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Abstract: A high-level organizational approach is offered based on grasping top mission semantics and overall system 
functionality in a special high-level language, which allows most of traditional management routines, command and 
control including, to be effectively shifted to automated up to fully automatic levels. This “spatial grasp” language is 
collectively interpreted by a dynamic network of communicating interpreters embedded into key system points, in open 
or stealth mode. This allows us to concentrate on global mission goals and overall system efficiency and timely react on 
unpredictable and asymmetric situations and events. The technology offered having a ubiquitous super-virus feature 
with extended capability of self-recovery can create runtime intelligent spatial infrastructures governing distributed 
systems or penetrate into existing infrastructures investigating their origin, weak and strong points, and providing the 
impact needed. The approach also allows us to naturally engage robotic components in the force mix under automatic 
command and control resulting from parallel and distributed language interpretation, with unified transition to fully 
unmanned systems. 
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1  Introduction 
 
In our modern dynamic world we are constantly meeting 
numerous irregular situations and threats where proper 
reaction on them could save lives and wealth and protect 
critical infrastructures. For example, it is no secret that 
large and powerful traditional world armies, having most 
sophisticated weapons, are often losing to terrorists, 
insurgents or piracy with primitive gadgets but very 
smart and flexible organizations making them hard to 
detect and fight. And delayed reaction on environmental 
crises like earthquakes, tsunamis or forest fires with their 
severe consequences can also be the result of inadequacy 
of existing organizational structures for dealing with 
emergency situations.  
 
The traditional approach to system design, development 
and management, command and control including,  
supposes the system structure and system organization to 
be predominantly primary, created in advance, whereas 
global function and overall system behavior appearing as 
secondary, like shown in Fig. 1. 
 

 
Fig. 1. Traditional approach to system design 

 
The systems based on this vision, ideologically relevant 
to multi-agent organizations [1] still prevailing almost 
everywhere, are often clumsy and static, they may fail to 
quickly adapt to dynamic and asymmetric situations.  
 
With global goals changing, the whole projects based on 
creating structures and overall system organizations first 
may quickly become outdated or not needed at all despite 
huge investments made into them, like, for example, the 
robotized Future Combat Systems project, or FCS [2], 
see Fig. 2. The latter, designed mainly for classical 
battlefields, became obsolete even in its infancy after the 
main world operations changed towards terrorism fight, 
for which quite different system ideology and 
organization appeared to be needed. 
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Fig. 2. The canceled FCS project 
 

FCS was also based on a rigid 4D-RCS architectural 
model inheriting classical hierarchical military 
organizations, even for AI purposes (Fig. 3), which 
became inadequate for asymmetric guerrilla-style 
warfare emerging and dominating in the 21st century.  

Fig. 3. FCS Basics: 4D-RCS model mrchitecture 
 
Taking this into account, we are pursuing an alternative 
system approach, known as spatial grasp [3] and over-
operability [4,5] in contrast to traditional interoperability, 
where the global function and overall behavior should be 
considered, as much as possible, primary, and the system 
structure and organization as secondary, the latter as a 
dynamic derivative of the former (Fig. 4). 

 
Fig. 4. The alternative system organization considered 

 
The related Spatial Grasp Technology (SGT) starts from 
global goal and top semantics of the needed overall 
behavior which are expressed in a special Spatial Grasp 
Language (SGL), making the system structure and its 
internal organization a runtime derivative from changing 
mission goals and states of the environment. This may 
provide high flexibility of runtime system organization, 

especially in responses to asymmetric events, offering 
also enhanced possibilities for automated up to fully 
automatic (unmanned) solutions. 
 
The approach offered has been tested on numerous 
applications and in different countries, with some history 
development stages depicted in Fig. 5.  
 

 
 

Fig. 5. SGT development history 
 

 
2   Spatial Grasp Model 
 
The spatial grasp model underlying the technology 
offered is based on formalized stepwise, wavelike, 
seamless navigation, coverage, or grasping of distributed 
physical and virtual spaces, as shown in Fig. 6.  
 

