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Abstract: 

One purported benefit of Network Enabled Operations is the increased availability of shared 

information, which can contribute to improved situational awareness, decision-making and 

overall mission effectiveness.  Using a simulated Mission Command task focused on capturing 

high value targets (HVTs), we investigated how varying levels of available information affects 

human decision-making.  The information presented to participants consisted of reports of 

possible HVT locations.  Some reports indicated the correct location of a target; incorrect reports 

indicated a variable location immediately adjacent.  As compared to a single report, it was 

possible to pinpoint the true location of a target by integrating information from multiple reports. 

However, results showed that participants did not locate HVTs faster with multiple intelligence 

reports compared to a single report. To determine if this was due to cognitive limits, human 

performance was compared to an Ideal Observer Model which had perfect information 

integration but the same task timing constraints.  The model demonstrated a considerable 

improvement in performance with increased volume of information.  These findings raise 

questions about human capabilities for information fusion given the high volume of information 

in military networks. Furthermore, results suggest decision support systems may enhance human 

capabilities for fusing and disambiguating information.  

  



Human Limits to Cognitive Information Fusion in a Military Decision-Making Task 

 

Introduction 

Recent advances in technology have transformed the way that people communicate and 

organizations operate in society today.  This is perhaps most evident in the military domain, 

where these advances have permitted a dramatic change in the way that command and control 

(C2) networks function. The military’s transformation to Network Enabled Operations (NEO) 

gives rise to large, interacting, and layered networks of Mission Command personnel 

communicating and sharing information within and across various command echelons (Alberts 

& Garstka, 2004; CNSFAA, 2005). With such a dramatic shift to extensive networking, there is a 

need to understand the impact of NEO at the level of human cognition, in particular human 

decision-making in such complex, information-rich environments. In time-stressed situations 

common to the Mission Command environment, the performance of the entire networked 

organization can be constrained by the ability of a single Soldier’s ability to process information 

in a timely manner.  

 The transformation of the U.S. and NATO countries to NEO has proceeded under a 

conceptual framework of Network Centric Warfare comprising four primary tenets (Alberts & 

Garstka, 2004): 

1) A robustly networked force improves information sharing and collaboration. 

2) Such sharing and collaboration enhance the quality of information and shared situational 

awareness. 

3) This enhancement, in turn, enables further self-synchronization and improves the 

sustainability and speed of command. 

4) The combination dramatically increases mission effectiveness. 



This conceptual framework explicitly assumes that greater information sharing in a 

networked organization produces better situational awareness, decision-making, and ultimately, 

mission outcomes.  In essence, the increase in information available to commanders and their 

staff is postulated to increase the quality of decision-making due to enhanced situational 

awareness (CNSFAA, 2005).  

The tenets of this framework have not been investigated at the level of human cognition, 

especially in relation to decision-making and human information processing.  For instance, there 

may be situations in NEO where increased information sharing raises the quantity of available 

information without a corresponding increase in quality.  This presents a challenge as cognitive 

resources must be devoted to separating the relevant information (the signal) from the irrelevant 

information (the noise).  Even when information sharing results in the increased availability of 

relevant information, the sheer volume and rapid pace of information received and readily 

accessible through networked systems can be overwhelming.  Humans have a fixed cognitive 

processing capacity limited by attention, memory, as well as the availability and communication 

of information. In complex information environments, it can be increasingly difficult to pinpoint 

and fuse the relevant information to support decision-making. 

 Understanding how humans process information and make decisions in relation to 

information flow is a critical challenge that we wish to address through experimentation.  How 

much information is too much and what happens to decision-making when an operator becomes 

overwhelmed?  Understanding of the consequences to human performance of operating in an 

information-rich, time-stressed environment is a critical challenge that fits within the Office of 

the Secretary of Defense ‘Data to Decisions’ initiative to manage the complexity of the 



information environment in ways that “enable faster, better decisions while reducing information 

overload” (Swan and Hennig, 2012).  

