Australian Government

Department of Defence Defence Science and Technology Organisation **UNCLASSIFIED – Approved For Public Release**

The J-Staff System: Network Synchronisation & Noise

Alexander Kalloniatis & Mathew Zuparic <u>Presented by Timothy Neville</u>

Outline

- C2 as cyclic
- The Kuramoto Model
- The J-staff system as network of phase oscillators
- Results: basic behaviours, emergence
- Conclusions

Cyclic C2 Processes

• Boyd's Observe-Orient-Decide-Act Loop:

...

Interacting OODA: Moon, Kruzins, Calbert 2002 'Kuramoto-Boyd Model': Kalloniatis 2012

 Flaborations: Lawson's C2 Cycle; DOODA, Toroidal OODA...

* Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984; † Kalloniatis, Phys. Rev. E 82, 066202, 2010

DSTO

Mapping Kuramoto to Boyd

- β = Point of progress in decision cycle.
- K = Coupling = degree of tightness of control.
- A = intra-C2 Network = not just communications connectivity, but also authority, collaborative, social, and visual networks.
 - Who are my points of reference for my decision cycle?
 - With whom must I mutually adjust to progress decisions?
- Periodicity of *sine* response function: irrelevance of "stale" information or past decisions: the *current decision cycle is all that matters*.

...

....

....

...

....

C2-Time Period Spectrum

The 'Boyd-Kuramoto' Model

000

...

...

....

....

previous work applying networked dynamics to adversarial C2

$$\dot{\beta}_i = \omega_i + \sigma_B \sum_{j=1}^{N_B} B_{ij} \sin(\beta_j - \beta_i) + \varsigma_{BR} \sum_{j=1}^{N_{BR}} M_{ij} F(\rho_j - \beta_i)$$
$$\dot{\rho}_i = \nu_i + \sigma_R \sum_{j=1}^{N_B} R_{ij} \sin(\rho_j - \rho_i) + \varsigma_{RB} \sum_{j=1}^{N_{BR}} M_{ij} G(\beta_j - \rho_i).$$

interactions only within one 'echelon'

DSTO

J-staff hierarchy

Applying Noise = erratic behaviour in time

Simulates lack of clarity in agent interactions during heightened activity (hence applied to

Heightened activity = onset of a crisis to which HQ must respond. As many crises are short lived, noise applied over finite time periods.

....

....

....

Some math ...

We solve this system numerically

Basic Behaviours

Emergence: Agile Headquarters

Laughlin: 'system qualities or *behaviours* not reducible to the system components but arise from their interactions."

Recall the intermediate regime of coupling where two independent clusters form.

Here: planners and operators have formed their own clusters because of two sets of time-periods (slow and fast).

Can we generate similar behaviour with noise?

Spoiler: YES!

Emergence: Multi-speed Planners

...

....

....

...

Two clusters of planners form, each with their own frequency.

....

....

Agile HQ: in Depth

....

....

.

...

...

....

- 'Accidental' herding of planners *anti-correlated* with formal hierarchy.
- Double role of hierarchy at intermediate noise: path to disrupt planners but indirectly generates a *phase shifted convergence* of those same planners.

More math ...

Instead of performing large sweeps of parameter ranges over many instances:

- Approximate close to fixed point for phase synchronisation;
- Solve for probability distribution (via 'Fokker-Planck equation');
- Extract steady-state distribution;
- Pose question: how long for system to leave basin of attraction of fixed point for phase synchronisation?
- Compute *mean time* for variables to cross basin boundary in state space *first time ('MFPT', vertical axis)*

Equi-MFPT slices give estimate of time for which planners with specific frequency/coupling (xaxis) can tolerate noise of specific strength (y-axis) before driven out of cyclic planning.

Conclusions

...

.....

- Proof of concept that mathematical formulation of Kuramoto model can represent structure and dynamics of a military staff headquarters, including cyclic and chaotic activity.
- Demonstrated basic behaviours of the model may be recognised in a poorly functioning headquarters: planners either reactive or unresponsive to external environment.
- Found an intermediate regime of behaviour where order and chaos are finely balanced: planners routinely achieve near synchronisation.
- We propose this is the regime of an *agile organisation*, able to achieve ordered behaviour that is *responsive* to the fluctuations in its environment.
- Not quite ready to model a real HQ.
- Future work: nested loops to represent OODA loops of individuals within OODA loops of units, time-dependent network links, non-Gaussian noise.