
19th ICCRTS

“C2 Agility: Lessons Learned from Research and Operations”

Paper 113

Issues in “Big-Data” Database Systems

Topics:
(3): Data, Information, and Knowledge

Jack Orenstein
Geophile, Inc.

61 Prospect Street
Needham MA 02492

USA
+1-781-492-7781
jao@geophile.com

Marius S. Vassiliou
Institute for Defense Analyses

4850 Mark Center Drive
Alexandria, VA 22311

USA
+1-703-887-8189
+1-703-845-4385
mvassili@ida.org

Point of Contact:

Marius S. Vassiliou
Institute for Defense Analyses

4850 Mark Center Drive
Alexandria, VA 22311

USA
+1-703-887-8189
+1-703-845-4385
mvassili@ida.org

 1

mailto:mvassili@ida.org
mailto:mvassili@ida.org

ABSTRACT

“Big Data” is often characterized as high-volume, multi-form data that changes rapidly
and comes from multiple sources. It is sometimes claimed that big data will not be
manageable using conventional relational database technology, and it is true that
alternative paradigms, such as NoSQL systems and search engines, have much to offer.
However, relational concepts (although not necessarily current relational products) will
still have an important role to play in building database systems that can support the
performance, scalability, and integration demands of Big Data applications. To deal
effectively with Big Data, we must consider many factors, including: number of
datatypes, schema changes, data volume, query complexity, query frequency, update
patterns, data contention and isolation, and system and database administration.
Relational database technology has been very successful in dealing with these issues,
albeit for a single, tabular data form. However, it has largely ignored the problem of
integrating disparate and heterogeneous data sources, except in the most trivial ways. It is
nonetheless the right starting point for research on big data systems. Significant changes
may be needed, to the data model, to the query language, and certainly to physical
database design and query execution techniques; but to ignore relational technology is to
ignore over forty years of relevant research on data processing.

1. INTRODUCTION

 “Big Data” is currently the subject of much discussion, and hyperbole, in the literature of
government,1 business,2 and computer science3. Articles in the Harvard Business Review
termed big data a “management revolution,”4 and declared “data scientist” to be the
“sexiest job of the 21st century.”5 There is no universally accepted definition of “Big
Data,” but it has frequently been characterized by the “three Vs” of Volume (large
amounts of data; more than can be processed on a single laptop computer or server),
Variety (data that comes in many forms, including documents, images, video, complex
records, and traditional databases), and Velocity (content that is constantly changing, and
arriving from multiple sources). To this, a fourth “V” is sometimes added, for “Veracity”
(data of varying quality).6 Some observers question whether or not big data is
“revolutionary,” or whether it is beneficial.7

Without entering into any of these debates, it seems clear that, for better or worse,
government and business will, at least in some cases, need to contend with data of
increasing volume, diverse provenance, and increased complexity. In this paper, we
understand “big data” to mean “high-volume, complex, multi-source data.” Such “big

1 Executive Office of the President (2012)
2 McAfee and Brynjolfsson (2012)
3 Stonebraker (2013)
4 McAfee and Brynjolfsson (2012)
5 Davenport and Patil (2012)
6 Berman (2013)
7 Arbesman (2013)

 2

data” does pose new challenges to database systems, and will require new research
directions.

An important issue is the relevance of traditional relational database systems8 for Big
Data applications, particularly compared to NoSQL9 (“Not SQL,” or “Not Only SQL”)
systems. Our position is that relational concepts provide an excellent framework for the
development of new systems supporting the creation of Big Data applications. Existing
systems are not adequate because they do not scale well, and because integration with
external data sources is so difficult. NoSQL systems are more open to this integration,
and provide excellent scalability for the simplest queries and updates. The tradeoff seems
to be that if one wants these scalability advantages, one is necessarily limited to very
simple transactions, and that this is not simply a deficiency in current implementations10.

2. CHARACTERIZATION OF DATABASE SYSTEMS

Database systems can be characterized via a number of important dimensions:

Data model: This denotes the set of primitives for structuring data. In relational
databases, for example, the data model is the relational model, first enunciated by Edgar
F. Codd11, based on first-order predicate logic. In NoSQL databases, the data model is
comprised of key/value pairs, where the value is often a hierarchically structured
document. In search engines, the data model is a set of connected documents of many
formats.

