

VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan and Preliminary Results

Aren Hunter, Mark G. Hazen & Tania Randall DRDC, Atlantic Research Centre

Presentation to ICCRTS June, 2014

Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

Concept Development Design Framework

Ref: Chalmers

VICTORIA C2 Design Concepts

Top Rated Concepts by SMEs

- <u>C2 Information Integration &</u> <u>Tactical Display</u>
- Automated Record Keeping
- Integrated Planning Tool
 - Navigation, tactical planning, signature management, platform systems management, comms
- Emergency Management Tool

- Reliable & Flexible Internal Comms System
- Platform Systems Display
- Signature Management Display
- Improved Collaboration Between Command Team and EW- various design options

Information Integration Display

IID HIL Experimentation

IID Placement in VCEL

- Between Sonar and Fire Control.
- Based on visual angle, and optimal viewing from various areas in the control room.

VICTORIA Capability Evaluation Laboratory (VCEL)

- Full Scale Plywood Mockup of VCS Control Room
- Simulation + Real Systems
- Audio, Video, Motion, Eye Tracking

Paper 075 for more details

Experiment

Participants

- Two Separate Teams
 - Watch Leader
 - 2nd Officer of the Watch (OOW)
 - Sonar Supervisor
 - Sonar
 - TMA
 - ECM*
 - Helm*
- Team 1 had a more experienced WL (4.5years) vs. Team 2 (.25years) but overall team experience was similar (11 years vs. 10 years)

Scenarios

- Four Separate Scenarios
 - Same Operational Environment
 - Same Number of Contacts
 - Similar Mission (ISR)
- Communication Analysis
 - Assessed the scenarios for similarity
 - SMEs rated communication trends and workload as being the same.
- The majority of participants assessed their workload as average across all scenarios.

Procedure

Day 1: Training Day

- Both teams received training
- Crew received Dangerous Waters training
- Watch Leader received IID training

Day 2: Team #1

Completed Four Runs

- 2 Experimental Condition (IID)
- 2 Control Condition (No IID)
- 1.5 hours each
- Debriefing session and questionnaire after each run.

Day 3: Team #2 Same procedure as Day 2

> Conditions and scenarios were counterbalanced.

Data Collection 1/2

- Watch Leader was equipped with SMI Eye Tracking Glasses
- Data was used to evaluate where the WL was looking on the IID.

Data Collection 2/2

Audio, Video, Motion

- Four wall-mounted video cameras
 + single mike
- MP3 to record audio
 - Each team member
- Microsoft Kinect
 - Measure movement in and around the control room.
 - Secondary Video Source
- Screen Capture

Debriefing Questionnaires

- Completed by each crew member after each run
- 5 pt. Likert Scale
- Simulation data
 - Actual scenario state
 - Combat system data

Analysis Plan

- SME Evaluation for Performance and Situational Awareness
- Scenario based Warfighting performance metrics
- Behavioural Changes
 - Heat maps of OOW/20OW movement
- IID Specific Assessment
 - Eye tracking data for actual usage
 - Correlation with tactical decision making by SME
 - Participant evaluations

SME Evaluation

- Former RCN Submarine Commander and Current Submarine Tactics Instructor
 - Took notes and evaluated behaviour during experimentation
 - Completed SME evaluation questionnaires every 30 minutes.
 - Ex. How would you rate the watch leaders situation awareness?
 - Ex. How would you rate the watch leaders workload?
 - Ex. How would you rate the assignment of priority to contacts?
- Reviewing audio/video to reconstruct WL/200W situational awareness.

Scenario Based Metrics: Mission, Safety, Covertness

Covertness metrics

 Time spent at periscope depth (PD), number of counter detections, and frequency of cavitation.

Contact management metrics

 Number of lost contact incidences, number of contacts detected vs.
 number in scenario, number of contact re-classifications, false alarms, or repeated contacts etc ...

Planning metrics

 Duration of the mission vs. the planned mission.

Safety metrics

 Collisions with vessels or land, accuracy of closest point of approach, look interval duration, frequency of going deep, and accuracy of pilotage.

Preliminary IID Eye Tracking Results

Preliminary IID Results 2/2

Conclusions

- Developed and executed small sample HiTL experiment
- Investigated the utility of the Information Integration Display concept.
- Demonstrated a full development cycle of the C2 capability development framework.
- Demonstrated use of Mobile Eye tracking for C2 assessment.

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

