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Abstract 
Army logistical systems and databases contain massive amounts of data that require effective 
methods of extracting actionable information and generating knowledge. Vehicle diagnostics 
and prognostics can be challenging to analyze from the Command and Control (C2) 
perspective, making management of the fleet difficult within existing systems. Databases do not 
contain root causes or the case-based analyses needed to diagnose or predict breakdowns. 
21st Century Systems, Inc. previously introduced the Agent-Enabled Logistics Enterprise 
Intelligence System (AELEIS) to assist logistics analysts with assessing the availability and 
prognostics of assets in the logistics pipeline. One component being developed within AELEIS 
is incorporation of the Mahalanobis-Taguchi System (MTS) to assist with identification of 
impending fault conditions along with fault identification. This paper presents an analysis into 
the application of MTS within data representing a known vehicular fault, showing how 
construction of the Mahalanobis Space using competing methodologies can lead to reduced 
false positives while still capturing true positive fault conditions. These results are then 
discussed within the larger scope of AELEIS and the resulting C2 benefits.  
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Introduction 
During Operation Iraqi Freedom, Soldiers of the 56th Infantry Brigade Combat Team providing 
escort to a fuel convoy found themselves in the middle of the Iraqi desert waiting for recovery 
vehicles to arrive [1]. While self-recovery efforts had overcome previous situations during this 
mission, a broken-down truck eventually halted the convoy and placed friendly forces at risk. As 
one soldier pointed out “Whenever we can't self recover, we wait for additional assets to get to 
us. Sometimes that wait is only a couple of hours and sometimes it is longer.” Fortunately, all 
ended well and the fuel was delivered safely. However, this incident illustrates the challenge 
and ramifications of in theater fleet asset management.  
 
The Army is working toward modernizing its fleet logistics [2]–[4], yet the goal of an effective 
decision support system (DSS) remains elusive. While much logistics data exists in dedicated 
databases, there are limitations to providing proactive maintenance type information to avoid 
breakdowns. Efficient combat support and combat service support demands look-ahead for fleet 
management for future manned and unmanned vehicles. The multitude of databases each has 
their own specific function and never provides a full picture for the fleet managers, operators, 
and commanders to utilize. Furthermore, these databases do not do an adequate job of 
identifying failure modes or case-based, root-cause analysis. 
 
New tools are needed that provide up-to-date information mined from the available data on the 
vehicle fleet to find potential problems. An effective Enterprise Intelligence System will find data 
from as many sources as possible, process in an integrated fashion, and disseminate 
information products on the readiness of the fleet vehicles. Doing so, we may be able to avoid 
such scenarios as waiting for recovery vehicles in a combat zone. Making sure vehicles stay 
operational is a combination of predictive health maintenance (condition based maintenance 
plus root cause analysis) and parts supply availability. Agent-Enabled Logistics Enterprise 
Intelligence System (AELEIS) is being developed as a tool to assist logistics analysts with 
assessing the availability and prognostics of assets in the logistics pipeline with data from 
multiple, heterogeneous sources. Data is aggregated and mined for data trends, and reasoning 
and prognostics tools evaluate the data for relevance and potential issues. 
 
Within AELEIS, we are developing a comprehensive failure mode diagnosis and health 
condition assessment technique for vehicle health by employing the Mahalanobis-Taguchi 
System (MTS) based multi-parameter, multi-input pattern recognition methodology. The MTS 
analysis provides a real-time, continuous monitoring system that will take vehicle history data 
and translate it into a probability of failure. Data acquired on vehicle history and maintenance 
repair will be mined and added to a database and used within the probability of failure 
calculations and revalidation to create a learning system. The MTS methodology is selected due 
to its reported accuracy in forecasting trends observed in correlated data sets without intensive 
computations (thus lower cost) [5]. 
 
This paper chronicles some of the challenges experienced attempting to extend the MTS 
approach to the available data as well as initial results from modifying MTS to these vehicular 
data sets. We believe our approach takes a more holistic view than the initial strategy, 
accounting for the impact on false negatives as well as false positives within the resulting 
analyses. By examining the impact of applying MTS in the development stages, more 
meaningful and better understanding of results can be achieved. This paper briefly overviews 
the AELEIS concept showing where MTS fits and why it was selected over alternative 
approaches. A more detailed discussion of MTS is presented, followed by application within the 
vehicle logistics domain. We wrap up with a brief summary and key lessons learned. 
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AELEIS Concepts 
Figure 1 shows a conceptual view of the AELEIS decision tool. Using a Service Oriented 
Architecture (SOA), AELEIS data extraction agents connect to the various databases and other 
data sources. The extraction agents scan the databases for key pieces of data and then publish 
that data back to the AELEIS Central Core. There, the reasoning agents determine what tools 
are needed based on data clustering. The mining and trending agents find the information in the 
data (they may also instruct the extraction agents on further data to find). Finally, compiled 
actionable information is published in a standard format out to users. This information is then 
picked up by a decision tool allowing the user to see the information, drill-down to see where the 
information originated, and make an informed decision on the logistics plan.  
 
