
19th ICCRTS

Title of Paper
Collaboration services: Enabling chat in disadvantaged grids

Topic
Topic 6: Cyberspace, Communications, and Information Networks

Name of Authors

F.T. Johnsen, T.H. Bloebaum,
Norwegian Defence Research Establishment (FFI)

K.M. Kittilsen and team*
Norwegian University of Science and Technology (NTNU)

Point of Contact

Frank T. Johnsen
Norwegian Defence Research Establishment (FFI)

P.O. Box 25
NO-2027 Kjeller

Norway

E-mail: Frank-Trethan.Johnsen@ffi.no

(*the team: Luka Cetusic, Hans Kristian Flaatten, Karsten Kjensmo, Erik Lothe, Ole Johnny Pettersen, Thomas
Martin Schmid and Bjørn Tungesvik)

This page is intentionally left blank

Collaboration services: Enabling chat in disadvantaged grids

Abstract

Instant messaging is an important aspect of collaboration. There are many different solutions for
instant messaging or "chat" as it is often called. One of the most prominent solutions in recent years
is the XMPP protocol, which is implemented in several instant messaging products, both servers and
clients. This protocol has also been chosen for chat by NATO, as it is mentioned in the SOA baseline
as one of the protocols to use when implementing the collaboration core services. NATO's JChat
client implements XMPP, and has been used with success in many missions. However, the protocol is
not well suited for use in highly dynamic environments. In this paper we present our approach to
bringing chat into such environments. We build our chat solution on ACP142, a protocol developed
for use in tactical radio networks that can cope with mobility and disruptions. Finally, we discuss how
a gateway solution can be used to bridge our experimental chat with the standard XMPP which
should be used in networks with infrastructure.

1. Introduction

This work has been performed in the context of NATO STO/IST-118 "SOA recommendations for
disadvantaged grids in the tactical domain" [2]. The main focus of this group is to identify what we
call tactical SOA foundation services. By this we mean which core enterprise services we need
support for in the tactical domain. Examples so far include, but are not limited to, the messaging
service, publish/subscribe service, collaboration, and service discovery service. In other words, we
aim to investigate how services from the SOA baseline [3] can be extended for use in tactical
networks. In this paper we focus on the Instant messaging service, which is a subset of Collaboration
in the SOA baseline. The baseline recognizes that there are additional collaboration services and
states that more services will be addressed in future versions, but currently only instant
messaging/chat is identified with a standard to employ. For chat, the SOA baseline points to XMPP.
XMPP is the most important chat protocol in use in NATO today, as it is the protocol being used in
JChat. JChat is currently being evaluated for use in disadvantaged grids [4]. However, XMPP is
intended for use in stable networks with high bit rate (e.g., LAN, Internet) and does not function well
in military tactical networks where resources are scarce and disruptions are frequent, as our
experiments in [1] have shown. As XMPP is not particularly well suited for use in disadvantaged
grids, yet chat is important, it is in the IST-118 group’s interest to attempt to extend this aspect of
collaboration also to such environments.

Chat is becoming increasingly important in military operations, and such services have been used on
several occasions (e.g., in Operation Enduring Freedom and Operation Iraqi Freedom [6], where chat
was also used in special operations). In this paper we present our approach to enabling chat in
disadvantaged grids by leveraging the ACP142 protocol for transporting the instant messages. This
protocol has been designed for use in tactical networks, and can function in certain disadvantaged
grids. Our contribution is twofold:

1. We have implemented ACP142 according to the specification and released the
implementation as open source.

2. We have implemented a multiuser chat solution for disadvantaged grids on top of ACP142,
also released as open source.

The remainder of this paper is organized as follows: In section 2 we discuss our approach in light of
related work, and provide a brief introduction to ACP142. Section 3 presents details on our
implementations, along with the URLs where the open source code can be obtained. Section 4
summarizes the tests performed, and Section 5 concludes the paper.

2. Background

2.1 Chat solutions for tactical networks

[7] presents an application suite built on top of DoDWAN, where one of the applications is a delay-
tolerant text messaging application with group support: TextWAN. ChatWAN is another chat
application built on top of DoDWAN [5]. ChatWAN implements a subset of the IRC protocol [8],
enabling clients to connect using standard IRC clients.

