

Automated System Organizations
Under Spatial Grasp Technology

Peter Simon Sapaty

Institute of Mathematical Machines and Systems, National Academy of Sciences

Glushkova Ave 42, 03187 Kiev Ukraine, peter.sapaty@gmail.com

Abstract: A high-level organizational approach is offered based on grasping top mission semantics and overall system
functionality in a special high-level language, which allows most of traditional management routines, command and
control including, to be effectively shifted to automated up to fully automatic levels. This “spatial grasp” language is
collectively interpreted by a dynamic network of communicating interpreters embedded into key system points, in open
or stealth mode. This allows us to concentrate on global mission goals and overall system efficiency and timely react on
unpredictable and asymmetric situations and events. The technology offered having a ubiquitous super-virus feature
with extended capability of self-recovery can create runtime intelligent spatial infrastructures governing distributed
systems or penetrate into existing infrastructures investigating their origin, weak and strong points, and providing the
impact needed. The approach also allows us to naturally engage robotic components in the force mix under automatic
command and control resulting from parallel and distributed language interpretation, with unified transition to fully
unmanned systems.

Keywords: Spatial Grasp Language, over-operability, system integrity, system dynamics, battle management, automated
command and control, infrastructure protection, unmanned systems, asymmetric response.

1 Introduction

In our modern dynamic world we are constantly meeting
numerous irregular situations and threats where proper
reaction on them could save lives and wealth and protect
critical infrastructures. For example, it is no secret that
large and powerful traditional world armies, having most
sophisticated weapons, are often losing to terrorists,
insurgents or piracy with primitive gadgets but very
smart and flexible organizations making them hard to
detect and fight. And delayed reaction on environmental
crises like earthquakes, tsunamis or forest fires with their
severe consequences can also be the result of inadequacy
of existing organizational structures for dealing with
emergency situations.

The traditional approach to system design, development
and management, command and control including,
supposes the system structure and system organization to
be predominantly primary, created in advance, whereas
global function and overall system behavior appearing as
secondary, like shown in Fig. 1.

Fig. 1. Traditional approach to system design

The systems based on this vision, ideologically relevant
to multi-agent organizations [1] still prevailing almost
everywhere, are often clumsy and static, they may fail to
quickly adapt to dynamic and asymmetric situations.

With global goals changing, the whole projects based on
creating structures and overall system organizations first
may quickly become outdated or not needed at all despite
huge investments made into them, like, for example, the
robotized Future Combat Systems project, or FCS [2],
see Fig. 2. The latter, designed mainly for classical
battlefields, became obsolete even in its infancy after the
main world operations changed towards terrorism fight,
for which quite different system ideology and
organization appeared to be needed.

 2

Fig. 2. The canceled FCS project

FCS was also based on a rigid 4D-RCS architectural
model inheriting classical hierarchical military
organizations, even for AI purposes (Fig. 3), which
became inadequate for asymmetric guerrilla-style
warfare emerging and dominating in the 21st century.

Fig. 3. FCS Basics: 4D-RCS model mrchitecture

Taking this into account, we are pursuing an alternative
system approach, known as spatial grasp [3] and over-
operability [4,5] in contrast to traditional interoperability,
where the global function and overall behavior should be
considered, as much as possible, primary, and the system
structure and organization as secondary, the latter as a
dynamic derivative of the former (Fig. 4).

Fig. 4. The alternative system organization considered

The related Spatial Grasp Technology (SGT) starts from
global goal and top semantics of the needed overall
behavior which are expressed in a special Spatial Grasp
Language (SGL), making the system structure and its
internal organization a runtime derivative from changing
mission goals and states of the environment. This may
provide high flexibility of runtime system organization,

especially in responses to asymmetric events, offering
also enhanced possibilities for automated up to fully
automatic (unmanned) solutions.

The approach offered has been tested on numerous
applications and in different countries, with some history
development stages depicted in Fig. 5.

Fig. 5. SGT development history

2 Spatial Grasp Model

The spatial grasp model underlying the technology
offered is based on formalized stepwise, wavelike,
seamless navigation, coverage, or grasping of distributed
physical and virtual spaces, as shown in Fig. 6.

 a) b)

Fig. 6. Incremental integral grasp of distributed worlds: a)
virtual interpretation, b) symbolic physical analogy

This mode of high-level system vision based on holistic
and gestalt principles [6-8] rather than cooperating parts
or agents [1] has psychological and philosophical
background [9] reflecting, for example, how humans
(especially top commanders) mentally plan, comprehend,
and control complex operations in distributed
environments.

The approach in practice works as follows. A network of
universal control modules U embedded into key system

 3

points collectively interprets mission scenarios expressed
in SGL, as shown in Fig. 7. The scenarios based on the
spatial grasp model (capable of representing any parallel
and distributed algorithms, spatial branching, cycles and
loops including) can start from any node, subsequently
covering the whole system or its parts needed at runtime.

Fig. 7. Collective scenario execution in dynamic environments

SGL scenarios are often very compact and can be created
on the fly. Different scenarios can cooperate or compete
in a networked space (depending on live control or
distributed simulation mode) as overlapping fields of
solutions, as shown in Fig. 8.

Fig. 8. Distributed scenario spatial interactions

Self-spreading scenarios can also create runtime
knowledge infrastructures distributed between system
components (humans, robots, smart sensors). These
infrastructures can effectively support distributed
databases, advanced command and control, global
situation awareness, autonomous decisions, as well as
any other computational or control models.

Fig. 9. Creating Spatial Infrastructures by SGT

3 Spatial Grasp Language

3.1 SGL orientation and peculiarities

SGL differs fundamentally from traditional programming
languages. Rather than working with information in a
computer memory, as usual, it allows us to directly move
through, observe, and make any actions and decisions in
fully distributed environments, whether physical or
virtual. In general, the whole distributed world, which
may be dynamic and active, is considered in SGL as a
substitute to traditional computer memory. SGL directly
operates with:

 Virtual World (VW), which is finite and discrete,
consisting of nodes and semantic links between them,
both nodes and links capable of containing any
information, of any nature and volume.

 Physical World (PW), infinite and continuous,
where each point can be identified and accessed by
physical coordinates expressed in a proper coordinate
system, and with the precision given.

 Execution world (EW), consisting of active doers
with communication channels between them, where
doers may represent humans, robots, laptops,
smartphones, any other devices or machinery capable of
operating on the previous three worlds.