         
          
                               a)                                       b)  
 

Fig. 6.  Incremental integral grasp of distributed worlds: a) 
virtual interpretation, b) symbolic physical analogy 

 
This mode of high-level system vision based on holistic 
and gestalt principles [6-8] rather than cooperating parts 
or agents [1] has psychological and philosophical 
background [9]  reflecting, for example, how humans 
(especially top commanders) mentally plan, comprehend, 
and control complex operations in distributed 
environments. 
 
The approach in practice works as follows. A network of 
universal control modules U embedded into key system 
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points collectively interprets mission scenarios expressed 
in SGL, as shown in Fig. 7. The scenarios based on the 
spatial grasp model (capable of representing any parallel 
and distributed algorithms, spatial branching, cycles and 
loops including) can start from any node, subsequently 
covering the whole system or its parts needed at runtime.  
 

 
Fig. 7. Collective scenario execution in dynamic environments 

 
SGL scenarios are often very compact and can be created 
on the fly. Different scenarios can cooperate or compete 
in a networked space (depending on live control or 
distributed simulation mode) as overlapping fields of 
solutions, as shown in Fig. 8.  
 

 
 

Fig. 8.  Distributed scenario spatial interactions 
 
Self-spreading scenarios can also create runtime 
knowledge infrastructures distributed between system 
components (humans, robots, smart sensors). These 
infrastructures can effectively support distributed 
databases, advanced command and control, global 
situation awareness, autonomous decisions, as well as 
any other computational or control models.  

Fig. 9. Creating Spatial Infrastructures by SGT 

 
3  Spatial Grasp Language 
 
3.1  SGL orientation and peculiarities 
 
SGL differs fundamentally from traditional programming 
languages. Rather than working with information in a 
computer memory, as usual, it allows us to directly move 
through, observe, and make any actions and decisions in 
fully distributed environments, whether physical or 
virtual. In general, the whole distributed world, which 
may be dynamic and active, is considered in SGL as a 
substitute to traditional computer memory. SGL directly 
operates with:  
 

 Virtual World (VW), which is finite and discrete, 
consisting of nodes and semantic links between them, 
both nodes and links capable of containing any 
information, of any nature and volume.  
 

 Physical World (PW), infinite and continuous, 
where each point can be identified and accessed by 
physical coordinates expressed in a proper coordinate 
system, and with the precision given. 
 

 Execution world (EW), consisting of active doers 
with communication channels between them, where 
doers may represent humans, robots, laptops, 
smartphones, any other devices or machinery capable of 
operating on the previous three worlds.  
 
Different combinations of these worlds can also be 
possible, for example, Virtual-Physical World (VPW) 
allowing not only for a mixture of the both worlds but 
also their deeper integration where VW nodes can be 
associated with certain PW coordinates, thus making 
their presence in physical reality too. Another possibility 
is Virtual-Execution World (VEW) where doer nodes 
may be associated with virtual nodes like having special 
names (or nicknames) assigned to them, having now 
semantic relations between them too, like between pure 
VW nodes. Execution-Physical World (EPW) can pin 
some or all doer nodes permanently to certain PW 
coordinates, and Virtual-Execution-Physical World 
(VEPW) can combine features of the previous two 
variants. 
 
3.2  Top SGL syntax 
 
SGL has recursive structure top level of which is shown 
in Fig. 10. Such organization allows it to express any 
spatial algorithm, create and manage any distributed 
structures with any topologies, static as well as dynamic, 
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also solve any problem in, on, and over them—and all 
this can be expressed in a very compact, transparent, and 
unified way. 

 
Fig. 10. SGL recursive syntax 

 
Let us explain the language basics in a stepwise top-
down manner.  
 