Our research into causal data mining looked into Support Vector Machines (SVM) and radial 
basis function neural networks. Both of these methods are kernel based approaches, however, 
they are self organizing during training. The problem that we encounter with this type of method 
is that the results become ambiguous. Our challenge was that we would have to generate much 
more data than what we currently had in order to adequately train these algorithms. We needed 
an algorithm that would provide clear results with much less data. Our research efforts lead us 
to the Mahalanobis-Taguchi System. MTS provided us with the clear diagnostics capability we 
were looking for, while needing much less data. Our initial results showed that the MTS 
algorithm is able to perform the diagnostics task with representative data. We used this as a 
starting point to more fully develop the MTS algorithm. In future work we plan on expanding how 
MTS can also find causal relationships in the data.  
 

 
 

Figure 1: Conceptual view of the AELEIS decision tool. 

 
Preliminary AELEIS development relied on simulated data which was constructed to emulate 
degradation of performance for three fault modes over time. We have since been able to obtain 
a variety of government-furnished data which we have used to more fully develop AELEIS (and 
the MTS approach) as outlined here. 
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Mahalanobis Distance 
Mahalanobis Distance (MD) is a distance measure derived from an analysis of the deviation in 
the mean values of different variables in multivariate analysis considering the correlation 
between the variables. As a discriminant analysis method, MD is useful in determining the 
similarity of a set of values from an unknown sample to a set of values measured from a 
collection of known samples. MD proves to be superior to other multidimensional distance 
measures due to the following [6]: 

 Correlation between the variables is used in its calculation. 

 It is very sensitive to inter-variable changes in the reference data. 

 It is not affected by the dimensionality of the dataset. 
 

Assuming the dataset consists of k variables; i is the variable (i = 1, 2, …, k); n represents the 
number of samples in the dataset; and j is the sample number (j = 1, 2, …, n), the variables are 
standardized as defined in Equation (1). 
 

                 (1) 

 
mi and si represent the mean and standard deviation of the ith variable, respectively; and zij is 
the standardized vector obtained from the standardized values of xij. MD values are calculated 
as defined in Equation (2). 
 

    
 

 
     

      (2) 

 
MDj is the Mahalanobis distance calculated for the jth case and C-1 represents the inverse of the 
correlation matrix of the variables in the dataset.  
 

Mahalanobis Taguchi System 
Genichi Taguchi applied a robust engineering methodology using Mahalanobis distances to 
develop the Mahalanobis-Taguchi Strategy (MTS) as a diagnosis and forecasting method for 
multivariate data. It is a pattern recognition technology that assists in quantitative decision-
making by constructing a multivariate measurement scale using data analytic procedures with 
the MD values [6], [7]. MTS can be used to develop a scale to measure the degree of 
abnormality of data measurements compared to a calculated “normal”.  
 
Within MTS, initial Mahalanobis distances are calculated, then orthogonal arrays (OA) and 
signal-to-noise (S/N) ratio are used to identify attributes of importance. Attributes adding only 
noise and not signal are removed from the process, validating against known abnormal 
conditions. In developing a multivariate measurement scale it is important to (1) have a 
reference point to the scale, (2) validate the scale, (3) select the important variables adequate 
for measuring abnormality, and (4) be able to carry out future diagnosis with the measurement 
scale. These form the basis of MTS application with the steps formalized in Figure 2.  
 

The Mahalanobis-Taguchi System (MTS) was identified to work the diagnostics/prognostics 
challenge. MTS can be used for fault detection, isolation, and prognostics [7]–[9]. Previously, 
we’ve had MTS fuse data from multiple sensors into a single system level performance metric 
using Mahalanobis Distance (MD) and generate fault clusters based on MD values. MD 
thresholds derived from clustering analysis were used for fault detection and isolation. Figure 3 
(a) shows a conceptual view whereby the MD (magnitude and angle) can help detect that a fault 
is occurring and which type of fault. Figure 3 (b) shows the same concept with a compound 
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fault. In this case, either Fault 1 or Fault 2 may be indicated by the MD. In particular, a change 
in parameters would be needed to properly identify the fault. By creating a self-learning scheme, 
the proper faults can be identified, and, more importantly, which parameters to use to separate 
the faults. The manner in which we have developed the initial simulated AELEIS data, we were 
most likely to see the compound fault situation occur in the Fuel Injector vs. Fuel Filter fault 
conditions. 