Schema: The schema describes how data in a database is organized, using the structures
provided by the data model. In relational databases, for example the schema is a set of
tables whose cells contain atomic values. Schemas may be highly constrained, as in
relational databases, or provide minimal structuring, as in NoSQL systems.

Application Program Interfaces (APIs): These are the interfaces for connecting to the
system, retrieving data, loading and modifying data, and performing configuration and
maintenance. APIs can be provided in the form of function call interfaces in a variety of
languages, or as function call interfaces conveyed by a network protocol.

Query language: In many database systems, APIs carry commands, specified in some
query or search language, to the database. These commands represent the means by
which users obtain the results they need from the database. Structured Query Language
(SQL) is an example of a query language. Google-style search commands constitute
another. Not all databases have a query language – some key/value stores provide only
APIs. In many database systems, APIs carry commands, specified in some query or
search language, to the database. These commands represent the means by which users

8 Codd (1969); Codd (1970)
9 Grolinger et al. (2013)
10 Helland (2012)
11 Codd (1969); Codd (1970)

 3

obtain the results they need from the database. Structured Query Language (SQL) is an
example of a query language. Google-style search commands constitute another. Not all
databases have a query language – some key/value stores provide only APIs.

Procedural language: Some database systems provide a procedural language for
specifying functions and procedures that are stored in a database, and executed by the
database system itself. These invocations can be explicit, carried by some API call or
invoked from a query; or they can be implicit, run by the database system, e.g. from a
trigger. Many NoSQL systems use JavaScript as the procedural language. A common
arrangement is for JavaScript functions to run under the control of the NoSQL system's
implementation of the map/reduce algorithm. Relational procedural languages, such as
Oracle's PL/SQL, embed SQL, and include language constructs for combining SQL
query results with language constructs for processing individual rows, and fields within
rows.

Authentication & Authorization: This denotes the set of methods for identifying users,
and limiting access (for example, based on identity and IP address). Authentication and
Authorization can limit the use of operations, schema objects, or combinations thereof.

Session: This establishes a context in which a user interacts with the database. In an
implicit session, each API call is its own session. Such a session is stateless, because
there is no state connecting one request by a user to the next. An explicit session can
connect a sequence of API calls from one user, providing some guarantees about that
sequence, for example transaction consistency and caching.

Durability: Data that is stored in the database, survives the application that created it,
and can be shared by users of the database, is characterized as durable. APIs exhibit
great variation in the sequence of actions that lead to durability: they can result in
immediate durability following a modification, or eventual durability following a
modification. Durability might also be ensured when instructed through a special API
call, (e.g. “commit”).

Interactions of Concurrent Sessions: This describes how sessions interact with each
other, if at all. For example, if one session is updating a data item, while another is
reading the same item, what happens to each session? Does the reader see the state before
or after the update? If two sessions update a data item concurrently, what happens to each
session and what is the final value of the data item?

Table 1 provides a summary characterization, along the above dimensions, of three
important classes of database systems: relational databases, NoSQL databases, and search
engines.

 4

Table 1: Characterization of Various classes of Database Systems
(for acronym definition, see Glossary)

 Data

Model Schema

Application
Program
Interfaces
(APIs)

Query
Language

Procedural
Language

Authentication
and
Authorization

Session Durability
Interactions of
Concurrent
Sessions

Relational
Database
System

Relational
Data Model

A set of
tables
whose cells
contain
atomic
values

Native API
(e.g. Postgres's
libpq), ODBC,
JDBC,
command-line
interface

SQL. Also,
SQL
embedded
in a
procedural
language
for stored
procedures

Stored
procedural
language
embedding
SQL.

ID Based on host
operating system
identities, or
identities
registered with
the database,
(depending on
system).
Authorization
based on model
of privileges
associated with
tables and views
(i.e., table
expressions).

Provides
both
stateless
(auto-
commit
mode)
and
long-
lived
sessions

Immediate
for auto-
commit, and
on commit
otherwise.

ACID
transactions,
with varying
levels of
isolation, that
can be set per
connection.

NOSQL
System

Key/value
pairs, where
the value is
often a
hierarchically
structured
document

Loosely
enforced or
absent

Key/value
operations
available in
various
language
APIs; REST
APIs are
typically
native.