The SGL topmost definition, where scenario in it is 
named grasp (reflecting the spatial navigation-grasp-
conquest model explained above) can be expressed as 
follows: 
 
grasp    constant | variable | rule ({ grasp, })  
 
with syntactic categories shown in italics, vertical bar 
separating alternatives, braces to indicate repetitive parts 
with the delimiter (here comma) between them shown at 
the right, whereas parentheses and commas being the 
language symbols.  
 
As follows from this notation, an SGL scenario, applied 
in a certain world point (i.e. of PW, VW, EW or their 
combinations), in the simplest form can just be a 
constant defining the result explicitly. It can also be a 
variable containing certain data, say, assigned to it 
previously by some or other SGL scenarios, which may 
have happened to visit this point of the world before.   
 
The next option may be one or more constants, variables, 
or recursively grasps again (treated as operands and 
separated by a comma if more than one) which are 
embraced by a certain operation, or rule, with the use of 
parentheses. The rules, starting in the current world 
position, can be of most diverse natures -- from local 
matter or information processing to global management 
and control. The rules can produce results (which may be 
single or multiple) in the same or other world locations.  
 

Due to recursion in the language definition, the results 
obtained and world locations reached by rules may, in 
their turn, become, respectively, operands and/or starting 
places for other rules, with new results and new locations 
(single or multiple too) obtained after their completion, 
and so on.  
 
The scenario can thus dynamically spread & process & 
match the world or its parts needed, with the scenario 
code capable of virtually or physically moving (the local 
data too, as will be clear afterwards) in the distributed 
space, matching the latter and possibly losing utilized 
parts if not needed any more. This movement can take 
place in single or multiple, parallel, same or different 
parts/copies, dynamically linking with each other within 
automatic spatial control spreading and covering the 
navigated world too. 
 
SGL constants can represent information, physical 
matter (or physical objects), or custom defined data items 
extending the language for specific applications, as 
follows: 

 
constant     information | matter | custom | { grasp_ }  
 
The word “constant” is used rather symbolically in the 
SGL definition, as the last option shown above is 
recursively defined as grasp again (possibly, even an 
aggregate of grasps separated by underscore), thus 
capable or representing any complex objects, passive or 
with embedded activities, for their partial or complete 
processing.  
 
SGL variables called “spatial” which may be stationary 
or mobile and contain information or matter, are serving 
different features of distributed scenarios. As follows, 
they may be of the four types: heritable (stationary), 
frontal (mobile), environmental (stationary or mobile), 
and nodal (stationary), with their semantics and usage 
explained later. 
 
variable    heritable | frontal | environmental | nodal 
 
And rules can belong to the following main classes: 
 
rule    movement | creation | echoing | verification |  
               assignment | modification | advancing |  
               branching | transference | timing | granting |  
                type | usage | application | { grasp_ } 
 
The final rule’s option, grasp again, brings another level 
of recursion into SGL where operations may not only be 
named explicitly but can also represent results of spatial 



 5

development of corresponding SGL scenarios of any 
world coverage and complexity. This option also offers 
composition or aggregates (separated by underscore) of 
different operations dedicated to work jointly on 
operands they commonly embrace.  
 
3.3  SGL main features 
 
Here are some general aspects of SGL scenarios 
explaining their evolution in distributed worlds.  
 
The basic concept is progress point, or prop (the latter 
word is used here as an abbreviation and differs from 
traditional meaning of the word “prop”). The prop 
identifies a combined scenario development and control 
step in the united space & time continuum. By using the 
notion of props we can clearly explain how SGL scenario 
operates and evolves, with key points being as follows. 
 

 Applied to some point of the world (which may 
be of different natures as explained before), an SGL 
scenario is considered to be in the starting prop 
associated with this entry point. 

 When activated, the scenario develops in a 
stepwise manner, generally as a parallel transition 
between consecutive sets of props (the initial set 
containing the starting prop only). Each new set (or sets, 
as scenario may branch) identifies the final result of the 
current step of scenario evolution having started from the 
previous set (or its subsets). 

 Starting from a prop, a scenario action may result 
in new props (which may be multiple, as a set) or remain 
in the same prop. In the latter case, this prop may again 
be added to the resulting set of props obtained from other 
starting props, for further common activities from all 
these, if multiple space & time propagations occur.  