 

Figure 3: Mahalanobis-Taguchi System (MTS) where the Mahalanobis distance around a 
fault cluster determines the variance from normal (lower left corner) for simple fault 
conditions (a) and compound fault conditions (b). 

Figure 4 shows an example of a compound fault that is indistinguishable using only outlet 
pressure on a pump [10]. The MTS method holds the most promise for the classification of root 
cause fault analysis. The main drawback to the MTS method is that the possible root causes 
must be known a priori. Primarily, this is due to the training and placement of the cluster location 
within the Mahalanobis space. Other methods that we have looked into for root cause analysis 
include Support Vector Machines (SVM) and radial basis function neural networks. Both of 
these methods are kernel based approaches, however, they are self organizing during training. 
The problem that we encounter with this type of method is that the results become ambiguous, 

 

 Step 1: Construction of a measurement scale with Mahalanobis space (unit space) 

as the reference with normal set 

Step 2: Validation of the measurement scale with abnormal set 

Step 3: Identify the useful variables (developing stage) 

Step 4: Future diagnosis with useful variables based on criteria for classification 

defined by a threshold 

Figure 2: MTS process as outlined by Taguchi 
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where as the results of MTS are easily understood as to what the root cause is and even allows 
for predictive analysis. 

Figure 4: Example MD based fault clusters using only the outlet pressure for a pump [10]. 

 

Applying the MTS Approach 
Concurrent with AELEIS development, the Army Tank-Automotive Research Development & 
Engineering Center (TARDEC) has been investigating the opportunities of capturing individually 
identifiable data from fleet vehicles for health and maintenance capabilities. Portions of this data 
have been made available for research within AELEIS, specifically the detection and prediction 
capabilities offered through MTS. Due to the nature of the data, certain details cannot be 
provided. However, general details are provided along with results. 
 
There were two primary data sets available for testing and development we’ll label as pre- and 
post-launch. The pre-launch data was collected over a longer time period (roughly 3 years) and 
consisted of a smaller number of vehicles (around 10). Data formatting was fairly uniform across 
the entire data space with the same 51 attributes available for each collection, but collected at 
different frequencies. Data collections were performed for each vehicle “run” which could consist 
of a few minutes to many hours. The post-launch data had been collected over approximately 
one year with a much larger breadth of vehicles (hundreds). Data formatting was often not 
consistent across vehicles (which could be different types) and could be inconsistent within a 
vehicles’ files (for example, different attribute orderings or invalid data when sensors were not 
operational or installed, etc.). Attributes for the post-launch vehicles typically ranged from 120-
150 per vehicle. 
 
Fault conditions are key to implementing the MTS approach as they drive the selection of 
variables used in the final MD calculations. The pre-launch vehicles had one identified fault 
condition provided. This fault was the first initially explored and is the one which will be 
addressed further here. The post-launch vehicles had over 100 documented fault (or potential 
fault) cases—two of which were examined following the pre-launch examination. These initial 
MTS efforts helped hone the process of applying a modified Mahalanobis Taguchi approach on 
what we will call the pre-launch vehicle’s fault F. 
 
Previous TARDEC analysis had identified differences in the data from a run prior and following 
the fixing of fault F. This analysis referenced a data set recorded approximately 6 runs prior, and 
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another set approximately 6 runs following the fix. The initial MTS analysis focused on these two 
runs, attempting to best compare ‘apples to apples’ with the existing analysis. For this initial 
look, the most relevant subset of fields was selected which all were collected at the same 
sampling rate. These 6 fields were analyzed, one was used to divide the data (following the 
TARDEC analysis criteria) and another was removed due to the S/N ratio, leaving 4 factors. 
These initial 4 factors were successful in discriminating the normal and test cases of fault F as 
shown in Figure 5. However, applying the Mahalanobis Space to other runs both prior and 
following the fix did not provide as much consistency as desired.  

The post-launch data simplified some of the pre-launch challenges in that there were numerous 
faults and the data was all collected at the same fidelity, eliminating the need for re-sampling. 
Two instances of a similar fault were examined starting from a much richer set of attributes than 
the original fault F scope. This post-launch examination took 30 variables and iteratively 
reduced them down to 6. Within this analysis, the removal of outliers was introduced for 
construction of the Mahalanobis Spaces.  
 