NATO has chosen to standardize on the eXtensible Messaging and Presence Protocol (XMPP) [9,10]
for instant messaging. XMPP is server-based making it ill-suited for use in disadvantaged grids where
a central server constitutes a single point of failure. This has led to an increased research focus on
developing chat solutions that are adapted to the tactical domain, as well as a shift from the previous
focus on IRC to the current focus on XMPP.

Multicast is an efficient means of distributing one message to many recipients. This can be leveraged
in order to decentralize a chat application and do away with the central server. For example, a
multicast-based solution for secure group chat and XMPP compatibility is discussed in [11, 12]. The
authors suggest using a proxy for compatibility with XMPP. Further, in [13, 14], Lass et al. present
their design and evaluation of an XMPP overlay protocol for tactical chat based on multicast. By using
gateways and proxies, the chat solution is compatible with XMPP clients.

When using multicast, the delivery success rate and bandwidth use depend on the efficiency of the
protocol. Reliable multicast protocols can be leveraged, such as NACK-Oriented Reliable Multicast
(NORM) [15]. Previously we have created a decentralized chat mechanism with its own reliable
distribution mechanism that does not rely on underlying routing or multicast mechanisms, and that
can achieve interoperability with XMPP through a gateway. Experiments have shown that this
solution significantly outperforms XMPP in networks with disruptions due to high node mobility [1].
This solution (called Mist chat) was presented as input to NATO STO/IST-090 "SOA challenges for
real-time and disadvantaged grids" and was a part of the group's final demonstration at MCC 2011 in
Amsterdam, Netherlands.

However, if there is a need for a node to go into radio silence, then that solution will not necessarily
work well. Ideally, we want a node to be able to receive messages even if it is currently in EMCON1
and does not transmit anything. This led us to investigate other possible solutions as well. We have
now chosen to focus on the ACP142 protocol for reliable multicast, because it has been designed
specifically for use in tactical networks. It is a highly configurable protocol that, unlike other reliable

1EMCON is short for emission control, also known as radio silence, where a node has entered a state where it
may receive but not transmit data.

multicast solutions we are aware of, can function under EMCON as well. In this paper we present our
current approach to chat in disadvantaged grids, which we have built on top of ACP142. This current
solution (called P_MUL Chat), as well as our previous Mist chat, have both been submitted to the
NATO STO/IST-ET-070 exploratory team for tactical chat for consideration.

Figure 1: Approaches to implementing Chat solutions

From the literature overview provided above, we have identified three approaches that are
commonly used when attempting to realize chat in tactical networks. Figure 1 illustrates these three
approaches, from left to right: 1) Attempting to use XMPP directly, but with certain optimizations, 2)
Using a proprietary solution in the dynamic environment, but using gateways to achieve
interoperability with COTS XMPP clients and servers, and 3) Proprietary client and optimizations, but
using a gateway for interoperability with an XMPP server in the backbone network.

2.2 ACP142

ACP 142 [16] provides a protocol definition for reliable multicast information transfer in bandwidth-
constrained and delayed-acknowledgement environments to support efficient allied information
transfer. The objective of ACP 142 is to specify and standardize the P_MUL protocol. P_MUL, as a
reliable multicast protocol, requires an underlying connectionless network infrastructure with
multicast routing functionality. Current P_MUL implementations often use the User Diagram Protocol
(UDP) and Internet Protocol (IP) as illustrated in Figure 2. The protocol specification does not limit it
to this protocol stack, but due to NATO’s current “Everything over IP” mindset, we anticipate that
this combination will be the most viable for interoperability in the coalition.

Figure 2: Implementation of P_MUL on an UDP/IP stack (taken from [16])

Although P_MUL is based on a connectionless transport protocol, it provides users with reliable
connection-oriented multicast services. It enables the receivers to receive messages while being
under EMCON restrictions. It ensures that the transmitter is informed about the timely completeness
of the transmission of the messages after the receivers leave the EMCON status and, if required,
enables the re-transmission of any messages that were not properly received. P_MUL requires that
the router is able to support static multicast routing. P_MUL works for fixed multicast groups and can
also work for dynamically formed ad hoc multicast groups. For fixed multicast groups each node has
knowledge about the group memberships of one or more multicast groups. Dynamically formed ad
hoc multicast groups may be used for transmitting single messages, but implementation of dynamic
multicast group formation is an optional capability in the specification. For the complete protocol
details, please refer to [16].