 Each prop has a resulting value, which may be 
single one representing information or matter or a list of 
values (potentially: nested), and a resulting control state 
(one of thru, done, fail, or fatal, with their 
meanings explained later). 

 Different operations (represented by arbitrary 
scenarios) may evolve independently or interdependently 
in space and time from the same prop, and in ordered, 
unordered, or parallel manner.  

 Operations may also spatially succeed each other, 
with new ones applied from the props reached by the 
previous actions. This potentially parallel wavelike 
evolution in space-time continuum may take place in 
synchronous or asynchronous mode. 

 Operations and decisions represented by rules can 
use states and values associated with props reached by 
other operations, whatever complex and remote the latter 
might be. 

 Any prop is always associated with a point of the 
world (i.e. physical, virtual, execution or combined node) 
the related scenario branch is currently developing in. 

 Any number of props can be simultaneously 
associated with the same world points, sharing local 
information at them, if needed. 

 Staying with world points, it is possible to 
directly access and change local parameters in them, 
whether physical or virtual, thus impacting the worlds (or 
trying to do so) via these points. 

 Overall organization of the breadth and depth 
world navigation and coverage is provided by a variety 
of powerful SGL rules, which may be arbitrarily nested 
within complex processing, evolution, control, 
management, and supervision structures. 

As was shown in previous publications, any sequential or 
parallel, centralized or distributed, stationary or mobile 
algorithm operating with information and/or physical 
matter can be written in SGL on any levels. The latter 
ranging from top semantic (also close to what is called 
“command intent”) to those detailing system partitioning, 
composition, infrastructures, subordination between 
active components, and overall management and 
command and control. 
 
3.4  The Sense and Nature of SGL Rules 
 
Explaining the language basics further, let us shed some 
light on the sense and nature of rules, to be explained 
later in detail. A rule, representing in SGL any action or 
decision, may, for example, be as follows: 
 

 Elementary arithmetic, string, or logic operation. 

 Move or hop in a physical, virtual, execution, or 
combined space. 

 Hierarchical fusion and return of (potentially 
remote) data. 

 Distributed control, both sequential and parallel, 
and in breadth or depth.  

 A variety of special contexts detailing navigation 
in space while influencing embraced operations and 
decisions. 
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 Type or sense of a value, or its chosen usage, 
guiding and simplifying automatic language 
interpretation. 

 Creation or removal of nodes and/or links in 
distributed knowledge networks. 

 Result of local or global operations of arbitrary 
complexity and space coverage, which can find, select, or 
produce the rule needed. 

 As already mentioned, a rule can also be a 
compound one integrating a number of other rules. 

All rules, regardless of their nature, sense, or complexity, 
are obeying the same ideology and organization, as 
follows: 
 
 Starting from a certain space location, initially 

linked to it. 

 Performing certain operations in a distributed 
space. 

 Producing final results in the resultant set of props 
with their states and values.  

 Linking to same or new world positions reached by 
the rule’s activity.  

This uniformity allows us to effectively compose highly 
integral and transparent spatial algorithms of any 
complexity and any world coverage, which can operate 
altogether under fully automatic, parallel and distributed 
control. 
 
3.5  SGL Spatial Variables 
 
Let us consider some details on the nature and sense of 
spatial variables, stationary or mobile, which can be used 
in fully distributed physical, virtual, or executive 
environments, effectively serving multiple cooperative 
and integral processes: 
 

 Heritable variables – stationary, starting in a 
prop and staying with this prop permanently (even 
though the prop has become a past history only, with 
active processes already gone with other props) and 
serving all subsequent props, which can share them in 
read & write operations. 

 Frontal variables – mobile, temporarily 
associated with currently active props (not being shared 
with other props), and then moving with the scenario 
evolution to subsequent props, accompanying scenario 
activity. These variables replicate if from a single prop a 
number of other props emerge.  