Absent, or
simple

Typically
JavaScript.

Usually RFC
2617 (HTTP
Authentication:
Basic and Digest
Access
Authentication)

Stateless

Usually
synchronous
with
updates

Not Applicable
(because
sessions are
stateless)

Search
Engine

Text
documents in
a wide
variety of
formats

The
recognized
document
formats

Search
requests
encoded as
URLs

Some
search
engines
have query
languages
controlling
ranking of
documents,
significance
of various

Various
languages
which run as
part of the
document
ingestion
pipeline.

Various
approaches Stateless

Document
ingestion
done in a
“pipeline”
of
processing
steps.
Documents
become
durable at

Not Applicable
(because
sessions are
stateless)

 5

search
terms,
required
proximity
of search
terms in the
document,
and other
aspects of
searching

different
stages.
However, in
general,
documents
are ingested
in batches.

 6

3. ISSUES ASSOCIATED WITH HIGH-VOLUME, COMPLEX, MULTISOURCE
DATA

The profusion of high-volume, complex, multi-source data raises a number of issues for
database systems, and exposes some important differences in how various types of
database systems can deal with them. The issues include:

• Number of Datatypes
• Schema changes
• Data Volume
• Query Complexity
• Update Patterns
• Data Contention and Isolation
• System and Database Administration

We discuss each of these areas in turn below.

3.1 Number of Datatypes

Common datatypes include the following:

• Collections of records of simple values (numbers, short strings, date/time)
• Collections of hierarchically structured documents
• Geographic data
• Collections of text documents
• Collections of binary formats (e.g. images, audio)

There are many off-the-shelf systems that can handle subsets of these, but there is
nothing that can handle all of these together. For example, relational databases do an
excellent job of handling fixed-format records containing simple values, but their
capabilities for handling text documents are usually unsatisfactory. Collections of binary
data are usually organized in a file system, with metadata stored elsewhere. Integration is
done at the application level. Hierarchically structured documents interoperate poorly
with relational systems12.

In general, big data applications need to organize collections of data of varying types in a
single framework, leading to two main requirements. First, there must be a way to
associate entities. For example, records in a database representing the legal status of a
plot of land (ownership history, zoning, etc.) might need to be connected to a vector
representation in a geographic information system (GIS) containing the boundaries of
that plot. Relational databases are well suited for this purpose, as long as the records are

12 Tahara & Abadi (2014)

7

within the same database. They are also useful when storing identifiers that are
meaningful in other systems, such as a GIS. However, in this case, the reference can only
be used at the application level, sacrificing many database capabilities, such as referential
integrity, query expressiveness, and query optimization. Another difficulty in this area is
that references may be embedded in different ways in different collections. A relational
database may store a reference in a column of a table, while a NoSQL system might use a
key/value pair in a JSON13 document. There are currently no systems that can
accommodate this difference, and treat both kinds of references in the same way.

Second, there must be a way to express queries across these collections. Ideally, this
would be done at a high level, using a non-procedural language, with an optimizer
making decisions about how to most efficiently implement a query. Querying across
system boundaries at the application level is the only choice currently, but this results in
systems that are brittle, subject to failure or unexpected behaviors when any of the
component systems changes, (e.g. changing a public API, or an existing API starts
operating more slowly due to internal indexing changes).

Big Data applications will typically need to accommodate many of the above datatypes
simultaneously. One important consequence of this is that different types of information,
with different representations, must be connected together. For example, documents
concerning ownership of a plot of land over time may need to be integrated with vector
overlays for utility lines, geologic surveys, etc. Relational databases are rather well
suited for the metadata management associated with making these types of connections.
However, relational databases are closed environments, and complete incorporation of
various datatypes is difficult.

It seems unlikely that a single system will ever accommodate all of these collections of
data. One obvious reason for this is the sheer volume of data in existing systems, and all
of the human expertise and organizational processes that depend on these systems. It is
easy to envision providing additional access to such systems, while the wholesale
movement of data, applications, and procedures seems very unlikely. Another reason is
that the boundaries of data collections tend to match organizational boundaries. In the far
simpler world of business systems, in which relational databases are generally sufficient,
there are databases for applications and for departments. There is only rarely a single
corporate database that contains all data and supports all applications, even though this
was the goal of the early database researchers and system builders.