3. Design and implementation

For software development, the chosen Integrated Development Environment (IDE) was Eclipse.
Eclipse is tightly integrated with Java and has functionalities such as real-time error and warning
checking, automated code refactoring and powerful autocomplete capabilities. Both our P_MUL
library and our chat solution (called P_MUL chat) were implemented in Java using Eclipse. The
solution has been tested in emulated network conditions (see Section 4). As a contribution to the
research community we have chosen to release our implementations online as open source at
Github, where detailed documentation can also be found. Below we summarize the most important
highlights of both implementations.

3.1 P_MUL

The complete P_MUL design and functionality is described in [16], so we will not go into those details
here. Instead, we focus on where our implementation goes beyond the mandatory functions
specified:

• We implement the optional support for dynamic multicast groups as well as the mandatory
static groups.

• We implement support for IPv6 when using static multicast groups, in addition to IPv4 for
both static and dynamic multicast groups.

The specification only requires one to implement support for static multicast groups. This implies
that when only such groups are used, one must configure all relevant groups at deployment. In
context of our intended application of the protocol, as a carrier for chat, it was desirable to also have
support for dynamic multicast groups. The reason for this being that one could then map chat topics
to multicast groups, and allow new topics to be introduced at run time. When leveraging only static
groups, the chat topics to be used must be planned and configured pre-deployment. Thus, we chose
to implement this optional functionality as well. Here, only IPv4 is supported, as differences relating
to IPv4 and IPv6 addressing meant that this functionality was not easily extended to use IPv6 without
going beyond compatibility with the specification. That being said, we still anticipate the most
important mode to be the static multicast groups, since that functionality is mandatory and must
thus also be present when encountering other implementations of the protocol. So, for complete
compatibility with the specification, it is safest to rely on the pre-planned, static multicast group
functionality for disseminating messages.

In recent years there has been an increasing interest in IPv6 also for defense use (see e.g., the recent
CONSiS experiment [17] where IPv6 was employed). Inspired by this, we chose to go beyond the
basic IPv4 addressing in the specification and implement support for both IPv4 and IPv6 when using
static multicast groups. Our IPv4 implementation is fully compliant with the specification, whereas
the IPv6 implementation uses our own interpretation of how the addressing scheme can be
extended to function in an IPv6 based network. By using hashing, we are able to obtain the necessary
identifiers of appropriate length and computational strength.

The implementation is free, released as open source, and can be obtained from
https://github.com/libjpmul/libjpmul (P_MUL including the above mentioned enhancements). The
protocol implementation has been subject to performance and specification compliance testing in an
emulated network environment, ensuring that it fulfils the specification.

3.2 P_MUL Chat

The following explains the creation of the chat application design that is built upon the P_MUL
protocol. The code has been released as open source at https://github.com/libjpmul/pmulchat
where it can be downloaded free of charge.

Figure 3 illustrates the major functionality of the chat application’s graphical user interface (GUI).
Here, Chat indicates the window displaying the chat messages, Comment field is the window where
you enter your messages, topic contains a list of chat topics that can be subscribed to, and the clear
and send buttons do what the names imply. In addition, the actual GUI also has a couple of other
functions as well, the most important being a means of configuring the parameters of the underlying
P_MUL protocol.

Figure 3: Chat application GUI outline

The chat application relies on a set of messages to function. All messages are used if dynamic
multicast groups are leveraged. If static multicast groups are used, then only a subset of the
messages is needed. The complete set of messages is:

• SEND_MESSAGE: Messages of this type transmit chat messages to all subscribers of the
current topic.

• NODE_LIST: Upon starting the application, it transmits its destination ID over a configurable
unreliable UDP Multicast. Any node that sees this will respond with a message of this type,
containing the destination IDs of all nodes it knows are online.

• NODE_LEAVE: When the application is terminated, a message of this type is sent out so other
nodes know not to transmit to this user any more. To make the quit action responsive, these
messages have a very short time to live.

• GET_TOPICS: Asks for a list of all topics, triggers a TOPIC_LIST response.
• NEW_TOPIC: Announces the creation of a new topic. Should a topic with this name already

exist, a SUBSCRIBER_LIST response is triggered.
• DELETE_TOPIC_ QUERY: Queries whether any clients object to the deletion of a topic. Any

client, the user of which is currently subscribed to this topic, will respond with a
TOPIC_IN_USE message.