 Nodal variables – stationary, being a private, 
direct property of the world locations/nodes reached by 
the scenarios. Staying at world nodes, they can be 
accessed and shared by all activities having reached 
these nodes under same scenario identity and at any time 
(their life span will be explained later).  

 Environmental variables – these allow us to 
access different features of physical and virtual words 
during their navigation, also internal parameters of the 
distributed SGL interpretation system, to assess, guide, 
and optimize scenario execution. Most of them are 
stationary, associated with stationary world positions, but 
some, related to the execution system itself, can be 
mobile.  

These types of variables, especially when used together, 
allow us to create advanced spatial algorithms working 
in between components of distributed systems rather than 
in them, providing flexible, robust, and self-recovering 
solutions. Such algorithms can freely replicate, partition, 
spread and migrate in distributed environments (partially 
or as an organized whole), preserving global integrity 
and overall control.  
 
3.6  Control States and Their Hierarchical Merge 
  
The following control states appear in props during 
scenario evolution in distributed space-time continuum. 
They are used for distributed control of multiple 
sequential and parallel processes, with making intelligent 
decisions at different levels. 
 

 thru – indicates full success of the current 
branch of the scenario with capability of further 
development (i.e. indicating successful operation not 
only in but also through this stage of control). Next 
scenario stages, if any, will be allowed to proceed from 
the current prop. 

 done – indicates success of the current stage 
with its planned termination after which no further 
development of this particular branch from the current 
prop will be possible (unless this status is subsequently 
changed by a special higher-level rule). 

 fail – indicates non-revocable failure of the 
current branch, with no possibility of further 
development. This state relates to the current 
branch/prop only, not influencing directly the 
development of other branches of the scenario. It, 
however, same as the previous states, can influence 
decisions on higher levels by control rules which can 
allow or block development of other branches. 
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 fatal – reports fatal, terminal failure with 
nonlocal effect, triggering abortion of all evolving 
processes and associated temporary data, which may be 
parallel and distributed, also active, regardless of their 
current world locations and their success or failure. The 
scope of this global cancellation process may be the 
whole scenario or only its part embraced by a special 
rule (explained later) supervising the area in which this 
state may happen to occur.   

These control states appearing in different branches of a 
parallel and distributed scenario at bottom levels can be 
used to obtain generalized control states for higher 
scenario levels, up to the whole scenario, for making 
proper decisions. The hierarchical bottom-up merge & 
generalization of states is based on their comparative 
importance, where the stronger state will always 
dominate when ascending towards the root.  
 
For example, the merge of states thru and done will 
result in thru, thus generally classifying successful 
development at a higher scenario level with possibility of 
further expansion from all or at least some of its 
branches. Merging thru and fail will result in thru 
too, indicating general success with possibility of further 
development despite some branch (or branches) 
terminated with failure, but others remained open to 
further evolution. Merging done and fail will result in 
done indicating successful termination in general while 
ignoring local failures, without possibility of further 
development in this direction.  
 
And fatal will always dominate when merging with 
any other states unless its influence is restricted at top by 
a special rule which, in case of discovering state fatal 
under its supervision, will itself result with fail for 
higher assessment and control. So ordering these states 
by their powers from maximum to minimum will be as 
follows: fatal, thru, done, fail. 
 
3.7  The Use of Conventional Notations  
 
To simplify SGL programs, traditional to existing 
programming languages abbreviations of operations, also 
conventional delimiters can be used too, substituting 
certain rules as in numerous examples throughout this 
book, always remaining, however, within the general 
syntactic structure shown in Fig. 10. A number of such 
code simplifications will be used in the subsequent 
sections when describing different scenarios in SGL for 
solving concrete problems. 
 
