Advancing SOTA in Applying Network Science to C2

Tim Grant

Professor emeritus, Netherlands Defence Academy Retired But Active Researchers (R-BAR) with René Janssen & Herman Monsuur (NLDA)

Overview

- Goal:
 - To outline recent advances in the state of the art of applying network science to C2
- Overview:
 - Introduction
 - Network science in C2
 - State of the art (SOTA)
 - Recent advances
 - Limitations, conclusions, & future research directions

Introduction: my research

- My research area:
 - Command & Control (C2: military & emergency management)
- My approach:
 - Professional hobby, preferably in collaboration
- My current topics:
 - Information sharing in coalition C2:
 - 2 PhD students (cultural influences; eCommerce to support CMI)
 - Offensive cyber operations:
 - Integrating kinetic & cyber ops
 - Incorporating network science into C2 theory:
 - Editing book (with René Janssen & Herman Monsuur, NLDA)
 - Social media as C2 implementation technology:
 - Analyzing chat from anti-piracy operations (with Oscar Boot, NLDA)

Network science in C2 (1)

- Both disciplines arose in mid 1990s:
 - "Modern" network science:
 - Branch of mathematics & Operations Research (OR)
 - Network-enabled C2 (e.g. NATO NEC):
 - Military science, leadership, & organization theory
- Separate communities:
 - Own journals, conferences, & books
- Yet ...
 - NCW / NCO / NEC based on networked concepts
 - All kinds of networks found in C2:
 - Computer networks; command structure; social networks; etc.

Network science in C2 (2)

- Network science is theory about:
 - Network representation:
 - Network = set of nodes + set of arcs
 - Real-world phenomena:
 - Biological, technical, information, cognitive, socio-organizational
 - C2 encompasses most of these phenomena
- Network science covers:
 - Network *measures*: degree, centrality, betweenness, clustering
 - Network *topologies*: random, small-world, scale-free
 - Network processes: search, navigation, evolution, infection
 - Network *resilience*: failure, random or targeted attack

Network science in C2 (4)

Applying network science to C2

Network science in C2 (5)

Network science in C2 (6)

- Progressive application in NCW / NEC:
 - (1) Network as *concept*:
 - Network versus hierarchy (implicitly organizational)
 - What nodes and arcs represented was left unspecified
 - (2) Application to computer & telecommunication hardware:
 - System of systems
 - Technical / physical network
 - (3) Recognition of *human factors*:
 - Information network = which computer has what information
 - Cognitive network = who shares what knowledge (SSA)
 - Social network = who exchanges messages with whom
 - (4) Interacting domains / networks (see next 2 slides)

9

Network science in C2 (7)

Applying network

Network science in C2 (8)

NetSci in C2: state of the art

- Network Science Center, West Point (USMA): ullet
 - Established 2004; part-funded by US DoD CCRP
 - Undergraduate teaching & research
 - Representation of physical, biological & social phenomena
- Network Science Collaborative Technical Alliance:
 - Established 2005; US ARL, BBN, + 30 (US) universities
 - To understand commonalities in intertwined networks.
 - Communication, information, & social/cognitive networks
- US-UK International Technology Alliance:
 - Established in 2006 for ten years; 4 technology areas
 - (1) Network theory focused on *wireless* & sensor networks

Recent advances (1)

- Research history:
 - 2006: My analysis of September 11, 2001:
 - Comms patterns "play" over organizational structure
 - 2008: Van Ettinger's 3 networks
 - 2010: Student showed C2 networks vulnerable
 - 2011: Monsuur et al provided mathematics
 - 2012: Publisher IGI asked us to compile book
 - 2013-4: Gathered 12 contributions:
 - From US, UK, Australia, Sweden, Netherlands
 - Publication in June 2014

13

Premier Reference Sour

Recent advances (2)

"Network Topology in C2: Organization, operation and evolution"

T.J. Grant, R.H.P. Janssen and H. Monsuur (eds.)

- Due release June 2014
- ISBN-13: 978-1466660588
- US\$ 215 (hardcover & eBook)
- Discounts available:
 - 25% library
 - 40-50% individuals
 - Contact editors for online coupon code

Applying network science to C2

Recent advances (3)

- Part 1: Organizational contributions:
 - De-conflicting Civil-Military Networks:
 - Operation Unified Protector as case study
 - Achieving de-confliction between civil & military partners
 - Identify lessons learned: personalities, rotations, agreeing goals
 - Shaping Comprehensive Emergency Response Networks:
 - Multiple Dutch case studies involving local community
 - · How professional ER organizations can use community capacity
 - Gain resilience by balance between directive & empathetic governance
 - Networked Operations: Principles of modular organizing:
 - US Army versus Netherlands Army as case study
 - Modular organization theory from Organization & Management science
 - Near-decomposability as organizational design parameter

Recent advances (4)