Thus, the way forward appears to be in integrating existing systems. A necessary result of
this approach is that there will be inconsistencies across system boundaries. To use an
obvious example, taxpayer records may refer to recently deceased taxpayers. The revenue
department will interact with that person as if still alive, until the news of that person's
demise is accounted for. Similarly, with more complex datatypes, any system that aims to
integrate across systems will need to deal with stale and inconsistent data.

13 ECMA (2013)

8

Currently, all integration across data collections is done at the application level. Many
questions about the design and implementation of database systems that can do this
integration are wide open.

3.2 Schema Changes

Application programming is easier when one can assume a static set of entities, with each
entity having a static set of attributes. Unfortunately, Big Data applications are
characterized by a constantly growing set of data, potentially involving new schemas.
Changes to the schema are painful because they can entail major changes in applications,
further aggravated when very large data sets must adapt. This can result in system
downtime and large costs.

Schemas may change in a number of ways. One of the simplest is not really a full
schema change at all, but rather a situation where we are faced with new datasets that
closely or exactly match an existing schema. An example of this is a set of new vehicle
data for a new model year in the database of a state Department of Motor Vehicles
(DMV). Data cleansing may be needed, perhaps with the help of an Extract-Transform-
Load (ETL) system, but there are no major conceptual problems.

A somewhat more difficult case is when there are new datasets for existing entities, but
with a different schema. For example, the new vehicle data may contain a new attribute
for the degree of electric assist in the motor. Data may need to be restructured (again,
with the help of an ETL system). There may also be problems arising due to differences
in entity identification. For example, if data from the DMVs of multiple states need to be
imported, each state may have its own scheme for identifying drivers (social security
number, DMV-issued number, etc.). Data cleansing may be needed, e.g. to ensure that
social security numbers are formatted identically before they are compared. Additional
integration steps may be needed, e.g. to map DMV-issued numbers to social security
numbers.

We may also be faced with situations where new entities are related but not identical to
existing ones. Continuing with our vehicle example, suppose that DMV data must now
be integrated with data from toll-booth collection systems such as EZPass in the
northeastern United States. The schema of the toll-booth collection system may differ.
Where the DMV system may key on the Vehicle Identification Number (VIN), the toll
system may key on a license plate number captured, perhaps imperfectly, by a camera,
and contain other different attributes. There may again be entity identification problems.

There may also be situations where the existing schema changes significantly. There
may be new entities with new attributes, and obsolete entities with obsolete attributes.
There may also be restructuring, with major changes in relationships, such as a one-to-
one map becoming one-to-many. Imagine, for example, a situation where polygamy is
legalized, and multiple spouses must now potentially be accommodated for a single
person.

9

Different types of systems will deal with schema changes in different ways. In the
relational approach, we may update schema, and migrate data to match, fixing
applications to use the updated definitions. This will typically require a huge effort in
planning and implementation. It will be painful, but for a limited time period.

A NoSQL system is schemaless, but this does not mean applications do not have to face
hard problems. In the DMV example, applications must know about all possible versions
of vehicle definition. Schema changes may be painful forever.

One possibility is to formally version the schema. This is not an idea that has been
widely applied commercially. It was tried by the Israeli Defense Forces for soldier
records—with each record being tied to a particular schema version.14

3.3 Data Volume

The difficulties in using, maintaining, and managing a database grow with its size. Many
of these problems arise indirectly. The issues are discussed here by imagining a small
database, and then examining the problems that arise as it grows. To start, suppose we
have a tiny database, so small that the entire database fits into physical memory. (This
database is still disk-based, because durability is still important, but a read never requires
disk access.) There will be very fast queries, and very slow queries, depending on the
complexity of the query, available indexes, etc. It is safe to say that any query will run
much faster if disk access can be avoided. Making an update durable still requires disk
writes, but most database systems use a journal so that the latency experienced by the
application is minimal.