• DELETE_TOPIC_SUCCESS: Follows a DELETE_TOPIC_QUERY message if no TOPIC_IN_USE
message was received during the waiting period. Upon receipt, the topic will be deleted.

• JOIN_TOPIC: Sent when the user selects a new topic to subscribe to. Allows the other clients
to know that a new subscriber is now a part of this topic.

• LEAVE_TOPIC: Sent when the user selects a new topic to subscribe to having previously been
in another topic. Ensures the other clients in the old topic know that this subscriber is no
longer in the topic.

• TOPIC_LIST: Sent upon receipt of a GET_TOPIC message. This is used to share a list of all
topics the client is aware of.

• TOPIC_IN_USE: Triggered by a DELETE_TOPIC_QUERY message if the client objects to the
deletion of the concerned topic.

• SUBSCRIBER_LIST: When a user creates a new topic that already exists, or joins a topic, this is
sent as a response. It contains destination identifiers and user names for all clients currently
subscribed to the topic.

• INVALID: Only used internally, this marks messages which are found to be invalid when
parsed from raw bytes.

These messages constitute the chat solution’s network behavior in the following manner:

3.2.1 Startup

When the application first starts, it transmits its unique identifier over unreliable UDP multicast to a
predefined group that all clients listen to. This notifies the group members that this client is now
online, and they will respond with a NODE_LIST message containing a list of all clients they know are
online. The fact that all clients respond generates significant potentially unnecessary network traffic.
Due to the unreliable nature of pure UDP multicast, this is however needed to maximize the chances
that the identifiers of all online nodes are received. After receiving the first NODE_LIST response, the
client sends out a GET_TOPICS message if dynamic topics are supported. If this is the case, then a
node will respond with a TOPIC_LIST message containing all existing topics.

3.2.2 Changing topics

If the application is in static multicast mode, changing topics is not possible at runtime. Otherwise,
this will first issue a LEAVE_TOPIC message, given that the client was previously in a different topic,
to all subscribers of the topic it is leaving. It will then send out a JOIN_TOPIC message to all clients, to
which a node currently subscribing to the joined topic will respond with a SUBSCRIBER_LIST message
with all current subscribers to that topic. If no one is subscribed to the newly joined topic, no
response is seen.

3.2.3 Sending messages

Messages are sent in a SEND_MESSAGE message to all clients subscribing to the topic the client is
currently in.

3.2.4 Creating topics

When creating a topic, a NEW_TOPIC message is sent to all clients. This can only be done if no topic
with that name already exists in the local topic list. All other clients will then add that topic to their
list, unless they already have a topic with that name in their lists. If they do, then they will respond

with a SUBSCRIBER_LIST message for that topic. The client creating the topic will immediately join
the newly created topic.

3.2.5 Deleting topics

A topic can only be deleted if no other client is subscribing to it. A DELETE_TOPIC_QUERY message is
sent to all clients to check this. Any client subscribing to that topic will respond with a TOPIC_IN_USE
message to indicate that it may not be deleted. If, after a configurable waiting period, the original
client has not received a response, it will send out a DELETE_TOPIC_SUCCESS message to all clients.
This message will in turn trigger the deletion of that topic.

3.2.6 Quitting

When the chat client is shut down, it sends a NODE_LEAVE message, with a very short time-to-live, to
all clients. This notifies them to delete the destination identifier of this client from their recipients
list. The short time to live is used so the client shuts down in a reasonably responsive fashion, while
still leaving the maximum reach for this final message (to minimize the count of nodes that try to
transmit to it after its disconnection).

4. Testing

Testing of the solution was performed in several stages: Code review, unit testing, conformance
testing, and validation testing.

Figure 4: Test environment

For conformance and validation testing we used the setup shown in Figure 4. The router was
multicast-enabled since multicast support is a requirement of ACP142. Further, we employed a traffic
interceptor for those tests involving unreliable links. This was necessary due to the testbed being
wired, so the proxy was used to introduce unreliable network behavior like packet loss. Testing
involved the following four approaches (see [19, ch. 7] for complete details):

4.1 Code review

Reading through the implemented code can help identify a lot of potential problems before they
arise. By continuously having code inspections on committed code, as well as a well drafted code
convention, many problems were caught early on in the implementation phase.

4.2 Unit testing

Unit testing is the task of testing methods individually. This method focuses solely on an expected
output given a specific input. It does not test whether the method actually conforms directly with
protocol design (this is ensured through conformance testing).