Consequently, for NEO there is a need to examine human cognition, specifically 

objective decision-making in controlled experiments and observational studies. In this work, we 

experimentally manipulate the volume of information to test human performance for making 

decisions to find HVTs using a simulated task. In our case, volume of information is also related 

to the concept of information overload, which has many definitions, including more relevant 

information than an individual can process or being inundated with irrelevant and/or unrequested 

information (see Edmunds & Morris, 2000).   

Here we focus on volume of relevant information.  Thus, the cognitive task of interest is 

information fusion rather than filtering. We use the term cognitive information fusion to indicate 

the involvement of humans and to differentiate this from other types of information fusion 

(Blasch, Bosse, & Lambert, 2012). It is clear that large amounts of bad or redundant information 

are undesirable.  However, there is a technological goal and intuitive desire is to provide the 

Soldier with as much “good” information as possible so that decisions can be made based on the 

most complete understanding of a given situation possible. But what if too much “good” 

information can also impede performance?  By studying cognitive information fusion, rather 

than filtering, we can address exactly this question. 

 

Cognitive Information Fusion and Information Overload 

Contrary to intuition, research shows that more information (even highly-relevant 

information) does not necessarily lead to better decision-making. Nadav-Greenberg and Joslyn 

(2009) asked participants to make repeated decisions as to whether or not to salt the roads in a 

town, based on their prediction of whether or not it would freeze on a given night.  They were 



given the expected overnight temperature, and the between-subjects manipulation was what 

additional information the participants received: no additional information, the lower bound of 

the 80% confidence interval on expected temperatures, the lower and upper bound of the CI, the 

probability of freezing, or the option to request any or all of these pieces of information.  

Participants in this last condition, with all types of information available to them upon request, 

actually performed worse than those in the other information conditions.  This outcome provides 

some evidence for information overload; however, some of the types of information provided 

were redundant.  For example, the probability of freezing was calculated from the 80% 

confidence interval.  Our interest is in studying the impact of providing more useful information 

rather than the impact of presenting the same information in a variety of ways. 

In another study, participants predicted whether a firm would experience financial 

distress within three years on the basis of 4, 6, or 8 different information cues (Chewning & 

Harrell, 1990). The researchers found that approximately one third of their participants 

demonstrated a u-shaped relationship between information used and information available; i.e., 

they showed signs of information overload.  Those participants who demonstrated overload 

made less consistent decisions.  This study is relevant to our work in that the information 

provided was not redundant and was varied systematically.  However, there was no ground truth 

with which to compare the participants’ decisions.  Our goal was to design a study that directly 

related volume of information to decision-making performance. 

For our investigation, we manipulate the amount of information (all useful) presented to 

the user in performing a task. Essentially, our work examines human capabilities for cognitive 

information fusion. Information fusion is defined as the integration and merging of information 

from heterogeneous sources. Cognitive information fusion refers to the role of a human user in 



integrating information into a conceptual mental model or representation (see Blasch et al., 

2012). In designing this study, we have two divergent hypotheses: 

1) “More is More:” More task-relevant information leads to better performance.  This 

hypothesis is supported by the tenets of NEO – more information sharing leads to 

greater SA and mission effectiveness.  

2) “More is Less:” More task-relevant information leads to worse performance.  This 

hypothesis is drawn from the information overload literature, referenced above. 

Each hypothesis can also be similarly interpreted by its complete opposite for information and 

performance. Another interpretation for the first hypothesis is “Less is Less,” where less task-

relevant information leads to worse performance. An alternative interpretation for the second 

hypothesis is “Less is More,” where less task relevant information results in better performance.  

 

Simulated C2 Task 

 We created a task designed to simulate a simplified C2 mission.  In this task, the 

participant viewed a computer display containing a grid-based map, as well as several controls 

and text boxes for the display of information.  The participant had control over the movements of 

four identical assets or units, which could be assigned to travel to any location on the map.  The 

assets took time to travel across the grid.  The primary goal for the participant was to find and 

capture high value targets (HVTs), which activated somewhere in the area of operations (AO) at 

specified times and remained in the same location until captured.  Participants received 

information about the possible location(s) of HVTs through text updates on the display. 