As the database grows, the database will no longer fit in memory. At this point, memory
serves as a cache, and performance drops rapidly as the cache contains ever smaller
portions of the database. Queries become input/output (IO)-bound, and the best execution
plan for a given query will be the one that makes best use of the cache. For updates,
durability latency stays the same (because a journal write is required, just as before), but
the time to actually update the main part of the database from the journal will take more
time and IO bandwidth. Some indexes may become unaffordable as a result of this
increased IO burden, and this will cause some queries to slow down dramatically.

Data volume is not the immediate reason for introducing distribution, but some problems
tend to associate with very large databases. Distribution is then introduced to cope with
these problems, achieving scalability of some kind. Examples:

• Read replicas: There is a main database. Asynchronous replication is introduced
to support read operations that can be satisfied with slightly stale data. This
minimizes the IO load on the main database.

14 Personal communication from a former software engineer in the Israeli Defense Forces

10

• Vertical distribution: Different data collections (e.g. tables), or sets thereof, can
be placed on different machines. Obviously, this is only effective if operations
tend not to require data on multiple machines. Otherwise, the cost of coordinating
data access across machines, especially for transactional updates, will cancel out
any gains in performance.

• Horizontal distribution: Sharding distributes the items in a single data collection

across a set of machines. Unlike vertical distribution, this kind of distribution
scales arbitrarily. As the database keeps growing, more shards can be introduced
to handle the load. This technique is almost universal among NoSQL systems, and
it works very well for scaling both single writes and single reads. If multiple
operations need to be combined into a single transaction, then most developers
have found it preferable to sacrifice transactions than performance. Also, complex
operations, involving joins, or multiple indexes, will not benefit from sharding,
and in fact will usually perform slower compared to a database on a single
machine.

3.4 Query Complexity

NoSQL systems can adequately address the low end of the query complexity scale.
Key/value lookup is cheap (a millisecond or less), regardless of data volume or use of
distribution, and NoSQL systems are good at scalable key/value lookup. They are also
good at exploiting parallelism for queries that fit the map/reduce paradigm, although
almost anything else will need to be programmed at the application level. NoSQL
systems are more open to dealing with complexity in datatypes, and entities outside the
database.

Relational systems with SQL are better overall at dealing with complex queries. Query
optimization is possible, and there is a rich set of data processing primitives. However,
these apply only within the relational system itself. Capabilities for dealing with entities
outside the database are rudimentary. Some early research in this area has been done in
the context of the Hadapt project15. While not the main point, this work highlights how
much still needs to be done in breaking down the walls dividing database systems from
external data sources. Probably the best example of integration to date is from Postgres,
which permits the integration of datatypes. This integration includes the mapping of
functions to operator tokens reserved for this purpose, and for integration with the
optimizer. However, this integration seems focused on relatively simple datatypes, e.g.
spatial objects. Integrating search engine capabilities represents another level of
complexity that would probably not work well with this datatype integration approach.

Also, as queries become increasingly complex in Big Data applications, several
performance issues arise for relational systems. Joins can become very expensive,
depending on data volume, the use of distributed systems, and the availability of suitable
indices. This is compounded as joins also tend to multiply with complexity and the

15 Tahara & Abadi (2014)

11

importation of new data sources. The proper selection of join order and join algorithms is
crucial. The difference between a good execution plan and a bad one can be orders of
magnitude in execution time. One alternative is to denormalize, but this is expensive for
big database, and can complicate updates. It may also force changes in applications.

3.5 Update Patterns

There are many kinds of updates with which a database system must contend, including:

• Small transactions, such as inserting a new entity, or updating an entity, or
deleting one.

• A bulk import of data into existing collection
• A bulk import of a new collection
• A bulk update (such as a 10% pay cut for everyone in many sectors of a large

corporation)
• A bulk deletion (for example, removing many rows from a collection)
• Deletion of a collection.

Relational database systems handle all of these well, including the grouping of updates
arbitrarily into transactions. These systems typically provide utilities and special
optimization for bulk import to a new collection, (i.e. table), and deletion (or truncation)
of a collection.

NoSQL systems are particularly good at the fast ingestion of data, because the inserts are
spread across the nodes comprising the system. This assumes, however, that the insert is
to a single collection and involves no secondary indexes. (The index is likely to be
distributed differently from the collection owning the index, so an atomic update
becomes very expensive.) Achieving scalable, transactional inserts and updates in a
distributed database is currently not possible, and is an area needing research. Another
approach to the problem is to research techniques for letting applications live with related
collections (e.g. a table and its secondary indexes) that are not updated transactionally.
As noted earlier, big data systems, which integrate independent data sources, must
tolerate inconsistencies; perhaps non-transactional updates to related collections can be
thought of as a special case.