Unit testing ensures that the method does what the programmer intended it to do; technically
speaking. Unit testing is an excellent way to test whether newly introduced changes break existing
functionality from a technical standpoint. We employed such tests as a means to allow developers to
instantly test a subset of the system before committing the changes. We used JUnit, which is the
most commonly used framework for unit testing in Java. JUnit is fairly simple to use and integrates
nicely with the existing developer tools and environment already in place. Please refer to
[19, annex D] for the complete unit test plan and [19, annex F] for the complete results.

4.3 Conformance testing

Protocol conformance testing aims to test to what degree the implemented protocol conforms to its
specification. This stage involves using the implementation and sending real packets over a network
while monitoring the connection. This process was performed by systematically selecting each major
requirement in the protocol specification and then creating a single function test for it.

Depending on the size and complexity of the protocol specification, this type of testing can result in
potentially thousands of different tests. It is often infeasible to create that many tests, hence only a
subset of them can be selected for implementation – after careful consideration. Please refer to
[19, annexes E and G] for further details on the conformance test plan and results.

4.4 Validation testing

When the software development is completed, tested, and assembled as a package, the final series
of tests, Validation Testing, begin. Here testing succeeds when “software functions in a manner that
can be reasonably expected” [18, p. 521]. These expectations were defined as the overall software
requirements, that is the functionality described in Section 3. Software validation was achieved
through a series of black-box tests that demonstrated conformity with the requirements. Please refer
to [19, section 7.3.4], which describes how the functional requirements were validated in further
detail.

5. Conclusion

In this paper we have presented our twofold contribution:

• A Java implementation of the tactical multicast protocol ACP142 that we have released as
open source, and

• a solution for chat for use in disadvantaged grids leveraging the above protocol (also
released as open source).

Chat is an important aspect of the NATO Core Enterprise Service for Collaboration, and the work
presented in this paper has been performed in context of the currently active NATO STO/IST-118
“SOA recommendations for disadvantaged grids in the tactical domain” group.

Our chat solution, that we call P_MUL Chat, is a multiuser protocol for mobile ad-hoc networks based
on the reliable tactical multicast protocol ACP142. P_MUL chat is fully decentralized, and leverages
multicast groups in ACP142 to differentiate between chat rooms. We suggest that it can be used in
combination with XMPP through the use of gateways, along the same lines as other experimental
solutions (e.g., as described in [1]). The motivation for creating this chat solution was to be able to
leverage the key properties of ACP142 [16] for instant messaging in disadvantaged grids:

• Reliable multicast messaging
• Designed for bandwidth-constrained networks
• Delayed acknowledgement for EMCON environments

Tests in an emulated networking environment have shown that P_MUL Chat is suitable for typical
tactical, disadvantaged environments where disruptions occur: both planned phases where certain
nodes enter radio silence, and unplanned disruptions due to node mobility and network partitioning.
It should be noted that ACP142 provides several parameters for fine-tuning the protocol’s behavior
(e.g., MTU size, sending delay between packet fragments, etc.) and it is necessary to configure it to
match the capabilities of each network before deployment. Default parameters will not function in
all networks. Further, we have adopted NATO’s “everything over IP” mindset, meaning that we have
only implemented and tested P_MUL chat on ACP142’s IP stack. This, in turn, puts a requirement on
the network where the solution is deployed – it must support IP multicast. This implementation has
also been contributed to the community as open source. We think it can be of interest to others,
since it is, to the best of our knowledge, the only available ACP142 implementation that is open
source and supports both IPv4 and IPv6.

For future work the IST-118 group plans to experiment with other Core Enterprise Services in
disadvantaged grids in the tactical domain as well (such as the Publish/Subscribe service), possibly by
extending the solutions to run on ACP142.

Acknowledgements

We would like to thank Magnus Skjegstad, Norway’s representative to NATO STO/IST-ET-070
exploratory team for tactical chat, for fruitful discussions during this work. His valuable insights
contributed to section 2.1. Also, we would like to acknowledge Professor Monica Divitini and Ph.D.
candidate Meng Zhu at NTNU for their efforts as supervisors for the student team. Thanks to Torleiv
Maseng for his constructive criticism, and to Johnny Johnsen for proofreading. Last but not least,
thanks to Stig Bjørlykke at Thales Norway for providing valuable insights to the team when
developing and testing the solution.