Different combinations of these worlds can also be
possible, for example, Virtual-Physical World (VPW)
allowing not only for a mixture of the both worlds but
also their deeper integration where VW nodes can be
associated with certain PW coordinates, thus making
their presence in physical reality too. Another possibility
is Virtual-Execution World (VEW) where doer nodes
may be associated with virtual nodes like having special
names (or nicknames) assigned to them, having now
semantic relations between them too, like between pure
VW nodes. Execution-Physical World (EPW) can pin
some or all doer nodes permanently to certain PW
coordinates, and Virtual-Execution-Physical World
(VEPW) can combine features of the previous two
variants.

3.2 Top SGL syntax

SGL has recursive structure top level of which is shown
in Fig. 10. Such organization allows it to express any
spatial algorithm, create and manage any distributed
structures with any topologies, static as well as dynamic,

 4

also solve any problem in, on, and over them—and all
this can be expressed in a very compact, transparent, and
unified way.

Fig. 10. SGL recursive syntax

Let us explain the language basics in a stepwise top-
down manner.

The SGL topmost definition, where scenario in it is
named grasp (reflecting the spatial navigation-grasp-
conquest model explained above) can be expressed as
follows:

grasp  constant | variable | rule ({ grasp, })

with syntactic categories shown in italics, vertical bar
separating alternatives, braces to indicate repetitive parts
with the delimiter (here comma) between them shown at
the right, whereas parentheses and commas being the
language symbols.

As follows from this notation, an SGL scenario, applied
in a certain world point (i.e. of PW, VW, EW or their
combinations), in the simplest form can just be a
constant defining the result explicitly. It can also be a
variable containing certain data, say, assigned to it
previously by some or other SGL scenarios, which may
have happened to visit this point of the world before.

The next option may be one or more constants, variables,
or recursively grasps again (treated as operands and
separated by a comma if more than one) which are
embraced by a certain operation, or rule, with the use of
parentheses. The rules, starting in the current world
position, can be of most diverse natures -- from local
matter or information processing to global management
and control. The rules can produce results (which may be
single or multiple) in the same or other world locations.

Due to recursion in the language definition, the results
obtained and world locations reached by rules may, in
their turn, become, respectively, operands and/or starting
places for other rules, with new results and new locations
(single or multiple too) obtained after their completion,
and so on.

The scenario can thus dynamically spread & process &
match the world or its parts needed, with the scenario
code capable of virtually or physically moving (the local
data too, as will be clear afterwards) in the distributed
space, matching the latter and possibly losing utilized
parts if not needed any more. This movement can take
place in single or multiple, parallel, same or different
parts/copies, dynamically linking with each other within
automatic spatial control spreading and covering the
navigated world too.

SGL constants can represent information, physical
matter (or physical objects), or custom defined data items
extending the language for specific applications, as
follows:

constant  information | matter | custom | { grasp_ }

The word “constant” is used rather symbolically in the
SGL definition, as the last option shown above is
recursively defined as grasp again (possibly, even an
aggregate of grasps separated by underscore), thus
capable or representing any complex objects, passive or
with embedded activities, for their partial or complete
processing.

SGL variables called “spatial” which may be stationary
or mobile and contain information or matter, are serving
different features of distributed scenarios. As follows,
they may be of the four types: heritable (stationary),
frontal (mobile), environmental (stationary or mobile),
and nodal (stationary), with their semantics and usage
explained later.

variable  heritable | frontal | environmental | nodal

And rules can belong to the following main classes:

rule  movement | creation | echoing | verification |
 assignment | modification | advancing |
 branching | transference | timing | granting |
 type | usage | application | { grasp_ }

The final rule’s option, grasp again, brings another level
of recursion into SGL where operations may not only be
named explicitly but can also represent results of spatial

 5

development of corresponding SGL scenarios of any
world coverage and complexity. This option also offers
composition or aggregates (separated by underscore) of
different operations dedicated to work jointly on
operands they commonly embrace.

3.3 SGL main features

Here are some general aspects of SGL scenarios
explaining their evolution in distributed worlds.

The basic concept is progress point, or prop (the latter
word is used here as an abbreviation and differs from
traditional meaning of the word “prop”). The prop
identifies a combined scenario development and control
step in the united space & time continuum. By using the
notion of props we can clearly explain how SGL scenario
operates and evolves, with key points being as follows.

 Applied to some point of the world (which may
be of different natures as explained before), an SGL
scenario is considered to be in the starting prop
associated with this entry point.

 When activated, the scenario develops in a
stepwise manner, generally as a parallel transition
between consecutive sets of props (the initial set
containing the starting prop only). Each new set (or sets,
as scenario may branch) identifies the final result of the
current step of scenario evolution having started from the
previous set (or its subsets).

 Starting from a prop, a scenario action may result
in new props (which may be multiple, as a set) or remain
in the same prop. In the latter case, this prop may again
be added to the resulting set of props obtained from other
starting props, for further common activities from all
these, if multiple space & time propagations occur.

 Each prop has a resulting value, which may be
single one representing information or matter or a list of
values (potentially: nested), and a resulting control state
(one of thru, done, fail, or fatal, with their
meanings explained later).

 Different operations (represented by arbitrary
scenarios) may evolve independently or interdependently
in space and time from the same prop, and in ordered,
unordered, or parallel manner.

 Operations may also spatially succeed each other,
with new ones applied from the props reached by the
previous actions. This potentially parallel wavelike
evolution in space-time continuum may take place in
synchronous or asynchronous mode.

 Operations and decisions represented by rules can
use states and values associated with props reached by
other operations, whatever complex and remote the latter
might be.

 Any prop is always associated with a point of the
world (i.e. physical, virtual, execution or combined node)
the related scenario branch is currently developing in.

 Any number of props can be simultaneously
associated with the same world points, sharing local
information at them, if needed.

 Staying with world points, it is possible to
directly access and change local parameters in them,
whether physical or virtual, thus impacting the worlds (or
trying to do so) via these points.

 Overall organization of the breadth and depth
world navigation and coverage is provided by a variety
of powerful SGL rules, which may be arbitrarily nested
within complex processing, evolution, control,
management, and supervision structures.

As was shown in previous publications, any sequential or
parallel, centralized or distributed, stationary or mobile
algorithm operating with information and/or physical
matter can be written in SGL on any levels. The latter
ranging from top semantic (also close to what is called
“command intent”) to those detailing system partitioning,
composition, infrastructures, subordination between
active components, and overall management and
command and control.

