Commanding Heterogeneous Multi-Robot Teams

Thomas Remmersmann – ICCRTS 2014

Motivation

- There are many operations in which a multi-robot system (MRS) can be deployed to support the human forces, e.g., for reconnaissance tasks.
- Controlling a MRS in operations, however, is a complex and demanding task, especially if the MRS in question has to be controlled by a **single operator** in order to free her fellow soldiers for other tasks and duties.
- The operator can be disburdened by giving the robots some **autonomy**.

Motivation

robot autonomy

give orders (task assignments) on a more abstract level;

let the robots handle details themselves.

However, this raises the question as to how those tasks assignments can be defined, formulated and exchanged.

Our approach: express orders (as well as the reports the robots send back to the controller) in **Battle Management Language**.

- BML has been developed within NATO MSG-048 and NATO MSG-085 (and is discussed by the SISO in order to provide a SISO standard).
- BML normally is used to command simulated units in simulation systems in order to improve training, after action analysis, and decision support.
- The BML for "C2 system simulation system"-interaction has been adjusted for our purposes, namely commanding multi robot systems, without changes to the core syntax of the language.

Why Battle Management Language for Robots?

Robots and simulation systems are both systems.

Both need to "understand" the given commands.

Orders in BML are high-abstraction level orders.

- That's the way humans give commands.
- They include all the information needed to be executed by humans.
- Long Term Target: Give Robots the same ability.

Additional benefit: connect Robot Systems to existing C2 Systems.

ROS Robot Operating System

Middleware for R&D projects

Simplifies development

- Defined interfaces
- Interchangeable module
- big, active community
- ROS as a middleware
 - Simplifies communication
 - analyze/monitoring tools
 - centrally structured and controlled

6

The Multi-Robot System Platforms

Longcross Chain

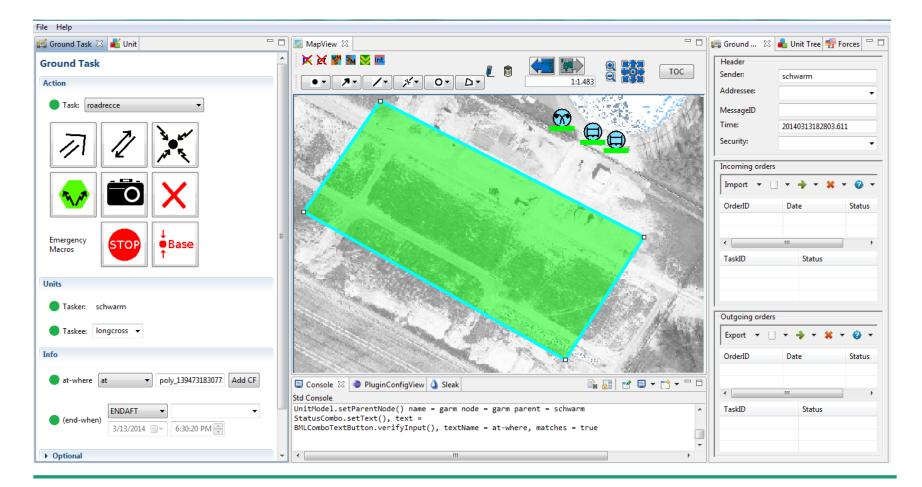
- Weight: ~450kg
- 20 km/h
- 200 kg Payload

RUAG "Garm" Chain

- Weight: ~500kg
- 20 km/h
- 200 kg Payload

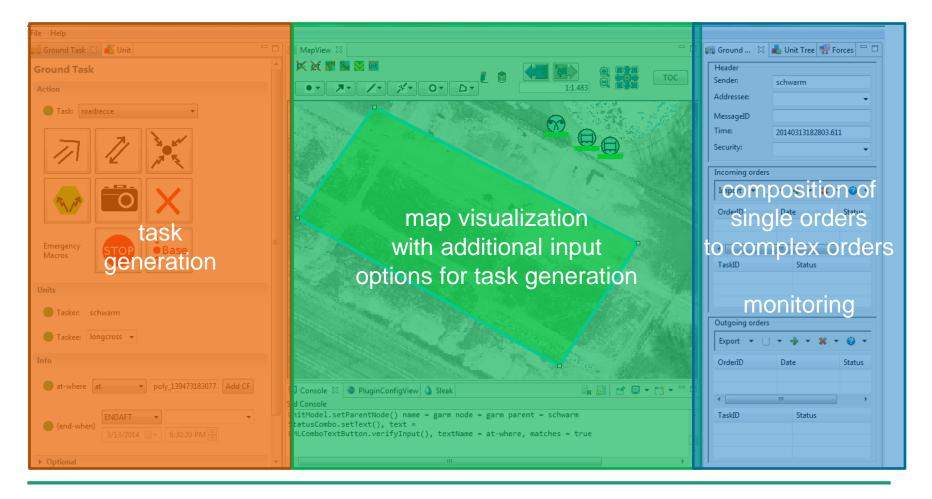
The Multi-Robot System Payload

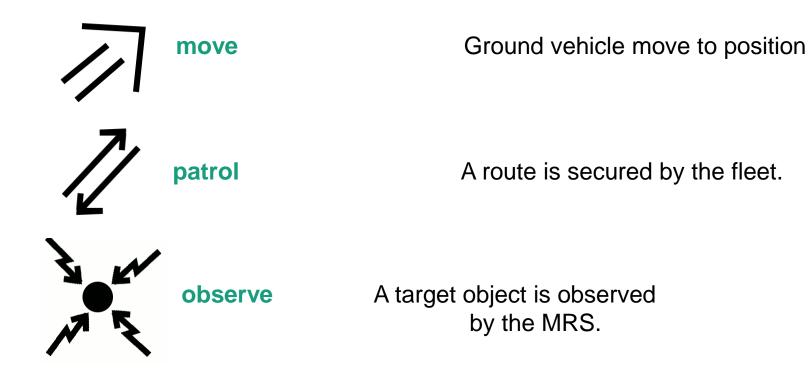
Payload "Autonomous Driving"