 While this task was an obvious simplification of a real C2 scenario, the experimental 

design conferred the benefits of controlled manipulation of relevant factors. Therefore, strong 

causal inferences could be made about volume of information and human performance.  For 



example, we systematically manipulated information volume levels by varying the number of 

intelligence updates presented to the participant for each target.  In the real world, information 

volume is likely to be confounded with the quality/relevance of information, number of sources 

of information, information modality, rank, echelon, network bandwidth, system availability and 

interoperability, security restrictions, and many other factors. By using an abstracted 

experimental task, we were able to hold such potentially confounding variables constant to 

explore the effects of varied information volume. 

 Another benefit of this controlled experimental task was that it allowed for 

straightforward, direct measurement of task performance.  In a real scenario, performance is 

notoriously difficult to measure, whether quantitatively or qualitatively.  Even the most high-

level measure, mission success, is often ambiguous.  In this task, however, we operationalized 

task performance as the time to capture each target as performance.  The degree of success in 

interpretation and integration of intelligence information determined how quickly participants 

were able to move assets to the correct target locations. Thus, time-to-capture served as a useful 

quantitative measure of task performance.   

 

Ideal Observer Model 

 We developed a model with which to compare human performance data, based upon the 

concept of ideal observer analysis, originated in the field of perception.  The purpose of an ideal 

observer is “to determine the optimal performance in a task, given the physical properties of the 

environment and stimuli” (Geisler, 2006, p. 825). Our Ideal Observer Model is an information 

fusion algorithm that performs the simulated C2 task by integrating all of the information 

presented to the user. The algorithm receives the same intelligence updates in the same sequence 



and with the same timing as the human participants.  After the first intelligence update, the 

algorithm assigns the closest unit to the grid location specified in that update. After each new 

update, it uses the information provided in previous updates as well as the specified location 

probabilities of the task (see Figures 2 and 3) to generate an optimal prediction of the target’s 

most likely location. In some cases, multiple updates provide enough information for certain 

knowledge of the target location. In other cases more than one location may be equally likely; in 

these instances the algorithm makes a random “guess” for its prediction.  If a unit is en route to 

one location, and subsequent updates have confirmed with certainty that the target is in a 

different cell, the model will stop and reassign the unit.  If a unit arrives at a predicted location 

and doesn’t capture a target there, the algorithm updates its list of possible target locations and 

tries each remaining possibility in turn until the target is captured. 

This model is useful in that it defines performance for an ideal observer against which we 

can compare human performance. We can see, given the context of this particular task, what 

perfect information fusion would look like in the data, and compare this to actual human 

performance data.  

Method 

Participants 

Twenty-four volunteers (16 male, 8 female) completed this study.  All were between the 

ages of 18 and 60 years.  Participants were recruited through email solicitation at the U.S. Army 

Research Laboratory, and they did not receive compensation for their participation. 

 

Task 



The computer-based task presented to the participants was to find and capture HVTs 

within a given AO.  The display showed a grid map of the AO (see Figure 1) with blue icons 

indicating the locations of four controllable units available for assignment.   

 

Figure 1. Screen capture of the experimental display. 

 

A “base location” was defined by four grid squares at the center of the map.  The four 

controllable units were located in this base location at the beginning of each round of game play, 

and they automatically returned to this location after capturing a target.  The display also 



contained a text box that displayed incoming intelligence information about the location of 

HVTs, a running text box of spot reports issued from the four units, and a progress bar indicating 

how many HVTs had been captured. Clickable checkboxes were also displayed for each target; 

participants could use this feature to mark and keep track of which HVTs had been captured and 

which were still “at large.” 

As intelligence information appeared, the participant was able to click on unit icons to 

assign them to travel to these locations and capture the targets.  While a unit was traveling, the 

unit icon disappeared, and a yellow arrow appeared showing the path of travel.  Units traveled by 

taxicab distances, and whether they traveled horizontally or vertically first was randomly 

assigned for each unit movement.  If a unit entered the same location as an active target, it 

automatically captured the target and returned to the base location in the center of the map.  