References

 [1] Magnus Skjegstad, Ketil Lund, Espen Skjervold, Frank T. Johnsen, Distributed Chat in Dynamic
Networks in Proceedings of IEEE Military Communications Conference (MILCOM) 2011,
pp.1651,1657, 7-10 Nov. 2011, Baltimore, MD, USA

[2] F.T. Johnsen, T.H. Bloebaum, P.-P. Meiler, I. Owens, C. Barz, and N. Jansen, IST-118 – SOA
recommendations for Disadvantaged Grids in the Tactical Domain, 18th ICCRTS, Alexandria,
VA, USA, June 19-21, 2013

[3] NATO C3 Board, Core Enterprise Services Standards Recommendations: The SOA baseline
profile v.1.7, November 2011. Enclosure 1 to AC/322-N(2011)0205.

[4] NCIA. Joint Tactical Chat (JChat).
http://tide.act.nato.int/tidepedia/index.php?title=Joint_Tactical_Chat_%28JChat%29 (access
requires a Tidepedia account).

[5] ChatWAN. https://www-casa.irisa.fr/dodwan-expe/chatwan/

[6] B. A. Eovito, The impact of synchonous text-based chat on military command and control, in
11th ICCRTS Coalition Command and Control in the Networked Era, Cambridge, UK, Sept
2006.

[7] Y. Mahéo, N. L. Sommer, P. Launay, F. Guidec, and M. Dragone. Beyond Opportunistic
Networking Protocols: a Disruption-Tolerant Application Suite for Disconnected MANETs.
http://extremecom2012.ee.ethz.ch/papers/1-extremecom2012-Maheo.pdf, Extremecom,
2012.

[8] C. Kalt. Internet Relay Chat: Client Protocol. RFC 2812 (Informational), Apr. 2000.

[9] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 6120
(Proposed Standard), Mar. 2011.

[10] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence. RFC 6121 (Proposed Standard), Mar. 2011.

[11] J. Tölle, T. Ginzler, and P. Steinmetz. Challenges of Instant Messaging in Tactical
Environments - Concepts and Practical Implementation. In Proceedings of NATO IST-083
Symposium on Military Communications with a special focus on Tactical Communications for
Network Centric Operations, Prague, Czech Republic, April 2008.

[12] T. Aurisch and P. Steinmetz. Securely connecting instant messaging systems for ad hoc
networks to server based systems. The 16th International Command and Control Research
and Technology Symposium (ICCRTS), Quebec City, Canada, 2011.

[13] R. Lass, J. Macker, D. Millar, C. William, and I. Taylor. XO: XMPP overlay service for distributed
chat. In Military Communications Conference (MILCOM), IEEE, pages 1116–1121, San Jose,
CA, USA, 2010.

[14] R. Lass, D. Nguyen, D. Millar, W. Regli, J. Macker, and R. Adamson. An evaluation of serverless
group chat. In Military Communications Conference (MILCOM), pages 1639–1644, Baltimore,
ML, USA, 2011.

[15] B. Adamson, C. Bormann, M. Handley, and J. Macker. NACK-Oriented Reliable Multicast
(NORM) Transport Protocol. RFC 5740 (Proposed Standard), Nov. 2009.

[16] The Combined Communications-Electronics Board (CCEB), ACP142, P_MUL - A PROTOCOL
FOR RELIABLE MULTICAST MESSAGING IN BANDWIDTH CONSTRAINED AND DELAYED
ACKNOWLEDGEMENT (EMCON) ENVIRONMENTS,
http://jcs.dtic.mil/j6/cceb/acps/acp142/ACP142.pdf

 [17] Trude H. Bloebaum and Ketil Lund, CoNSIS: Demonstration of SOA Interoperability in
Heterogeneous Tactical Networks, 2012 Military Communications and Information Systems
Conference (MCC), Gdansk, Poland, 8-9 Oct 2012

[18] Roger S. Pressman. Software Engineering - A Practitioner’s Approach. McGraw-Hill, 4. edition,
1997.

[19] L. Cetusic, H.K. Flaatten, K.M. Kittilsen, K. Kjensmo, E. Lothe, O.J. Pettersen, T.M. Schmid, B.
Tungesvik, Report on acp142 (P_MUL) Java implementation ,
https://github.com/libjpmul/report