 

3.8  Some elementary examples in SGL 
 

 Just representing result directly, as a numerical, 
string, or custom constant:  
77, ‘Peter’, Peter 
 

 Multiplication of two constants with the result as 
an open value : 
multiply (34, 5.5)  or  34 * 5.5 
 

 Assigning a sum of values to variable Result:   
Assign (Result, add (27, 33, 55.6))  or    
Result = 27 + 33 + 55.6 
 

 Moving to two physical locations (x1, y3) and 
(x5, y8) in parallel:    
Move (location (x1, y3), location (x5, y8))  
or in a shortened way:   
move (x1_y3, x5_y8). 
 

 Creating isolated virtual node Peter:  
create (‘Peter’) or create (Peter) if Peter is a custom 
name. 
 

 Extending node Peter as father of Alex, the latter 
to be a new node:  
advance (hop (‘Peter’), create (+‘fatherof’, ‘Alex’)) or 
hop (Peter); create (+fatherof, Alex) –  shortened, and for 
custom names. 
 

 Tasking doer D1 to shift in physical space on 
coordinate deviation (dx, dy): 
advance (hop (D1), increment (WHERE, (dx,dy)))  or   
hop(D1); WHERE += dx_dy 
(WHERE is a special environmental variable keeping 
physical coordinates of the node, here D1, in which 
scenario control is currently staying.) 
 

 Tasking D1 to move directly to new physical 
coordinates (x, y) will be as follows: 
advance (hop (D1), assign (WHERE, (x, y))) or   
hop (D1); WHERE = x_y. 
 
3.9  Full SGL Summary 
 
SGL full description summarizing the listed above 
language constructs is as follows, where, as already 
mentioned, syntactic categories are shown in italics, 
vertical bar separates alternatives, and parts in braces 
indicate zero or more repetitions with a delimiter at the 
right. The remaining characters and words are the 
language symbols (including braces shown in bold). 
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grasp    constant | variable | rule ({ grasp, }) 

constant    information | matter | custom |{ grasp_ }  

variable    heritable | frontal | nodal | environmental 

rule    movement | creation | echoing | verification |  

   assignment | modification| advancing |branching |  

   transference | timing | granting | type | usage |              

   application | { grasp_} 

information  string | number | special  

string   ‘{character}’ | {{character}} 

number   standard | zero | one | two | three | four |  

          five | six | seven | eight | nine | plus |   

          minus | dot  

matter         “{character}” 

movement     hop | move | shift 

creation       create | linkup | delete | unlink 

echoing        state | order | rake | element |  

   content | index | count | sum | first |    

   last | min | max | random | average |  

 access | sortup | sortdown | reverse | 

   add | subtract | multiply | divide |  

   degree | separate | unite | attach |  

   append | common  

verification   equal | notequal |less | lessorequal |  

    more | moreorequal | none | empty |  

          nonempty | belongs | notbelongs |   

  intersects | notintersects  

assignment   assign | remove | withdraw |          

     assignpeers 

modification   inject | replicate | split 

advancement  advance | slide | repeat | fringe 

branching       branch | sequence | parallel | if | or |  

     and | choose | firstrespond | cycle |  

     loop | sling | whirl| empty 

transferen      run | call | input | output |transmit |  

     send | receive 

timing      sleep | remain 

granting      supervise | release | free | blind |  

     lift | none | stay | seize 

type      heritable | frontal | nodal |  

           environmental | matter | number |     

           string  

usage  address | coordinate | content |  

                          index | time | speed | name | place |  

                          center | range | doer | node | link |  

                          unit | scenario | world | empty 

heritable      H{alphameric} 

frontal      F{alphameric} 

nodal      N{alphameric 

environmental TYPE | NAME | ADDRESS | QUALITIES |  

      WHERE | BACK | PREVIOUS | PREDECESSOR |  

     DOER | RESOURCES | LINK | DIRECTION |  

  WHEN | TIME | SPEED | STATE | VALUE |  

  COLOR | IN | OUT | STATUS | specific 

special    thru | done | fail | fatal | infinite |  

    nil | nodes | links | any | all |  

                         allother | passed | existing |  

 `     neighbors | direct | noback | # 

        firstcome | forward | backward |      

                         global | local | synchronous |  

        asynchronous | virtual |  

                         physical | executive | engaged |  

        vacant 

 
 
4  Distributed SGL Interpreter 
 
4.1  The Interpreter General Organization  

 

The SGL interpreter’s general organization and its main 

components are shown in Fig. 11, stemming from [10].  