3.6 Data Contention and Isolation

In theory, relational databases provide a simple notion of correctness for concurrent
execution: any implementation, which may run transactions concurrently, must provide
the same result as some serial execution of the same transactions. In this serial execution,
each transaction sees the database in some state, and transforms the database to some
other state, (which is then visible to the next transaction). This must be the same set of
visible states in any valid concurrent execution.

This mode of operation is called SERIALIZABLE. In practice, SERIALIZABLE restricts
concurrency too much, and so relaxed criteria are used. For example, in REPEATABLE

12

READ mode, a transaction must see the same state for some row each time it is read,
even if commits modifying that row occur during the transaction. READ COMMITTED
is weaker, permitting different values to be read. This is further from the
SERIALIZABLE ideal, but permits greater concurrency, and therefore improved
performance.

Big Data systems complicate this picture in two ways. First, there are added difficulties in
obtaining correct transactional behavior in a distributed system. Two-phase commit16 is
the best-known approach, but can be expensive in practice. Some techniques such as
Paxos17 seem to have the same problem, and tend not to be used for database transaction
management. Some NoSQL systems use an imprecise notion of “eventual consistency”,
in which all of the updates that need to go together (and that would be combined into a
transaction in a relational system), are eventually applied. The problem, of course, is
what an application is supposed to do with data that is inconsistent because eventually
hasn't happened yet.

Second, there are the problems inherent in dealing with external data sources. While the
two-phase commit approach was designed to extend to external data sources, in practice
this usage of two-phase commit is even more uncommon that usage in a distributed
relational database system. Also, as a practical matter, it is not reasonable to expect that
different data sources, managed by different organizations, even can be updated
synchronously. Inconsistencies are to be expected. It is likely that all relevant city, state
and federal government offices will eventually find out that someone has moved to a new
address, but it will take time, and eventual consistency seems to be all that can be hoped
for.

3.7 System and Database Administration

Big Data also raises issues in system and database administration, particularly in the areas
of backup and restoration of data, storage management, and replication: In Big Data
systems, conventional backup/restore systems may be infeasible: Some very large
archives rely on replication to a second site for backup. If many different component
systems are used (relational databases, search engines, file systems), each will have its
own system administration tasks. Each component will have to be replicated, or
otherwise backed up. It is probably not feasible to centralize control over backup and
replication, especially since the component systems are probably existing, independently
managed systems. However, centralized monitoring systems for backup and replication
does seem feasible.

4. DISCUSSION AND NEW DIRECTIONS

Currently, the only way to create a Big Data application involving a variety of datatypes
and data sources is to create an application that does the integration. References across

16 Bernstein and Newcomer (2009)
17 Lamport (1998)

13

systems are managed by the application. Any “query” across systems is again coded at
the application level, in a non-procedural way. In developing such an application, it
becomes clear that relational concepts are broadly applicable. If an application needs to
query a collection of real estate records with a repository of geographic entities
representing plot boundaries, it is tempting to resort to the language of set-oriented
queries, and then think about implementations using query processing techniques familiar
from relational databases. One would like an index to help with the most selective part of
the query, whether that is a geographical predicate (e.g. lots within ten miles of this point,
adjacent to Route 109), or a predicate on real estate records (e.g. lots owned by a given
individual within the past ten years). And then one would like to navigate from those
selected records to the other data collection to complete the query.

While no relational system operates like this across system boundaries, it is easy to
imagine how the relational approach can unify these disparate systems, and imagine
writing an application in this way. Much of the integration work, currently done at the
application level, would be eliminated.

We believe that the concepts and practices associated with the relational approach to
data—data modeling, querying, and application development—provide a good starting
point for imagining how Big Data systems might be built in the future. Research will be
needed in a number of areas before this imaginary system can be built. Some examples
are discussed in the following subsections.