- Part 2: Modelling contributions:
 - Modelling Command & Control in Networks:
 - Based on Brehmer's (2007; 2013) C2 theory
 - Approach to modelling C2 functions over geographical network
 - Formalized Ontology for C2 Systems as Layered Networks:
 - Geographical, physical, information, cognitive, & socio-organizational
 - Logical ontology, formalized as Entity-Relationship Diagrams
 - 9-11 as example (simulation) application
 - Modeling C2 Networks as Dependencies:
 - C2 modelled as capabilities, dependencies, & vulnerabilities
 - Analyst tool implemented; insurgent scenario as case study
 - Aids in developing plan to alter behaviour of opposing network or increase resilience of own network

Recent advances (5)

- Part 3: Network science contributions:
 - Dynamical Network Structures in Multi-Layered Networks:
 - Theoretical contribution, using stochastic actor-based method
 - Analyzing effect of reciprocity & covering on actors' behaviour
 - Improving C2 Effectiveness based on Robust Connectivity:
 - Developing improved metric for network effectiveness using Cares' (2005) Information Age Combat Model
 - Simulation shows shift in focus from nodes to network as whole
 - Complex Adaptive Information Networks for Defence:
 - Understanding nature of networks that can create self-synchronization
 - Analysis at 3 levels:
 - Node & linkage topology; Local interaction between nodes; Feed through into clustering
 - Complexity theory gives deep insight into self-synchronization

Recent advances (6)

- Part 4: C2 technology contributions:
 - Cyber Security in Tactical Network Infrastructure for C2:
 - Assesses emergent network technologies for C2 using TRLs:
 - Reconfigurable radio systems; emergent topologies; SA technologies; security metrics; information asset protection systems; autonomous network monitoring & control
 - Long-term commitment needed in procurement, standardization, training, doctrinal & legal development
 - Smart Surveillance Systems:
 - Heterogeneous multi-modal data from automated sensor networks
 beyond human capacity to fuse, aggregate, & filter
 - Prototype developed using distributed smart agents:
 - Demonstrates reduction in role of human operators
 - Surveillance around Den Helder harbour using AIS as case study

Recent advances (7)

		Network science									
		Theory:				Application:					
		Node	Measure	Topology	Process	Geog	Phys	Information	Cognitive	Socio- org	Coalition
C2	Theory:										
	Infrastructure	(graph)		"white space" (2)			11	11			
	1 node	"white space" (1)									
	Organization	wine space (1)							2	2, 3	
	M nodes	10	9	7, 9, 10			ITA, NSC, <mark>10</mark>	ITA, NSC, 1, 7	NSC, CTA	NSC, CTA, 7	1, 2
	Effectiveness		8	8				7		7	
	Application:										
	Model	5, 6	6	"white space" (2)		5	5	5	5	4, 5	5
	Observe	6	6				ITA, 12	ITA, 12		4	
	Orient	6	6						NSC, CTA	NSC, CTA, 4	
	Plan	6	6							4	
	Decide	"white space" (3)								4	
	Act									4	"white space" (3)
	Learn									4	

Limitations

• State of the art:

- Based on mission statements on websites
- Not based on literature survey
- International C2 Journal:
 - Surveyed:
 - Walker et al (vol 3 no 2) apply SNA to C2 approach space
 - Phister (vol 4 no 2) proposes use of NetSci technology
- ICCRTS proceedings:
 - Not surveyed exhaustively, but ...
 - Attended since 2005 & no papers from NSC / CTA / ITA seen
- May be other journals or conferences

Conclusions

- Existing state of the art limited to:
 - Interoperability & communications in physical & information networks
 - Information sharing, collaboration, & self-synchronization in cognitive & social (but not organizational) networks
 - Observe & Orient (i.e. INTEL) processes
- Contributions have advanced state of the art in:
 - Integrating real (kinetic) & virtual (cyber) geographies
 - Organizational issues:
 - De-conflicting civil & military partners
 - Involving community in emergency response
 - Applying modular organizations
 - Modelling C2 in theory & application of network science
 - Self-synchronization at node, network, & topology levels

Future research

- 3 "white spaces" where research needed:
 - Application of network science to C2 nodes:
 - C2 infrastructure, SA, quality of information, agility
 - Organization / command structure
 - Application of network topology & processes to:
 - C2 theory (infra, single nodes, organization, multi nodes)
 - C2 applications (modelling & OODA loop)
 - Application of network science to C2 processes:
 - Decision-making, acting, & learning
 - Theory & applications of network science

Resources

- Newman. 2003. *Structure and Function of Complex Networks*. SIAM Review, 45, 2, 167-256.
 - Reviews SOTA (N.B. 2003). Warning: mathematical formulae!
- Barabási. 2003. *Linked: How everything is connected to everything else*. Plume, New York.

– Easy read.

- Lewis. 2009. *Network Science: Theory and applications*. John Wiley, Hoboken, NJ.
 - Comprehensive textbook. Warning: mathematical formulae!
- Grant, Janssen & Monsuur (eds). 2014. Network Topology in Command & Control: Organization, operation & evolution. IGI Global, Hershey, PA.

http://www.igi-global.com/book/network-topology-command-control/99488

Applying network science to C2

Any questions?

Tim Grant Retired But Active Researchers (R-BAR) tim.grant.work@gmail.com +31 (0)638 193 749