 

 Fig. 11. SGL interpreter organization  

 

The interpreter consists of a number of specialized 
functional processors handling, processing, and sharing 
specific data structures. The processors performing 
different language interpretation functions (shown by 
rectangles) include: communication processor, control 
processor, navigation processor, parser, different 
operation processors, also special hardware and software 
directly accessible from SGL. Main data structures on 
which these processors operate (shown by ovals) 
comprise: grasps queue, suspended grasps, track forest, 
activated rules, knowledge network, grasps identities, 
heritable variables, fontal variables, nodal variables, 
environmental variables, incoming queue, and outgoing 
queue. 
 
SGL interpreter can communicate with other interpreter 
copies where the whole network of them can be mobile 



 9

and open, capable of changing the number of nodes, their 
communication structure, and relative and absolute 
positions in physical space. This interpretation network 
can effectively implement and support global and local 
data structures, situation awareness, and overall system 
control by direct interpretation of evolving spatial SGL 
scenarios in parallel and fully distributed manner.  
 
4.2  Spatial Track System 
 
The “heart and nerve system” of the distributed 
interpreter is its spatial track system with its parts kept in 
the Track Forest memory of local interpreters -- these 
being logically interlinked with such parts in other 
interpreter copies, forming altogether global space 
control coverage.  
 
This forest-like distributed track structure enables 
automatic hierarchical command and control as well as 
remote data and code access, with high integrity of 
emerging parallel and distributed solutions, without any 
centralized resources. 
 
The dynamically crated track trees (generally: forests), 
spanning the systems in which SGL scenarios evolve, are 
used for supporting spatial variables and provide echoing 
& merging of different types of control states and remote 
data, being self-optimized in parallel echo processes. 
They also route further grasps to the positions in 
physical, virtual or combined spaces reached by the 
previous grasps, uniting them with the frontal variables 
left there by the preceding grasps.  
 
Figs 13-17 exhibit some operation stages of this 
distributed automatic command and control system, with 
abbreviations of the main components involved in them 
shown in Fig. 12. 
 

 

Fig. 12. Main track-based management components 

 

 

Fig. 13. Tracks creation in forward grasping 

 

Fig. 14. Automatic distribution of track system between 
different doers 

 

 

Fig. 15. Track echoing and optimization 
 

 

Fig. 16. Development of further grasps 
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Fig. 17. More advanced track structure 

 

4.3 Networked SGL Interpreter As a Universal 
Spatial Machine 
 
The whole network of the interpreters can be mobile and 
open, changing at runtime the number of nodes and 
communication structure between them. Copies of the 
interpreter can be concealed if to operate in hostile 
environments, allowing us to analyze and impact the 
latter in a stealth manner, if needed. 
 
The dynamically networked SGL interpreters are 
effectively forming a sort of a universal parallel spatial 
machine (as shown in Fig. 8) capable of solving any 
problems in a fully distributed mode, without any special 
central resources. “Machine” rather than computer as it 
can operate with matter too, and can move partially or as 
a whole in physical environment, possibly, changing its 
distributed shape and space coverage. This machine can 
operate simultaneously on many mission scenarios which 
can be injected at any time from its arbitrary nodes. 

 

 
 

Fig. 18. SGL interpretation network as a universal spatial 
machine 

 
Installing communicating SGL interpreters into mobile 
robots (ground, aerial, surface, underwater, space, etc.) 
on top of their existing functionality allows us to 
organize effective group solutions of complex problems 

in distributed physical spaces in a clear and concise way, 
effectively shifting traditional management routines to 
automatic levels. Human-robot interaction and gradual 
transition to fully unmanned systems are drastically 
assisted too. 
 