3.4 The Sense and Nature of SGL Rules

Explaining the language basics further, let us shed some
light on the sense and nature of rules, to be explained
later in detail. A rule, representing in SGL any action or
decision, may, for example, be as follows:

 Elementary arithmetic, string, or logic operation.

 Move or hop in a physical, virtual, execution, or
combined space.

 Hierarchical fusion and return of (potentially
remote) data.

 Distributed control, both sequential and parallel,
and in breadth or depth.

 A variety of special contexts detailing navigation
in space while influencing embraced operations and
decisions.

 6

 Type or sense of a value, or its chosen usage,
guiding and simplifying automatic language
interpretation.

 Creation or removal of nodes and/or links in
distributed knowledge networks.

 Result of local or global operations of arbitrary
complexity and space coverage, which can find, select, or
produce the rule needed.

 As already mentioned, a rule can also be a
compound one integrating a number of other rules.

All rules, regardless of their nature, sense, or complexity,
are obeying the same ideology and organization, as
follows:

 Starting from a certain space location, initially

linked to it.

 Performing certain operations in a distributed
space.

 Producing final results in the resultant set of props
with their states and values.

 Linking to same or new world positions reached by
the rule’s activity.

This uniformity allows us to effectively compose highly
integral and transparent spatial algorithms of any
complexity and any world coverage, which can operate
altogether under fully automatic, parallel and distributed
control.

3.5 SGL Spatial Variables

Let us consider some details on the nature and sense of
spatial variables, stationary or mobile, which can be used
in fully distributed physical, virtual, or executive
environments, effectively serving multiple cooperative
and integral processes:

 Heritable variables – stationary, starting in a
prop and staying with this prop permanently (even
though the prop has become a past history only, with
active processes already gone with other props) and
serving all subsequent props, which can share them in
read & write operations.

 Frontal variables – mobile, temporarily
associated with currently active props (not being shared
with other props), and then moving with the scenario
evolution to subsequent props, accompanying scenario
activity. These variables replicate if from a single prop a
number of other props emerge.

 Nodal variables – stationary, being a private,
direct property of the world locations/nodes reached by
the scenarios. Staying at world nodes, they can be
accessed and shared by all activities having reached
these nodes under same scenario identity and at any time
(their life span will be explained later).

 Environmental variables – these allow us to
access different features of physical and virtual words
during their navigation, also internal parameters of the
distributed SGL interpretation system, to assess, guide,
and optimize scenario execution. Most of them are
stationary, associated with stationary world positions, but
some, related to the execution system itself, can be
mobile.

These types of variables, especially when used together,
allow us to create advanced spatial algorithms working
in between components of distributed systems rather than
in them, providing flexible, robust, and self-recovering
solutions. Such algorithms can freely replicate, partition,
spread and migrate in distributed environments (partially
or as an organized whole), preserving global integrity
and overall control.

3.6 Control States and Their Hierarchical Merge

The following control states appear in props during
scenario evolution in distributed space-time continuum.
They are used for distributed control of multiple
sequential and parallel processes, with making intelligent
decisions at different levels.

 thru – indicates full success of the current
branch of the scenario with capability of further
development (i.e. indicating successful operation not
only in but also through this stage of control). Next
scenario stages, if any, will be allowed to proceed from
the current prop.

 done – indicates success of the current stage
with its planned termination after which no further
development of this particular branch from the current
prop will be possible (unless this status is subsequently
changed by a special higher-level rule).

 fail – indicates non-revocable failure of the
current branch, with no possibility of further
development. This state relates to the current
branch/prop only, not influencing directly the
development of other branches of the scenario. It,
however, same as the previous states, can influence
decisions on higher levels by control rules which can
allow or block development of other branches.

 7

 fatal – reports fatal, terminal failure with
nonlocal effect, triggering abortion of all evolving
processes and associated temporary data, which may be
parallel and distributed, also active, regardless of their
current world locations and their success or failure. The
scope of this global cancellation process may be the
whole scenario or only its part embraced by a special
rule (explained later) supervising the area in which this
state may happen to occur.

These control states appearing in different branches of a
parallel and distributed scenario at bottom levels can be
used to obtain generalized control states for higher
scenario levels, up to the whole scenario, for making
proper decisions. The hierarchical bottom-up merge &
generalization of states is based on their comparative
importance, where the stronger state will always
dominate when ascending towards the root.

For example, the merge of states thru and done will
result in thru, thus generally classifying successful
development at a higher scenario level with possibility of
further expansion from all or at least some of its
branches. Merging thru and fail will result in thru
too, indicating general success with possibility of further
development despite some branch (or branches)
terminated with failure, but others remained open to
further evolution. Merging done and fail will result in
done indicating successful termination in general while
ignoring local failures, without possibility of further
development in this direction.

And fatal will always dominate when merging with
any other states unless its influence is restricted at top by
a special rule which, in case of discovering state fatal
under its supervision, will itself result with fail for
higher assessment and control. So ordering these states
by their powers from maximum to minimum will be as
follows: fatal, thru, done, fail.

3.7 The Use of Conventional Notations

To simplify SGL programs, traditional to existing
programming languages abbreviations of operations, also
conventional delimiters can be used too, substituting
certain rules as in numerous examples throughout this
book, always remaining, however, within the general
syntactic structure shown in Fig. 10. A number of such
code simplifications will be used in the subsequent
sections when describing different scenarios in SGL for
solving concrete problems.

3.8 Some elementary examples in SGL

 Just representing result directly, as a numerical,
string, or custom constant:
77, ‘Peter’, Peter

 Multiplication of two constants with the result as
an open value :
multiply (34, 5.5) or 34 * 5.5

 Assigning a sum of values to variable Result:
Assign (Result, add (27, 33, 55.6)) or
Result = 27 + 33 + 55.6

 Moving to two physical locations (x1, y3) and
(x5, y8) in parallel:
Move (location (x1, y3), location (x5, y8))
or in a shortened way:
move (x1_y3, x5_y8).

 Creating isolated virtual node Peter:
create (‘Peter’) or create (Peter) if Peter is a custom
name.

 Extending node Peter as father of Alex, the latter
to be a new node:
advance (hop (‘Peter’), create (+‘fatherof’, ‘Alex’)) or
hop (Peter); create (+fatherof, Alex) – shortened, and for
custom names.

 Tasking doer D1 to shift in physical space on
coordinate deviation (dx, dy):
advance (hop (D1), increment (WHERE, (dx,dy))) or
hop(D1); WHERE += dx_dy
(WHERE is a special environmental variable keeping
physical coordinates of the node, here D1, in which
scenario control is currently staying.)

