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Introduction: UAV Mission Planning  

Future UAV Mission Planning Challenges • UAVs have ultra long endurance and can accept high mission risk; these 
attributes make them suitable for dull, dirty, and dangerous tasks in 
complex environments:  
 

− Military:  
 Intelligence, Surveillance & Reconnaissance (ISR) 
 Search and Rescue Operations (SAR) 
 Demining Operations 

 
−  Security: 

 Border Patrol 
 Surveillance of Smuggling Operations 
 Interdiction Operations 

 
− Civil: 

 Disaster Management 
 Forest Fire Detection 
 Traffic Monitoring 
 

• In the future, UAVs  are expected to operate with a higher level of 
autonomy to carry out  complex tasks, while efficiently coordinating with 
unmanned ground and unmanned underwater vehicles  Need for 
systematic mission planning processes 
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Technical Challenges 
• Lack of see and avoid capability : 

− May lead to mid-air collisions with manned vehicles 

− Restricts UAVs to operate in segregated regions in the airspace  

− Needs substantial human supervision 

− Limits operational flexibility 

• Limited sensor ranges and payload capacity requires multiple UAVs to: 
− Work cooperatively 

− Expedite the mission execution 

− Reduce the possibility of mission failure 

 

 

 

 

Flying UAV within national borders in controlled, segregated airspace over an unpopulated area 
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• Systematic mission planning structure for conducting complex tasks 
involving multiple UAVs 
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Cooperative Trajectories 
with Coordinated Guidance 

Environmental 
Constraints 
• Weather 
• Terrain 
• Obstacles 

Dynamic Mission Environment  

Mission Execution  

Mission 
• Military: Weapon delivery, ISR 
• Security: Counter-terrorism, SAR 
• Civil: Forest fire detection 

Mission   
Environment  

Asset  
Task 

Prior 
Intel 

Status/ 
Situational  
Awareness 

Ref: http://www.agi.com/solutions/uav-and-aircraft-mission-
software/Default.aspx  

Hierarchical Architecture for UAV Mission Planning 

Cooperative Trajectories with 
Coordinated  Guidance 

Cooperative Mission Planning 
for Multiple UAVs 

Individual 
Controller 
 for UAV  

Target Search  
& Tracking 

Dynamic Path 
 Planning 

Formation Hold Dynamic Task 
 Assignment 

Individual 
Controller 
 for UAV  
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Multi-Objective Path Planning for UAVs 

Dynamic Obstacles 
Static Obstacles 
UAV 
Task Locations 

 

Mission Scenario  

• Objective: Coordinated multi-objective path planning for a group of 
UAVs in a dynamic environment to carry out time-critical mission 
tasks: 

‒ Minimize mission risk (path cost, e.g., distance of UAV from obstacle) 
‒ Minimize task latencies  
 

 

Time Horizon 

Task Deadlines 

Given:  
• Dynamic environment with static and dynamic  
    obstacles, e.g., high rise buildings, manned 

aircraft 
• Task locations, deadlines, task requirements 

Given:  
• Dynamic environment with static and dynamic  
     obstacles, e.g., high rise buildings ,manned 

aircraft 
• Task locations, deadlines, task requirements 

 
 

Task requiring 
synchronization 

Constraints:  
‒ Synchronization 
‒ Task start time 

 

Constraints:  
‒ De-confliction constraint 

Given:  
• Dynamic environment with static and dynamic  
     obstacles, e.g., high rise buildings, manned 

aircraft 

• Task locations ,deadlines, task requirements 
 
 

Task Requirements 

Start 
Base 

 

End 
Base 

 

t time gap  

Start End 

Feasible  paths 
Path nodes 

Constraints:  
‒ Motion constraints 
‒ Network flow constraints 
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where  

                                    denote the start 
time, processing time and deadline 
for task  l 

L  denotes the total number of tasks 

 

 

• Multi-Objective Mixed Integer Linear Programming (MILP) Problem: 

− Objective I: Minimize cumulative path risk - Time varying travel  and usage cost  

 

 

 
where      is the time horizon,      is the total number  of UAVs and      is the set of accessible paths 

               is the path risk experienced by UAV k in moving from cell i to cell j at time t 

− Objective II: Minimize task latency - Delay in meeting the task deadline 

 

 
 

 

 

UAV Path Planning Formulation 
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• Task Execution Constraints: Delay in meeting the task deadline 

 

 

 

 

 

 

 

sgn

sgn

( )

( )

( )

( ( ), ) 1

, , 2( )

max , 2( )

, , 2( )

a
l

depart start process a

kloc l l l l

start arrive

l kloc l
k

K

jloc l kt l

j P loc l t k

t t t l k a

t t l b

x q l t c



 

    

 

   

• Network Flow Constraints: Time-varying travel and usage cost 

  