Traditionally, the entire normal group is utilized to construct the unit space as step 1 in MTS. 
However, with the amount and variability of data (due to vehicles, sensors, etc.) the resulting 
Mahalanobis Space (MS) from the vehicular data isn’t necessarily as clean as in existing work. 
Therefore, we sought mechanisms to remove outliers from consideration of the initial MS 
construction. Removing outliers constructs a “narrower” space which leads to better detection of 
abnormal conditions (increasing true negatives & decreasing false negatives) at the expense of 
flagging some of the removed normal data as abnormal (false positives). This analysis showed 
that the S/N ratio profiles were apt to change as more aggressive thresholds were implemented. 
The result was increased understanding of the ramifications of variable inclusion/exclusion 
within the scope of false negative and false positive detection. These initial investigations have 
resulted in revisiting fault F and the following analysis of what variables seem most appropriate 
from the entire perspective. 
 

Figure 5: MD values from the normal (left) and abnormal (right) data with initial 4-factors 
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To simplify the scope of examination, pre-launch data was normalized to the same frequency as 
the post-launch data. This required both up-sampling and down-sampling of the data, 
depending on attribute. Some of the fields may have not had enough variance (e.g., if the 
standard deviation was 0, the resultant correlation matrix would be singular and no inverse 
could be obtained) and others, such as the day of the week, were irrelevant or redundant. The 
preliminary work took the 51 variables down to 16. In addition, the normal data was constructed 
from the entire 6 runs following the fix, and a test data set was constructed from the 6 runs prior 
to the fix. The single-run test data was also retained and used within analyses.  
 
From the established variable set, the initial MTS data analysis step was performed, comparing 
the constructed MS against the abnormal data. Figure 6 shows the result utilizing the entire 6-
run dataset for the abnormal condition. There is a noticeable distinction in MD values between 
the normal and abnormal groups (as seen in the top two charts), and all variables appear to add 
more noise than signal (larger S/N ratios are better, thus, smaller negative S/N ratios are 
better). 

This MS was also compared against the single abnormal run as previously tested (and selected 
to align with TARDEC’s independent analysis). Figure 7 shows the same MS constructed 
against the single test file. In this case, notice there are two variables with a positive S/N ratio. 
This indicates that these two variables are most useful in characterizing these abnormal values 
as abnormal. In other words, it is a measure of the effectiveness in discrimination capabilities of 
each variable. Using this S/N ratio information in isolation might have caused inclusion of these 
variables within the refinement of the Mahalanobis Space. However, consulting Figure 6 will 
show this to be a bad idea. Notice the single-file fault space is favoring variables 6 and 7 

Figure 6: Fault F 16 variable MS showing MD values from the normal group (top), full abnormal group 
(middle) and the S/N ratio dB values (bottom) 
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(slightly positive and slightly negative, respectively). Comparing to the S/N ratios over the larger 
fault space we wish to detect (Figure 6) shows that these two variables do not add nearly as 
much signal across the other files where the vehicle is operating within the fault condition.  

This first analysis shows why the initial work effort on fault F may have been flawed by being too 
narrow in scope. MTS does fairly well at discerning normal from abnormal – but with the 
stochastic nature of vehicle use, we may desire to build in more generality to account for the 
“instability” of the normal data. In addition to considering the larger data sets, the multiple 
threshold investigation was applied to fault F. It was mentioned above, the more outlier removal 
which is performed prior to construction of the MS, the better detection achieved. However, the 
caveat is increased discrimination in detecting the abnormal data also increases the false 
positive detection within the removed normal data. This is often at the extreme cases within the 
threshold-removal process. For instance, Figure 8 shows the Mahalanobis Distance values for 
the normal data against the Mahalanobis Spaces constructed with MD thresholds of 2 and 1.5.  
 
To understand the threshold process begins with understanding the Mahalanobis Space. The 
statistical nature of MDs produces a unit Mahalanobis Space from the normal data. This means 
the average MD value across the normal data will be 1. The validation of the MS is essentially 
ensuring the MD values of the abnormal set are significantly distinguishable from the normal MD 
values. For automating the outlier removal process, an intermediate program was constructed to 
iteratively filter out any data instances where the MD value was above the threshold value. This 
could take in any initial “normal” group and tune it down to remove outliers from construction of 
the MS. The higher the threshold, the fewer data removed. The lower the threshold, the more 
data removed and the higher the chance for reducing false negatives and increasing false 
positives. 

Figure 7: Fault F 16 variable MS showing MD values from the normal group (top), single abnormal file (middle) 
and the S/N ratio dB values (bottom) 
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Again, Figure 8 shows graphically the potential increase in false positives with markedly 
increased MD values when using the 1.5 threshold group to create the Mahalanobis Space. 
However, even the threshold at 2 shows at least two major areas prone to false positives. Table 
1 shows the threshold MD values along with the percentage of data removed with that 
threshold.  
 