 Tasking D1 to move directly to new physical
coordinates (x, y) will be as follows:
advance (hop (D1), assign (WHERE, (x, y))) or
hop (D1); WHERE = x_y.

3.9 Full SGL Summary

SGL full description summarizing the listed above
language constructs is as follows, where, as already
mentioned, syntactic categories are shown in italics,
vertical bar separates alternatives, and parts in braces
indicate zero or more repetitions with a delimiter at the
right. The remaining characters and words are the
language symbols (including braces shown in bold).

 8

grasp  constant | variable | rule ({ grasp, })

constant  information | matter | custom |{ grasp_ }

variable  heritable | frontal | nodal | environmental

rule  movement | creation | echoing | verification |

 assignment | modification| advancing |branching |

 transference | timing | granting | type | usage |

 application | { grasp_}

information string | number | special

string  ‘{character}’ | {{character}}

number  standard | zero | one | two | three | four |

 five | six | seven | eight | nine | plus |

 minus | dot

matter  “{character}”

movement  hop | move | shift

creation  create | linkup | delete | unlink

echoing  state | order | rake | element |

 content | index | count | sum | first |

 last | min | max | random | average |

 access | sortup | sortdown | reverse |

 add | subtract | multiply | divide |

 degree | separate | unite | attach |

 append | common

verification  equal | notequal |less | lessorequal |

 more | moreorequal | none | empty |

 nonempty | belongs | notbelongs |

 intersects | notintersects

assignment  assign | remove | withdraw |

 assignpeers

modification  inject | replicate | split

advancement  advance | slide | repeat | fringe

branching  branch | sequence | parallel | if | or |

 and | choose | firstrespond | cycle |

 loop | sling | whirl| empty

transferen  run | call | input | output |transmit |

 send | receive

timing  sleep | remain

granting  supervise | release | free | blind |

 lift | none | stay | seize

type  heritable | frontal | nodal |

 environmental | matter | number |

 string

usage  address | coordinate | content |

 index | time | speed | name | place |

 center | range | doer | node | link |

 unit | scenario | world | empty

heritable  H{alphameric}

frontal  F{alphameric}

nodal  N{alphameric

environmental TYPE | NAME | ADDRESS | QUALITIES |

 WHERE | BACK | PREVIOUS | PREDECESSOR |

 DOER | RESOURCES | LINK | DIRECTION |

 WHEN | TIME | SPEED | STATE | VALUE |

 COLOR | IN | OUT | STATUS | specific

special  thru | done | fail | fatal | infinite |

 nil | nodes | links | any | all |

 allother | passed | existing |

 ` neighbors | direct | noback | #

 firstcome | forward | backward |

 global | local | synchronous |

 asynchronous | virtual |

 physical | executive | engaged |

 vacant

4 Distributed SGL Interpreter

4.1 The Interpreter General Organization

The SGL interpreter’s general organization and its main

components are shown in Fig. 11, stemming from [10].

 Fig. 11. SGL interpreter organization

The interpreter consists of a number of specialized
functional processors handling, processing, and sharing
specific data structures. The processors performing
different language interpretation functions (shown by
rectangles) include: communication processor, control
processor, navigation processor, parser, different
operation processors, also special hardware and software
directly accessible from SGL. Main data structures on
which these processors operate (shown by ovals)
comprise: grasps queue, suspended grasps, track forest,
activated rules, knowledge network, grasps identities,
heritable variables, fontal variables, nodal variables,
environmental variables, incoming queue, and outgoing
queue.

SGL interpreter can communicate with other interpreter
copies where the whole network of them can be mobile

 9

and open, capable of changing the number of nodes, their
communication structure, and relative and absolute
positions in physical space. This interpretation network
can effectively implement and support global and local
data structures, situation awareness, and overall system
control by direct interpretation of evolving spatial SGL
scenarios in parallel and fully distributed manner.

4.2 Spatial Track System

The “heart and nerve system” of the distributed
interpreter is its spatial track system with its parts kept in
the Track Forest memory of local interpreters -- these
being logically interlinked with such parts in other
interpreter copies, forming altogether global space
control coverage.

This forest-like distributed track structure enables
automatic hierarchical command and control as well as
remote data and code access, with high integrity of
emerging parallel and distributed solutions, without any
centralized resources.

The dynamically crated track trees (generally: forests),
spanning the systems in which SGL scenarios evolve, are
used for supporting spatial variables and provide echoing
& merging of different types of control states and remote
data, being self-optimized in parallel echo processes.
They also route further grasps to the positions in
physical, virtual or combined spaces reached by the
previous grasps, uniting them with the frontal variables
left there by the preceding grasps.

Figs 13-17 exhibit some operation stages of this
distributed automatic command and control system, with
abbreviations of the main components involved in them
shown in Fig. 12.

Fig. 12. Main track-based management components

Fig. 13. Tracks creation in forward grasping

Fig. 14. Automatic distribution of track system between
different doers

Fig. 15. Track echoing and optimization

Fig. 16. Development of further grasps

 10

Fig. 17. More advanced track structure

4.3 Networked SGL Interpreter As a Universal
Spatial Machine

The whole network of the interpreters can be mobile and
open, changing at runtime the number of nodes and
communication structure between them. Copies of the
interpreter can be concealed if to operate in hostile
environments, allowing us to analyze and impact the
latter in a stealth manner, if needed.

The dynamically networked SGL interpreters are
effectively forming a sort of a universal parallel spatial
machine (as shown in Fig. 8) capable of solving any
problems in a fully distributed mode, without any special
central resources. “Machine” rather than computer as it
can operate with matter too, and can move partially or as
a whole in physical environment, possibly, changing its
distributed shape and space coverage. This machine can
operate simultaneously on many mission scenarios which
can be injected at any time from its arbitrary nodes.

Fig. 18. SGL interpretation network as a universal spatial
machine

Installing communicating SGL interpreters into mobile
robots (ground, aerial, surface, underwater, space, etc.)
on top of their existing functionality allows us to
organize effective group solutions of complex problems

in distributed physical spaces in a clear and concise way,
effectively shifting traditional management routines to
automatic levels. Human-robot interaction and gradual
transition to fully unmanned systems are drastically
assisted too.

Some possible integrative scenario skeletons uniting
dissimilar types of robotic units (ground, surface,
underwater, space) operating under the unified C2
automatically provided via embedded SGL interpreters
communicating with each other are shown in Fig. 19.