When this occurred, a red arrow appeared showing the path of travel back to the base location.  

Units always traveled one block every three seconds. 

The intelligence updates presented to the participants were 50% likely to provide the 

accurate location of a target.  If the update was not accurate, it was only off by one square in the 

horizontal or vertical direction (see Figure 2). 

  



 

Figure 2. Illustration of possible HVT locations and their respective probabilities, given a single 

intelligence update.  This illustration was shown to participants during the tutorial phase, but it 

was not part of the experimental display. 

 

 

As a result of these contingencies, multiple intelligence updates allowed for the 

possibility of pinpointing the actual location of a given target with certainty.  For example, if one 

update read “HVT 1 sighted at C7,” and another read “HVT 1 sighted at C9,” the target must 

have been at C8 (see Figure 3). 



 

Figure 3.  Illustration of integrating multiple intelligence updates to determine the true target 

location.  Given the possible target locations associated with each of the two unique updates, the 

only possibility is C8.  These illustrations were not part of the experimental display. 

 

Participants would receive 1, 5, or 9 intelligence updates per target in a single block.  All 

updates about a single target would appear within a 16-second window, and new targets 

activated every 15 seconds (see Figure 4). 



   

Figure 4.  Illustration of the timing of intelligence updates in each of the three information 

volume conditions. 

 

 

Procedure 

The study was conducted in a sound-attenuated room with a single-monitor computer.  

Participants completed a self-paced tutorial which provided an overview of the purpose of the 

task and allowed them to step through each of the actions required of them in the task (reading 

intelligence updates, assigning a unit to a new location, marking a checkbox to indicate target 

capture).  The accuracy contingencies of the intelligence updates were also described in the 

tutorial, with a diagram to explain (see Figure 3).  Participants then completed a practice block, 

in which they had to capture six HVTs.  Each of the three intelligence volume conditions was 

presented twice in this practice block.  After successfully completing the practice, participants 

completed three test blocks.  Each test block consisted of 18 HVTs to capture.  The volume of 

intelligence updates was varied by block, and the order of the three blocks counterbalanced 

across participants. 

 



Analysis and Results 

For each participant, the time between activation of an HVT (the time of the first 

intelligence update) and the capture of that HVT was calculated.  This time was divided by the 

distance in blocks of the HVT’s location to the base location, to account for the longer travel 

time required by farther away targets, generating a rate (time to capture/distance traveled).  

Because there was a great deal of variability in overall speed across participants, rates were 

converted to standardized values (z-scores) for each participant.  Average z-score rates were 

calculated in the three information volume conditions for each participant, and compared across 

participants.  The hypothesis that more information leads to better performance would predict 

that no matter the overall speed of a participant, they should perform relatively faster with more 

available information.  We found no significant differences between information volume 

conditions (F(2,46) = 0.49, p = 0.62, η
2
 = 0.02).  Neither did the data trend in this direction; 

conversely, the fastest condition was actually the low information volume condition (see Figure 

5). 

 As a comparison, the Ideal Observer Model was designed to perfectly integrate all 

intelligence updates.  The purpose of this model was to discover if additional information 

objectively conferred an advantage in decision-making.  For example, it was possible that the 

timing of the task and the nature of the updates dictated that only using the first update to assign 

a unit, and then searching the area after arriving was as good as or a better strategy than 

processing several updates to make a better guess at the target location.  If the Ideal Observer 

Model did not perform increasingly better with more information (5 and 9 update conditions) 

than less information (1 update condition), this would indicate that the human participants were 

not necessarily overwhelmed by and unable to use the additional information; but that they were 



making a possibly rational decision to only use a single update, no matter how many were 

available.  However, if the ideal observer did perform better with more information, this would 

indicate that the human participants were unable to take advantage of the benefits of additional 

information. 