4.1 Data Model and Language

SQL has proven the feasibility and power of non-procedural query languages in the
context of the relational model. It represents a very rich paradigm for application
development, so there has been little impetus to take a general approach to extension and
integration. Customers have gotten used to doing this integration on their own, at the
application layer. As we have seen, new requirements call for the steady incorporation of
or integration with new data sources and databases, and attempting to solve this problem
at the application layer may not be the best long-term approach.

There are some well-known problems with this approach. For example, the relational
model is notoriously bad at dealing with sequences. A relation (i.e., a table), is a set of
rows, and sets are unordered by definition. Yet sequences are important in many
applications. Another example is Google-style searching. SQL provides for precisely
defined logical operators used in queries, while searching is a bit looser. If I search for
the terms “suitcase” and “bomb”, then I'm more interested in documents where these
words are close together, but may not want to reject documents that contain only one of
these terms; or documents where the terms are far apart; or ones that use synonyms
instead. Simply tacking on an interface for these searches is not adequate because
applications will sometimes need both capabilities in the same operation, and because we
want query optimizers to be able to be effective in planning the execution of that
operation.

14

4.2 Query Processing

SQL has succeeded because non-procedural queries can be reliably compiled into
efficient execution plans. Query engines and optimizers of relational database products
are, in fact, responsible for SQL’s widespread adoption. Because SQL is standardized,
developments in query processing technology have been focused on SQL and the
relational model. If a future version of SQL, promoting better integration, is to succeed,
then query processing technology will again be the determining factor. To date, any
ability to query external APIs or data sources has been “tacked on,” repurposing existing
mechanisms. More research is needed on how query processing would be accomplished
if interactions with external sources were a top-level design goal.

4.3 Data Integration

Many ETL systems, data cleaning suites, and ad hoc applications have been built for the
purpose of combining data sources that share a data model but implement different
schemas. As a result, the mechanics of importing data are often not too difficult, but
specifying how the import should be done is difficult. Recurring problems include
resolving identity, resolving differences in representation (units, encodings, etc.),
cleaning up data, and handling data discovered to be in error in the process of integration

4.4 Scalability

Shared-nothing, sharded architectures achieve scalability only for the very simplest
queries and updates18. Query optimization research in distributed systems is mostly about
performance, not scalability. It is currently unclear how to obtain scalability for complex
queries. (It is also unclear to what extent scalability is needed for such queries.)

4.5 Transaction Management

Research in this area needs to start with the application area. If the major database
updates are the incorporation of new data sources, does that lead to simplifications? How
common are concurrent updates to the same data? What sort of isolation is required?

5. CONCLUDING REMARKS

“Big Data,” defined as complex, high-volume, rapidly changing, multi-form data from
multiple sources, poses many challenges in database technology. Some, but not all, of
these challenges can be met using search engines or NoSQL systems. For example,
NoSQL systems are relatively open to the integration of external sources. However,

18 In this case, scalability is defined as the ability to provide uniform performance as the number of queries,
and the volume of data, increases.

15

relational databases will also have an important role to play, although much new research
will be needed.

To deal effectively with big data, we must consider many factors, including: number of
datatypes, schema changes, query complexity, update patterns, data contention and
isolation, and system and database administration. Relational concepts offer potential
advantages in many of these dimensions. For example, they are likely to be effective at
enabling scalability for complex queries. NoSQL systems provide excellent scalability
only for the simplest queries and updates. On the other hand, relational database
technology has largely ignored the problem of integrating disparate and heterogeneous
data sources—except in the most trivial ways.

There are three broad avenues that can be followed to support the creation of big data
applications in the future:

(1) Continue to leave application developers to do the required integration of
disparate and heterogeneous data sources themselves, repeatedly facing the
same difficult implementation issues;

(2) Radically rethink the entire problem space, developing entirely new, still
unimagined approaches from scratch;

or,
(3) Use the data modeling, language, and implementation approaches taken by

relational database systems as a starting point for supporting big data.

Following the first avenue essentially amounts to ignoring the problem. It is conceivable,
under some circumstances, that we may ultimately be forced to follow the second avenue.
However, doing so should not be our first resort, since it involves ignoring decades of
useful research in relational systems, in the absence of any similarly broad approach. The
third avenue, for now, is best.

GLOSSARY

ACID: Atomic Consistent Isolation Durable. This is essentially a list of transaction
properties. Transactions run in parallel as if independent, although they are not stateless.