Fig. 19. Integrated distributed robotics with SGT

5 Examples of Distributed Programming in SGL

5.1 Finding Weakest Points

To find the weakest nodes in a graph like articulation
points (see Fig. 20), which when removed split it into
disjoint parts, the following program suffices (resulting
in node d which is chosen to be physically removed, say,
for a specific application).

Fig. 20. Finding weakest points

nodal (Mark);
hop (all nodes); COLOR = NAME; Mark = 1;
and ((hop (random, all links);
 repeat (grasp (Mark == nil; Mark = 1);
 hop (all links))),
 (hop (all links); Mark == nil),

 11

 remove (NAME))

This parallel and distributed SGL scenario works in the
following steps:

 Starting in each node with personal color, marking it.

 Parallel marking all accessible subnetwork with
personal color from a randomly chosen neighbor,
excluding itself from the marking process.

 Checking if the current node solely connects parts of
the network.

 Removing the node.

5.2 Finding Strongest Parts

Cliques (or maximum fully connected sub-graphs of a
graph, as in Fig. 21), on the contrary, may be considered
as strongest parts of a system. They all can be found in
parallel by the following simple program resulting for
Fig. 21 in cliques: (a, b, c, d), (c, d, e), and (d, e, f).
These cliques are then chosen to be output locally rather
than removed, as in the previous case.

Fig. 21. Finding strongest parts

frontal (Clique); hop (all nodes); Clique = NAME;
repeat (
 hop (all links); not belong (NAME, Clique);
 if (and parallel (hop (any links, Clique)),
 if (BACK > NAME, Clique &= NAME, done), fail));
if (length (Clique) >= 3, output (Clique))

The program operates in the following steps:

 Starting in each node.

 Growing potential clique in a unique node order until
possible.

 Printing the clique grown, with threshold size given.

5.3 Finding Arbitrary Structures in Arbitrary

(template) of Figure 22
ith variable nodes X1 to X6), is based on a path

through all template’s nodes.

Networks by Parallel Pattern Matching

Any structures in any distributed networked systems can
be found by describing them in SGL, like the one in
Figure 22, which can be applied from any network node,
evolving subsequently in a parallel replication and
pattern-matching mode. The following SGL program,
reflecting the search pattern
(w

Fig. 22. Finding arbitrary structures in arbitrary networks

frontal (Match); hop (all nodes);
(repeat, 5) (append (Match, NAME); all links #;
 not belong (NAME, Match));
if (and (any link # Match [2, 3]),
 (append (Match, NAME); all links # Match [1];
 if (any link # Match [5], OUT = Match)))

Three substructures have been found by the template in

ig. 22, with template variables matching the following

1, X2, X3, X4, X5, X6) 

 general
raphs and networks may be found in [11], where the

ing targets seeing
locally from their different points, as shown in Fig. 23,
and by the following DSL program.

F
network nodes:

(X
 (J, V, C, N, B, D), (M, A, N, Q, P, E), (R, W, Q, Z, Y, O)

More on parallel and distributed operations on
g
SGL’s predecessor WAVE language was used.

5.4 Providing Global Awareness & Targeting

Establishing global electronic supervision over any
distributed systems, SGT effectively provides global
awareness of complex situations in them, for example,
for discovering, collecting and distribut

 12

Fig. 23. Providing overall awareness and global targeting in a

distributed space
loop (

frontal (Seen) =
 repeat (free (detect (targets)), hop first (infra));

 repeat (free (select_shoot (Seen)), hop first (infra)))

This constantly looping, self-evolving and self-spreading
distributed program, providing global collection of
possible targets throughout the region of concern and
their subsequent distribution back to local units (the
latter selecting which targets to shoot individually), can
start from any component of the system having SGL
interpreter installed (communication links between the
interpreters, which can be dynamic and casual, are
represented as infra).

6 Expressing Battlefield Scenarios

Formalization of Command Intent (CI) and Command
and Control (C2) in general, are among the most urgent
and challenging problems on the way to creation of
effective multinational forces, integration of simulations
with live control, and natural transition to robotized
armies. Specialized languages for unambiguous
expression of CI and C2 (like BML and its derivatives C-
BML, JBML, geoBML, etc., [12, 13]) are not
programming languages themselves, needing therefore
integration with other linguistic facilities and
organizational levels to provide required system
parameters.

On the contrary, working directly with both physical and
virtual worlds, SGL allows for effective and universal
expression of any battlefield scenarios and orders in
parallel and fully distributed manner, also allowing for
their straightforward implementation in robotized up to
fully robotic systems. SGL scenarios are much shorter
and simpler, as in the following example taken from [13]
(Fig. 24 and the following BML code).

The task is to be performed by two armoured squadrons
BN-661 Coy1, and BN-661 Coy3, which are ordered to
cooperate in coordination. The operation is divided into
four time phases: from TP0 to TP1, from TP1 to TP2,
from TP2 to TP3, and from TP3 to TP4, to finally secure

objective Lion, and on the way to it, objective Dog. Their
coordinated advancement should be achieved by passing
Denver, Boston, Austin, Atlanta, and Ruby lines, while
fixing and destroying enemy units Red-1-182, Red-2-
194, Red-2-196, and Red-2-191.

Fig. 24. Coordinated advancement in physical space

Tasks assigned to Coy1 in BML are as follows:

deploy BN-661 Coy1 at Denver end before TP0

in-order-to enable label-o11 label-o10;
advance BN-661 Coy1 from Denver to Boston start at
TP0

in-order-to enable label-o12 label-o11;
fix BN-661 Coy1 Red-1-182 at Boston end nlt TP1

in-order-to enable label-o33 label-o12;
advance BN-661 Coy1 to Austin start at TP1

in-order-to enable label-o14 label-o13;
fix BN-661 Coy1 Red-2-194 at Dog end nlt TP2

in-order-to enable label-o35 label-o14;
advance BN-661 Coy1 to Atlanta start at TP2

in-order-to enable label-o16 label-o15;
fix BN-661 Coy1 Red-2-196 at Atlanta end nlt TP3

in-order-to enable label-o37 label-o16;
advance BN-661 Coy1 to Ruby start at TP3

in-order-to enable label-o18 label-o17;
fix BN-661 Coy1 Red-2-191 at Lion end nlt TP4

in-order-to enable label-o39 label-o18;
seize BN-661 Coy1 Lion at Lion end nlt TP4

in-order-to cause label-ci1 label-o19;