 

 

 

 

 

 

Multi-Objective MILP Problem Constraints 
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• Collision Avoidance Constraints: Ensures safe path by avoiding 
collision with obstacles  

 

 

 

 

 

 

Multi-Objective MILP Problem Constraints 
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• Arrival and Departure Constraints: Tracks the execution status of tasks 
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Multi-Objective UAV Path Planning Results 

• Solution: Decomposed MILP solution approach: 
‒ Phase I: Minimize the path risk of each UAV given the estimated arrival time at 

each task location 
‒ Phase II: Minimize the task latency with respect to the arrival time of each UAV 

at each task location given the path in Phase I 

 • Scenario I: Coordinated path planning in different contexts 
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• Scenario II: Coordinated path planning 
around static obstacles 

 

 

Task 1 

Task 2 

Task 3 

End 

Start 

• Scenario III: Coordinated path planning 
around static and dynamic obstacles 

 

Static Obstacle 

Static Obstacle 

Static Obstacle 

Static  
Obstacle 

Static Obstacle 
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Task Deadlines 

Task 1 
Deadline 

T=5 

Task 2 
Deadline 

Task 3 
Deadline 
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Task Requirements 

Task Deadlines 

Task 2 
Deadline 

T=6 

Task 4 
Deadline 

Task 1 
Deadline 

T=15 T=21 T=17 

Task 3 
Deadline 

  Task Requirements 

• Scenario I: An increase in the number of manned aircraft delays the task processing time in 
order to guarantee safe trajectory planning within a confined mission area 

• Scenario II & III: Mission tasks are completed on time in a large environment  with static 
and dynamic obstacles  

 

 

Multi-Objective UAV Path Planning Results 
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Python Implementation of 3D A* Algorithm   
• Given:  

‒ Mission: Path planning 
‒ Environment: 3D mission  space 
‒ Asset: UAV 
‒ Task: Plan path from start point to end point while avoiding static obstacles 

• Future Work: 3D path planning for multiple UAVs within a dynamic environment 

 

 End Point 
Start Point 
Obstacles 
Path 
UAV 
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Python Implementation of 3D A* Algorithm   
• Given:  

‒ Mission: Path planning 
‒ Environment: 3D mission space 
‒ Asset: UAV 
‒ Task: Plan path from start point to end point while avoiding static obstacles 

• Future Work: 3D path planning for multiple UAVs within a dynamic environment 

 

 End Point 
Start Point 
Obstacles 
Path 
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Conclusion 

• Summary 

‒ UAVs  are useful for dull, dirty, and dangerous military and civilian 
operations 

‒ A multi-objective UAV path planning problem was investigated for 
coordinated task execution in a dynamic environment including: 

 Mathematical formulation of the path planning problem  

 A two-phase algorithm to solve the resulting MILP problem 

‒ 3D A* algorithm was implemented in Python 

• Future Work 

‒ Explore approximation techniques, such as ant colony system 
and genetic algorithms 

‒ Revise the current planning structure to a distributed setting 

‒ Explore 3D path planning and address the vertical collision 
avoidance problem 

‒ Incorporate pop-up threats and sudden UAV breakdown 
scenarios 
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Future UAV Mission Planning Challenges 

 
 

• Provide capabilities more efficiently through 
modularity and interoperability 

• Increase in autonomous multi-platform control 
• More survivable with improved and resilient 

communications and security from tampering 
• Efficient manned and unmanned teaming to 

reduce the number of personnel required to 
operate and maintain the systems 

• Consider realistic models and incorporate/fuse 
data from different sources 

Future UAV Mission Planning Challenges 

 
 
 

• Provides a consolidated plug-and-play application architecture 
• Improves scalability and feasibility for unmanned aerial  system vendors 
• Improved battle space awareness via tasking, collection, processing, exploitation, and 

dissemination (TCPED) processes, required to translate vast quantities of sensor data into a 
shared understanding of the environment 

• HPC enables cross domain data sharing of information and adapts rapidly to changing threats 
• HPC addresses the challenges in cloud computing and multilayer security, communications, 

open standards, data storage, cost, ease of technology insertion, etc. 
 

High Performance Computing Impacts 

 
 

• Dynamic coordination of multiple unmanned 
vehicles  operating  on ground, air, and water 

• Develop efficient algorithms to mimic human-like 
behavior in  unmanned aerial vehicles for 
proactive decision support 

• Data protection and exploitation using High 
Performance Computing  (HPC) 

• Reduce operator workload by improving 
autonomy using hierarchical mission  planning  

• Improve data flow and standard message 
architectures for reliable communication 

UAV Mission Planning  Objectives 

Ref: Unmanned Systems Integrated Road map   FY 2013-2038 , Reference Number 14-S-0553 
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