 The ideal observer model was run on the exact set of intelligence updates received by 

each participant.  As with the human data, the rates were converted to z-scores and then averaged 

(see Figure 5).  Contrary to the human data, the ideal observer performed much faster with 

additional intelligence updates.  A two way mixed ANOVA confirms this result; the interaction 

between the information volume (low, medium, or high) and the type of data (human vs. ideal 

observer) is significant (F(2,90) = 19.44, p < 0.0001,   
  = 0.30 ).  

The ideal observer model appears to have diminishing returns as it asymptotically 

approaches a performance ceiling. With sufficient relevant information, even imperfect 

information, the ideal observer gets closer to being fully deterministic; much like Laplace’s 

Demon where perfect information enables perfect predictability – with the only constraint being 

the time to move the units. 

 



 

Figure 5. Comparison of experimental results from human participants and simulated results 

from the ideal observer model.  Larger z-scores represent relatively slower target capture times, 

while smaller z-scores represent relatively faster target capture times. Humans performed better 

in the low information condition whereas performance of a data fusion algorithm (Ideal Observer 

Model) improves with increasing amounts of information. Error bars represent standard error of 

the mean. 

 

Discussion 

In our study we manipulated the volume of task-relevant information provided to 

participants and measured the resulting time to find and capture high value targets.  We 

anticipated one of two outcomes: 1) More information leads to better performance (“More is 

More”), or 2) More information leads to worse performance (“More is Less”).  We found, 

however, that increasing the volume of task-relevant information did not impact human 

performance on the task.  This outcome was not one of those hypothesized, and might be thought 

of as “More is the Same.” In contrast, an ideal observer, which perfectly integrated all 

information provided, performed much faster with increasing information (“More is More”).  

The results from the Ideal Observer Model demonstrate that in this task, computational 



performance can be improved by integrating all available information.  Human performance data 

showed neither improvement nor detriment with increasing information volume; this indicates 

that for the current task human participants may have been at their limits in integrating or fusing 

information.  

Our results provide evidence of a limited human information fusing capability – 

individuals are not always able to take advantage of all information provided to them, even when 

this information is useful to the task at hand.  These findings indicate that in C2 environments, 

caution should be exercised when attempting to make all information available to all personnel.  

In addition, these results make a strong case for continued research into effective decision-

support tools that can assist in information synthesis and disambiguation.  

We find evidence that in some high-information volume environments, human decision-

making performance can be surpassed by an information fusion algorithm (such as our Ideal 

Observer Model). However, when automated decision-support tools are incorporated into the 

military C2 context, human supervisory control is still clearly a requirement.  Future work might 

explore the optimum interaction between automated fusion algorithms and human cognitive 

fusion in similar simulated experimental C2 tasks. 

Conclusion 

The purpose of this work was to begin to evaluate the impact of the transition to NEO, 

made possible by interconnected systems and communications, upon the human decision maker.  

In particular, we assessed how the rapidly increasing amounts of available information help or 

hinder decision-making performance. We systematically examined this research question by 

developing a simple military-relevant task focused on HVT capture; this task allowed for direct 

manipulation of information volume and straightforward measurement of human performance. In 



addition, the simplified task also allowed us to develop an Ideal Observer Model for optimal task 

performance, which we compared to actual human performance.  We found that, while more 

information allowed an optimal observer to perform faster, this was not the case for human 

participants.  We find evidence that more information is not necessarily better for human 

decision-making, consistent with the literature on information overload.  There are clear 

limitations to our study; for example, our participants completed a single task with 

simplifications from a real C2 environment.  However, this experiment is the first step in a 

program of research focused on studying the effects of networked operations upon the human 

decision maker.  Our next phase of study includes expanding this task to allow two roles, an 

Intelligence Officer and an Operations Officer, to perform different functions while interacting to 

successfully complete the mission.  In addition to increasing the complexity of the task, this will 

also introduce issues of team dynamics, communication, and trust, allowing for richer data sets 

to investigate the wide variety of questions surrounding human decision-making performance in 

networked operational environments. 
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