Tasks assigned to Coy3 in BML:

deploy BN-661 Coy3 at Denver end before TP0
in-order-to enable label-o32 label-o30;

support BN-661 Coy3 Coy1 at Troy start at TP0 end at
TP4 label-031;
attspt BN-661 Coy3 Red-1-182 from Denver to Boston
start at TP0 end nlt TP1

in-order-to enable label-o12 label-o32;
destroy BN-661 Coy3 Red-1-182 at Boston end nlt TP1

in-order-to enable label-o13 label-o33;
attspt BN-661 Coy3 Red-2-194 from Boston to Dog start
at TP1 end nlt TP2

 13

in-order-to enable label-o14 label-o34;
destroy BN-661 Coy3 Red-2-194 at Dog end nlt TP2

in-order-to enable label-o15 label-o35;
attspt BN-661 Coy3 Red-2-196 from Dog to Atlanta start
at TP2 end nlt TP3

in-order-to enable label-o16 label-o36;
destroy BN-661 Coy3 Red-2-196 at Atlanta end nlt TP3

in-order-to enable label-o17 label-o37;
attspt BN-661 Coy3 Red-2-191 from Atlanta to Lion start
at TP3 end nlt TP4

in-order-to enable label-o18 label-o38;
destroy BN-661 Coy3 Red-2-191 at Lion end nlt TP3

in-order-to enable label-o19 label-o39;

The following same mission description, but now in SGL
(reflecting what to do in a distributed space and which
key decisions to make rather than who/what will be
doing this) is much shorter. It can be created and
modified on the fly and executed by manned, mixed, or
fully robotic forces (with most of command and control
hidden and shifted to automatic internal SGL
interpretation). This can effectively relieve human
commanders from multitude of traditional explicit C2
routines, allowing them concentrate on global mission
objectives and efficiency instead.

FIXER = BN_661_Coy1;
SUPPORTER_DESTROYER = BN_661_Coy3;
advance (
 deploy (Denver, TFIN = TP0),
move_destroy (PL: Boston,
 TARGET: Red_1_182, TFIN = TP1),
move_destroy (PL: Austin, OBJ: DOG,
 TARGET: Red_2_194, TFIN = TP2),
move_destroy (PL: Atlanta,
 TARGET: Red_2_196, TFIN = TP3),
move_destroy (PL: Ruby, OBJ: LION,
 TARGET: Red_2_191, TFIN = TP4));

seize (LION, TFIN = TP4)

Any further scenario generalization in SGL can be
provided within the same SGL syntax, as follows.

Not Mentioning Own Forces:

advance (
 deploy (Denver, TFIN = TP0),

move_destroy (PL: Boston,
 TARGET: Red_1_182, TFIN = TP1),
move_destroy (PL: Austin, OBJ: DOG,
 TARGET: Red_2_194, TFIN = TP2),
move_destroy (PL: Atlanta,
 TARGET: Red_2_196, TFIN = TP3),
move_destroy (PL: Ruby, OBJ: LION,
 TARGET: Red_2_191, TFIN = TP4));

seize (LION, TFIN = TP4)

Not mentioning adversary’s forces:

deploy (Denver, TFIN = TP0);
move (PL: Boston, TFIN = TP1);
move (PL: Austin, OBJ: DOG, TFIN = TP2);
move (PL: Atlanta, TFIN = TP3);
move (PL: Ruby, OBJ: LION, TFIN = TP4));
seize (LION, TFIN = TP4)

Setting main stages only:

deploy (Denver, TFIN = TP0);
advance (PL: Boston, Austin, Atlanta, Ruby);
seize (LION, TFIN = TP4)

Final goal only:

seize (LION, TFIN = TP4)

Expressing operations in the integral spatial formalism
provided by SGL directly operating with distributed
spaces enables us to drastically clarify and simplify
mission descriptions and increase flexibility of their
possible implementations with any available resources,
both manned and unmanned, which can appear and
change at runtime.

Many other applications of the spatial grasp paradigm
can be found in [14-27], some examples exhibited below.

7 Other Application Scenarios

7.1 Europe-Related Missile Defense

Let us consider here some scenarios related to the
European missile defense plans, copied in Fig. 25.

a)

b)

 14

c)

d)

Fig. 25. Possible European missile defense scenarios.

The missile defense system is supposed to work in the
following stages:

a) 1: Infrared satellite system picks up heat signatures
of hostile missiles launched towards target. 2:
Information transmitted to ground stations for
processing. 3: Processed information sent to C2 network;

b) The C2 network relays information to sensor and
weapons systems in the region;

c) 1: Long-range sensors continue to track the missile
to help command system calculate options for destroying
them. 2: Information is constantly shared among the
sensors and weapons systems;

d) Command system has the option of shooting down
the hostile missiles while in the upper or lower layers of
the atmosphere.

Having extended these with advanced capabilities like
DEW (say, high power lasers) located in space or on
airborne (manned or UAV) platforms (synchronized with
infrared satellite sensors), we can write the following
very simple DSL scenario integrating infrared satellites,
DEW facilities, long range sensors and upper and lower
layer shooters into a dynamic distributed system capable
of discovering hostile objects, tracing them at different
stages of flight, and (re)launching target impact facilities
with verification of their success or failure, until the
targets are destroyed.

hop (infrared_satellite_sensors);
loop (

 nonempty (New = infrared (new_targets));
 release (
 split (New); frontal (Target) = VALUE;
 cycle (
 visible (Target); update (Target); hop (DE);
 if (try_shoot_verify (Target), done));
 hop (long_range_sensors);
 cycle (
 visible (Target); update (Target);
 if (distsance (Target) > threshold,
 hop (upper_layer_shooters),
 hop (lower_layer_shooters))
 if (try_shoot_verify (Target), done))));

The advantages of this scenario are that it can be initially
applied to any available system component,
automatically creating distributed C2 infrastructure
particularly oriented on the currently discovered targets
and dynamic situations. The automatically created
distributed system organization can also self-recover at
runtime after indiscriminate damages to any system
components mentioned above (due to fully interpreted,
mobile, virus-like implementation of SGL in distributed
networked spaces).

7.2 Distributed Hostility Reconnaissance Scenario

An SGL solution is presented below where distributed
physical space is randomly searched by simultaneous
propagation of multiple reconnaissance units, which
when discover unwanted activities encircle hostile zones,
collect their perimeter coordinates, transfer them to
mission headquarters (HQ), and initiate massive impact
on the zones. Close to initial and final stages of this
scenario are depicted in Figs 26 and 27.