JDBC: Java Database Connectivity. This is a cross-database standard for Java client
applications for databases.

JSON: JavaScript Object Notation. This is a lightweight data interchange format,
standardized as ECMA-404, built on two structures: a collection of name/value pairs, or
an ordered list of values.

NOSQL: No SQL or "Not Only SQL." (See SQL below). A class of database systems
without the structure or many of the constraints of a relational database system.

16

ODBC: Open Database Connectivity; a cross-database standard for writing client
applications against databases, used by a number of large products, including Oracle.

RFC 2617: "Request for Comment" No. 2617 of the Internet Engineering Task Force,
"Basic and Digest Access Authentication."

REST: Representational State Transfer. This is an approach for requesting operations on
a database through a URL.

SQL: Structured Query Language. This is a language for managing and interacting with
data in a relational database system.

URL: Uniform Resource Locator. This is the familiar character string encoding a web
address.

Acknowledgements

This work was performed under Institute for Defense Analyses Contract No. DASW01-
04-C-0003, task order AK-2-3653. We thank David Jakubek for helpful discussions. We
also thank Elizabeth Bowman and Carla Hess for reviewing the paper and making helpful
comments.

Disclaimer

The views expressed are those of the authors and do not reflect the official policy or
position of the Institute for Defense Analyses, the United States Department of Defense,
or the United States Government.

REFERENCES

Arbesman, Samuel (2013). “5 Myths about Big Data.” The Washington Post, 18 August 2013.

Berman, Jules K. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex
Information. New York: Elsevier. 261pp.

Bernstein, Philip A., and Eric Newcomer (2009). Principles of Transaction Processing, 2nd
Edition, Chapter 8. New York: Morgan Kaufmann (Elsevier).

Codd, E.F. (1969). Derivability, Redundancy, and Consistency of Relations Stored in Large Data
Banks. IBM Research Report RJ599 (#12343), August 19, 1969. Yorktown Heights, New York:
International Business Machines, Inc.
Retrieved from: http://www.liberidu.com/blog/images/rj599.pdf

Codd, E. F.(1970). “A Relational Model of Data for Large Shared Data Banks.” Communications
of the ACM Vol. 13 No. 6, 377-387.

17

Davenport, Thomas H., and D.J. Patil (2012). “Data Scientist: The Sexiest Job of the 21st
Century.” Harvard Business Review Vol. 90 No. 10, 70-76.

ECMA (2013). The JSON Data Interchange Format. Standard ECMA-404, 1st Ed. Geneva:
ECMA International.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Executive Office of the President (2012). Big Data Across the Federal Government.
Washington, D.C.: Executive Office of the President of the United States.
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet.pdf

Grolinger, Katarina, Wilson A. Higashino, Abhinav Tiwarim and Miriam A.M. Capretz (2013).
“Data Management in Cloud Environments: NoSQL and NewSQL Data Stores.” Journal of
Cloud Computing: Advances, Systems, and Applications Vol. 2 No. 22, 1-24.
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf

Helland, P. (2012). “Life beyond Distributed Transactions: an Apostate's Opinion.” Seattle:
Amazon.com
 http://cs.brown.edu/courses/cs227/archives/2012/papers/weaker/cidr07p15.pdf

Lamport, Leslie (1998). “The part-time parliament.” ACM Transactions on Computer Systems,
Vol. 16 No. 2, 133–169.

Macafee, Andrew, and Erik Brynjolfsson (2012). “Big Data: The Management Revolution.”
Harvard Business Review Vol. 90 No. 10, 61-68.

Stonebraker, Michael (2013). “What does ‘Big Data’ Mean?” Communications of the ACM, Vol.
56 No. 9, 10-11.

Tahara D, and D. Abadi (2014). “SQL Beyond Structure: Text, Documents and Key-Value
Pairs”. Proc. New England Database Day 2014.
https://www.dropbox.com/s/7towlw11q7onrfb/sql_beyond_structure.pdf

18

http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet.pdf
http://cs.brown.edu/courses/cs227/archives/2012/papers/weaker/cidr07p15.pdf
https://www.dropbox.com/s/7towlw11q7onrfb/sql_beyond_structure.pdf