Table 1: Thresholds and data removed from MS construction 

Threshold MD Value Normal Data Removed 
From MS Construction 

10 0.72% 

9 0.76% 

8 0.81% 

7 0.94% 

6 1.11% 

5 1.43% 

4 1.91% 

3 12.1% 

2 15.4% 

1.5 54.6% 

 
It is not surprising to see that such an increase in removal between thresholds of 2 and 1.5 
results in such an increase in MD values in the resulting Mahalanobis Space. Additionally, 
consulting the same plots for thresholds of 6, 5, and 4 shows the tipping point of introducing 
additional false positives as shown in Figure 9. 

Figure 8: Fault F 16 variable MS plotting the entire Normal group’s MDs calculated from Mahalanobis Spaces 
constructed using a threshold at 2 (above) and 1.5 (below) 
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In addition to observing the impact on potential false positives, the S/N ratios were analyzed 
using the threshold-created spaces against the targeted test data (complete set). As the 
thresholds increased, the MS data changed and therefore the S/N profiles changed as well. This 
was used to determine trends, indicating which variables may be becoming more or less useful 
in identifying the abnormal data. Examples of the 16-variable data with the same thresholds of 
6, 5, and 4 are shown as Figure 10, Figure 11, and Figure 12. 
 
From this analysis, the highest noise (lowest S/N ratio) variables were removed, leaving any 
variables which seemed might be useful even though the S/N ratio was still negative. The result 
was a reduction from 16 variables to 10 variables. The initial impression was an entire set of 8 
variables exhibiting similar characteristics would be ripe for removal. Interestingly, following the 
threshold-investigating, two seemed to hold enough potential to remain in additional analyses. 
 

Figure 9: Fault F 16 variable MS plotting the entire Normal group’s MDs calculated from Mahalanobis Spaces 
constructed using a threshold at 6 (above), 5 (middle) and 4 (below) 



UNCLASSIFIED 

11 
UNCLASSIFIED 

  

Figure 10: Normal MD values, Test MD values, and S/N dB ratio from MS with threshold at 6 
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Figure 11: Normal MD values, Test MD values, and S/N dB ratio from MS with threshold at 5 
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Figure 12: Normal MD values, Test MD values, and S/N dB ratio from MS with threshold at 4 
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From the 10-variable data, the same threshold analysis was applied comparing the S/N profiles 
for the resultant (entire, original) norm and (complete) test groups across Mahalanobis Spaces 
constructed from various thresholds. Table 2 shows the equivalent data removal within this 
space, following similar trends to the 16-variable analysis. 
 

Table 2: Thresholds and data removed from MS construction of the 10-variable set 

Threshold MD Value Normal Data Removed 
From MS Construction 

10 0.64% 

9 0.73% 

8 0.86% 

7 1.13% 

6 2.23% 

5 11.9% 

4 12.0% 

3 12.6% 

2 28.1% 

 
The 10 variables were again reduced down to the most significant 7 and analyzed with the 
threshold approach. The removal results are overviewed in Table 3 
 

Table 3: Thresholds and data removed from MS construction of the 7-variable set 

Threshold MD Value Normal Data Removed 
From MS Construction 

10 0.76% 

9 0.89% 

8 1.16% 

7 11.4% 

6 11.5% 

5 11.5% 

4 11.9% 

3 14.8% 

2 33.6% 

 

Lessons Learned 

The current analysis of fault F appears to indicate that we should be able to achieve good 
detection with reduced false positives with either the 16 variable or 7 variable sets. These two 
configurations are shown in Figure 13 and Figure 14, respectively. It appears perhaps the 
robustness of detection comes in the spreading of the S/N ratios across a wide breadth of 
variables as opposed to the traditional approach focusing heavily on variable reduction.  
 
One of the problems hinted at with the post-launch vehicle data is the same variables are not 
always available across vehicles. This complicates applying the MTS process as missing 
variables are not traditionally encountered within MTS. If a method can be implemented for 
handling missing data, having a larger set of attributes to draw on for the MD values may be of 
additional benefit. Continuing research will explore the tradeoffs with reducing the variable set 
versus increasing the robustness of the fault detection balancing the reduction of false 
negatives with the increase of false positives. 
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Figure 13: 16 Variable MS Threshold 5, MD values of the threshold space, full test 
space, and full normal space 



UNCLASSIFIED 

16 
UNCLASSIFIED 

 

Figure 14: 7 Variable MS Threshold 8, MD values of the threshold space, full test space, and full 
normal space 
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