Fig. 26. Initial development

 15

Fig. 27. Encircling and impacting hostile zones

move (HQ); create (1, 2, 3, 4, 5, 6);
repeat (
 shift (random (limits));
 if (check (fire),
 (Zone = WHERE;
 Direction = random (clockwise, anticlockwise);
 repeat (
 move_around (fire, Direction, depth);
 append (Zone, WHERE);
 if (distance (WHERE, Zone [1]) < threshold,
 (hop (HQ); impact (massive, Zone); done))))))

7.3 Distributed Objects Tracking by Mobile
Intelligence

SGT allows us to use distributed sensor networks as
highly integral self-organizes systems discovering,
tracing, analyzing and impacting single and multiple
mobile objects on vast areas despite physical limitations
of individual sensor nodes.

Single Object Tracking in a Sensor Network

For a single object moving through the controlled area
(as in Fig. 28), the following program starting in all
sensors catches the object it sees and then follows
wherever it goes, if not seen from the current point any
more (i.e. its visibility becomes lower than a given
threshold).

Fig. 28. Single object tracking

frontal (Object, Threshold = 0.1);
hop (all sensors); Object = search (aerial);
visibility (Object) > Threshold;
repeat (
 loop (visibility (Object) >= Threshold);
 max_destination (
 hop (neighbor, all); visibility (Object));
 if (visibility (Object) < Threshold),
 (output (Object & ‘lost’); stop)))

Multiple Objects Tracking & Shooting

The following SGL scenario dealing with multiple
object/targets including their shooting (as in Fig. 29)
operates as:

 Each sensor is regularly searching for new
targets.

 Each new target is assigned individual tracking
intelligence which propagates in distributed
virtual space following the target’s movement in
physical space.

 If there are available shooters in the vicinity and
shooting is allowed and technically feasible, a
kill vehicle is launched against the target,
decreasing the number of available kill vehicles
in the region.

 If the target is hit, it is removed form the
observation.

 16

Fig. 29. Multiple Objects Tracking

Nodal (Seen);
frontal (Object, Threshold = 0.1);
hop (all sensors);
whirl (
 Object = search (aerial, not_belong (Seen));
 visibility (Object) > Threshold;
 release (
 repeat (
 append (Seen, Object);
 loop (visibility (Object) > Threshold;
 if ((hop (shoot_link); CONTENT > 0;
 allowed (fire, Object);
 shoot (Object); decrement (CONTENT);
 success (shoot, Object)),
 (withdraw (Object, Seen); done)));
 withdraw (Object, Seen);
 max_destination (
 hop (neighbor, all); visibility (Object));
 if (visibility (Object) < Threshold),
 (output (Object & ‘lost’); stop)))))

7.4 Swarm-Against-Swarm Scenario

This describes a collective fight of a friendly unmanned
swarm (consisting of “chasers”) against group target
which can be another robotic swarm or a manned team
(or mixed), as in Fig. 30. The following SGL scenario
operates by the following rules:

 Initial launch of the swarmed chasers into the
targets area.

 Forming targets priority list by their positions
in physical space.

 Highest priority is assigned to topologically
central targets as potential command and
control units.

 Other targets are sorted by their distance from
the topological center of the group.

 The most peripheral targets are considered
particularly dangerous too as having better
chances to escape from chasers and cause
damage.

 Assigning available free chasers to targets,
classifying them as engaged, and
subsequently returning them back to status
free (if were not destroyed themselves).

 The vacant chasers are again engaged in the
priority targets selection and impact.

 All chaser swarm management is done
exclusively within the swarm itself, without
any external influence.

Fig. 30. Swarm against swarm operation

The scenario in SGL will look like follows:

nodal (Targets, Aver, List, Chaser); frontal (Next);
sequence (
 Initial launch (chasers, targets (Seen)),
 repeat (
 hop (random, free chasers);
 Targets = (hop (all free chasers);
 seen (targets, coordinates));
 nonempty (Targets); Aver = average (Targets);
 List = sort (split (Targets);
 distance (VALUE, Aver) & VALUE);
 List = append (withdraw (last, List), List);
 loop (
 nonempty (List); Next = withdraw (first, List) : 2;
 Chaser =
 min (hop (all free chasers);
 distance (WHERE, Next) & ADDRESS) : 2;
 release (hop (Chaser); STATUS = engaged;

 17

 pursue_shoot_verify (Next); STATUS = free))))

Many more SGT applications in various areas can be
found in existing publications on this approach [14-27].

8 Conclusions

We have briefed a new type of ideology and resulting
networking technology aimed at establishing global
control and supervision of distributed systems with any
electronic means of communication and data processing
embedded.

Within the technology developed, it is possible to
describe in a special high-level language any local and
global operations and control in both physical and virtual
worlds and set up and supervise their behavior, including
world’s modifications and initial creation. The approach
also allows us to penetrate into other systems and their
organizations, both friendly and hostile, analyze their
internal structures and behavior and change them in the
way required, as well as integrate with other local and
global communication and management means while
establishing powerful over-operability layer on top of
them.

On the implementation layers, SGT effectively employs
replication and mobile code capability, allowing mission
scenarios spread instructions, data and control in
distributed worlds, spatially linking them with each other
in a super-virus pattern-matching mode, effectively
confronting other networking technologies, computer
viruses including. Electronic communications between
system components may be local, limited, unsafe, and
changing at run time, but the self-spreading interpreted
spatial scenarios may always survive and fulfill
objectives.

Applications of the technology offered may be numerous
and in most diverse fields -- from network management
to networked battlefields and future robotized combat
systems. Also, taking into account the overwhelming
world computerization, use of internet, billions of mobile
phone users, the technology’s scalability and its virus-
like nature, it can help launch and supervise global world
missions in a great variety of areas including
environmental protection, education, demographics,
economy, space research, security, and defense.

References

[1] Minsky M (1988), The society of mind. Simon
and Schuster, New York

[2] Feliciano CN (2009), The army's future combat
system program (Defense, Security and Strategy
Series). Nova Science

[3] Sapaty PS (2012), Distributed air & missile
defense with spatial grasp technology.
Intelligent Control and Automation, Scientific
Research, Vol.3, No.2

[4] P. Sapaty, “The Over-Operability Organization
of Distributed Dynamic Systems for
Asymmetric Operations”, Proc. IMA
Conference on Mathematics in Defence,
Farnborough, UK, 19 November, 2009.