- 3D Laser Scanner
- Xsens positioning (GPS, compass, acceleration sensors)

Payload "CBRNE"

- Weather station
- CBRNE-Sensors
- Xsens positioning (GPS, compass, acceleration sensors)


C2LG GUI The Graphical User Interface


9

C2LG GUI The Graphical User Interface

Tasks (1)

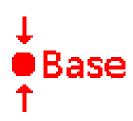
The MRS is reconnoitering the target area.

imagery intelligence gathering

A picture is taken and reported back.

disengage

Cancel a task.



Emergency Marcos

Emergency Stop

Cancel all current tasks.

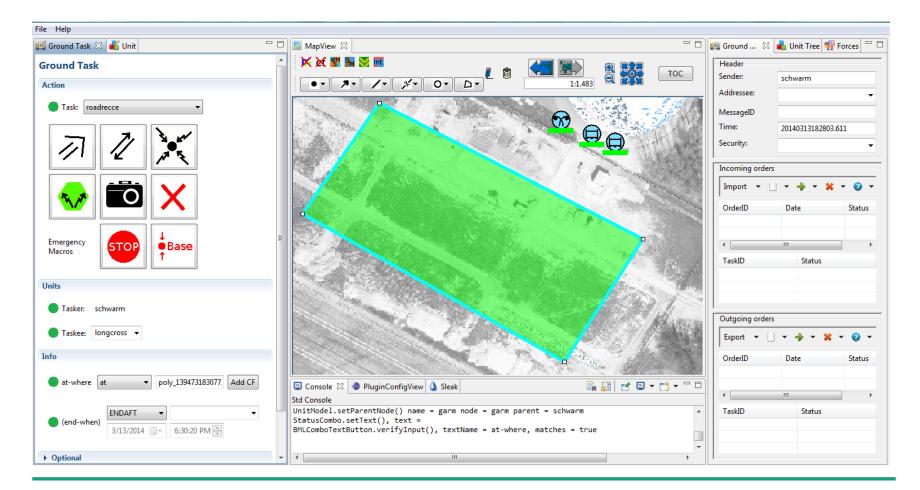
Emergency Return to Base All robots return to base.

Reports in BML

Reports are also expressed on "high-level".

Aggregate data to produce high-level information.

Examples: Robot status, Red-Force Tracking



Reports Capabilities

Ground Task 💕 Unit 🕄 🛛 🗖 🚺	MapView 🛛] č 🗶 📾 🚾		📕 Unit Tree 🛛 🛒 Forces 🖓 🗗
orce: Vising Properties (NewWho)				
p. Status: OPR	NSN Name	opCount	reqCount	abcrobot
Properties	-			garm
Equipment	Camera	1.0	0.0	
NSN Code:	CDC	1.0	0.0	
NSN Name:	GPS	1.0	0.0	
Is Equipment	Opstate	1.0	0.0	
Operational Count 0	opsuic	1.0	0.0	
Req. OnHand Chantity 0	Taskstate	1.0	0.0	
Req. Total pantity 0 Req. Ca. Meth. 0				
Req. Cr. Meth. 0	Wetter	1.0	0.0	
Save Clear	10020	1.0	0.0	export Properties of I
NSN Name opCount reqCount	LCD3.3	1.0	0.0	ver get MSDL from SBML s
Camera 1.0 0.0 GPS 1.0 0.0				Import NewWho
Opstate 1.0 0.0 Taskstate 1.0 0.0				e
Wetter 1.0 0.0			Yourseless of the second	Import MSDL
LCD3.3 1.0 0.0			Expor	
			report own	position redraw Units

Planning Enter High Level Task

Planning Automatic Process

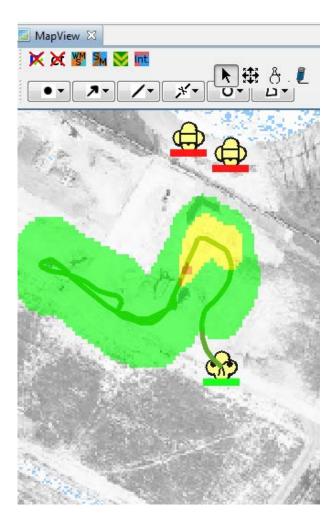
- relies on descriptions how to get from high level tasks to low level (executable) tasks
- planning system can use known information like
 - previously measured data from MRS like occupancy grids
 - known road network
- planning creates low level tasks, assigns them to respective robots and sorts them, chronologically.

17

Planning Show Plan to User via BML

Reports Sensor Date Interpolation

Visualization of measurements from CBRNE robot


green: harmless

yellow: alarming

orange: hazardous to health

new BML report "Measurement"

Phenomenon Reporter Identification Sensor Identification Measured Value AtWhere When Certainty Label

Report Pictures

Pictures are sent via the

Sensor Data Return Channel

on demand

automatically

Demonstration – STARO 2014 CBRNE RECCE