[5] P. S. Sapaty, “Over-Operability in Distributed
Simulation and Control”, The MSIAC's M&S
Journal Online, Winter Issue, Volume 4, No. 2,
Alexandria, VA, USA, 2002.

[6] M. Wertheimer, “Gestalt Theory“, Erlangen.
Berlin, 1925.

[7] P. Sapaty, “Gestalt-Based Ideology and
Technology for Spatial Control of Distributed
Dynamic Systems”, International Gestalt
Theory Congress, 16th Scientific Convention of
the GTA, University of Osnabrück, Germany,
March 26 - 29, 2009.

[8] P. Sapaty, “Gestalt-Based Integrity of
Distributed Networked Systems”, SPIE Europe
Security + Defence, bcc Berliner Congress
Centre, Berlin Germany, 2009.

[9] Wilber K (2009), Ken Wilber online: waves,
streams, states, and self—a summary of my
psychological model (or, outline of an integral
psychology). Shambhala Publications

[10] Sapaty P (1993), A distributed processing
system. European Patent No. 0389655, Publ.
10.11.93, European Patent Office

[11] Sapaty PS (1999), Mobile processing in
distributed and open environments. John Wiley
& Sons, New York.

[12] U. Schade, M. R Hieb, “Formalizing Battle
Management Language: A Grammar for
Specifying Orders”, Paper 06S-SIW-068, 2006
Spring Simulation Interoperability Workshop
(Paper 06S-SIW-068), Huntsville, Alabama,
April 2006.

[13] U. Schade, M. R. Hieb, M. Frey, K. Rein,
“Command and Control Lexical Grammar
(C2LG) Specification”, FKIE Technical Report
ITF/2010/02, July 2010.

[14] P. S. Sapaty, “Withstanding Asymmetric
Situations in Distributed Dynamic Worlds”,
invited paper, Proc. 17th International
Symposium on Artificial Life and Robotics
(AROB 17th ’12), B-Con Plaza, Beppu, Oita,
Japan, January 2012.

 18

[15] P. S. Sapaty, “Meeting the World Challenges
with Advanced System Organizations”, book
chapter in: Informatics in Control Automation
and Robotics, Lecture Notes in Electrical
Engineering, Vol. 85, 1st Edition, Springer,
2011.

[16] P. S. Sapaty, “Distributed Technology for
Global Dominance” Proc. SPIE 6981, Defense
Transformation and Net-Centric Systems 2008,
Raja Suresh, Ed., 69810T, 2008.

[17] P. S. Sapaty, “Ruling Distributed Dynamic
Worlds”, John Wiley & Sons, New York, 2005.

[18] P.S. Sapaty, M.J. Corbin, S. Seidensticker,
"Mobile Intelligence in Distributed
Simulations", Proc. 14th Workshop on
Standards for the Interoperability of Distributed
Simulations, IST UCF, Orlando, FL, March
1995.

[19] P. Sapaty, V. Klimenko, M. Sugisaka,
“Dynamic Air Traffic Management Using
Distributed Brain Concept”, Proc. Ninth
International Symposium on Artificial Life and
Robotics (AROB 9th), Beppu, Japan, January
2004.

[20] P. Sapaty, M. Sugisaka, “Optimized Space
Search by Distributed Robotic Teams”, Proc.
World Symposium Unmanned Systems 2003,
Jul. 15-17, 2003, Baltimore Convention Center,
USA.

[21] P. Sapaty, M. Sugisaka, J. Delgado-Frias, J.
Filipe, N. Mirenkov, “Intelligent management
of distributed dynamic sensor networks”,
Artificial Life and Robotics, Volume 12,
Numbers 1-2 / March, ISSN: 1433-5298 (Print),
1614-7456 (Online), Springer Japan, pp. 51-59,
2008.

[22] P. Sapaty, A. Morozov, R. Finkelstein, M.
Sugisaka, D. Lambert, “A New Concept of
Flexible Organization for Distributed Robotized
Systems”, Proc. Twelfth International
Symposium on Artificial Life and Robotics
(AROB 12th’07), Beppu, Japan, Jan 25-27,
2007.

[23] P. Sapaty, M. Sugisaka, “Countering
Asymmetric Situations with Distributed
Artificial Life and Robotics Approach”, Proc.
Fifteenth International Symposium on Artificial
Life and Robotics (AROB 15th’10), B-Con
Plaza, Beppu, Oita, Japan, Feb. 5-7, 2010.

[24] P. Sapaty, K.-D. Kuhnert, M. Sugisaka, R.
Finkelstein, “Developing High-Level
Management Facilities for Distributed
Unmanned Systems”, Proc. Fourteenth
International Symposium on Artificial Life and
Robotics (AROB 14th’09), B-Con Plaza,
Beppu, Japan, Feb. 5-7, 2009.

[25] P. Sapaty, M. Sugisaka, J. Delgado-Frias, J.
Filipe, N. Mirenkov, “Intelligent management
of distributed dynamic sensor networks”,
Artificial Life and Robotics, Volume 12,
Numbers 1-2 / March, 2008, ISSN: 1433-5298
(Print) 1614-7456 (Online), Springer Japan, pp.
51-59.

[26] P. Sapaty, M. Sugisaka, R. Finkelstein, J.
Delgado-Frias, N. Mirenkov, “Advanced IT
Support of Crisis Relief Missions”, Journal of
Emergency Management, Vol.4, No.4, ISSN
1543-5865, July/August 2006, pp. 29-36.

[27] P. Sapaty, A. Morozov, M. Sugisaka, “DEW in
a Network Enabled Environment”, Proc.
international conference Directed Energy
Weapons 2007, Feb. 28 - March 1, 2007, Le
Meridien Piccadilly, London, UK.

http://www.springerlink.com/content/112249/?p=0418f622f2f04cc7ba2eaf04397dcb13&pi=0
http://www.springerlink.com/content/x13225k4j668/?p=186ab09ae5d548f3b9016853237c7c51&pi=0
http://www.springerlink.com/content/x13225k4j668/?p=186ab09ae5d548f3b9016853237c7c51&pi=0
http://www.springerlink.com/content/112249/?p=0418f622f2f04cc7ba2eaf04397dcb13&pi=0
http://www.springerlink.com/content/x13225k4j668/?p=186ab09ae5d548f3b9016853237c7c51&pi=0
http://www.springerlink.com/content/x13225k4j668/?p=186ab09ae5d548f3b9016853237c7c51&pi=0

	3 Spatial Grasp Language
	4 Distributed SGL Interpreter
	7.1 Europe-Related Missile Defense