Some possible integrative scenario skeletons uniting 
dissimilar types of robotic units (ground, surface, 
underwater, space) operating under the unified C2 
automatically provided via embedded SGL interpreters 
communicating with each other are shown in Fig. 19.  
 

 

Fig. 19. Integrated distributed robotics with SGT 

 
5 Examples of Distributed Programming in SGL 
 
5.1  Finding Weakest Points 
 
To find the weakest nodes in a graph like articulation 
points (see Fig. 20), which when removed split it into 
disjoint parts, the following program suffices (resulting 
in node d which is chosen to be physically removed, say, 
for a specific application). 

 
 

Fig. 20. Finding weakest points 
 

nodal (Mark);  
hop (all nodes); COLOR = NAME; Mark = 1; 
and ((hop (random, all links);  
           repeat (grasp (Mark == nil; Mark = 1);  
                       hop (all links))),  
        (hop (all links); Mark == nil),  
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         remove (NAME)) 
 
This parallel and distributed SGL scenario works in the 
following steps: 
 
 Starting in each node with personal color, marking it. 

 Parallel marking all accessible subnetwork with 
personal color from a randomly chosen neighbor, 
excluding itself from the marking process. 

 Checking if the current node solely connects parts of 
the network. 

 Removing the node. 

 
5.2  Finding Strongest Parts 
 
Cliques (or maximum fully connected sub-graphs of a 
graph, as in Fig. 21), on the contrary, may be considered 
as strongest parts of a system. They all can be found in 
parallel by the following simple program resulting for 
Fig. 21 in cliques: (a, b, c, d), (c, d, e), and (d, e, f). 
These cliques are then chosen to be output locally rather 
than removed, as in the previous case. 
 

 
 

Fig. 21. Finding strongest parts 
 

frontal (Clique); hop (all nodes); Clique = NAME; 
repeat ( 
  hop (all links); not belong (NAME, Clique);  
  if (and parallel (hop (any links, Clique)), 
     if (BACK > NAME, Clique &= NAME, done), fail)); 
if (length (Clique) >= 3, output (Clique)) 
 
The program operates in the following steps: 
 
 Starting in each node. 

 Growing potential clique in a unique node order until 
possible. 

 Printing the clique grown, with threshold size given. 

 
 

5.3 Finding Arbitrary Structures in Arbitrary 

(template) of Figure 22 
ith variable nodes X1 to X6), is based on a path 

through all template’s nodes.  
 

Networks by Parallel Pattern Matching 
 
Any structures in any distributed networked systems can 
be found by describing them in SGL, like the one in 
Figure 22, which can be applied from any network node, 
evolving subsequently in a parallel replication and 
pattern-matching mode. The following SGL program, 
reflecting the search pattern 
(w

 
 

Fig. 22. Finding arbitrary structures in arbitrary networks 
 

frontal (Match); hop (all nodes);   
(repeat, 5) (append (Match, NAME); all links #;  
                   not belong (NAME, Match));  
if (and (any link # Match [2, 3]),  
     (append (Match, NAME); all links # Match [1];  
       if (any link # Match [5], OUT = Match))) 
 
Three substructures have been found by the template in 

ig. 22, with template variables matching the following 

1, X2, X3, X4, X5, X6)     

 general 
raphs and networks may be found in [11], where the 

ing targets seeing 
locally from their different points, as shown in Fig. 23, 
and by the following DSL program.  

F
network nodes: 
 
(X
   (J, V, C, N, B, D), (M, A, N, Q, P, E), (R, W, Q, Z, Y, O) 
 
More on parallel and distributed operations on
g
SGL’s predecessor WAVE language was used. 
 
5.4  Providing Global Awareness & Targeting 
 
Establishing global electronic supervision over any 
distributed systems, SGT effectively provides global 
awareness of complex situations in them, for example, 
for discovering, collecting and distribut
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Fig. 23. Providing overall awareness and global targeting in a 

distributed space 
loop ( 

frontal (Seen) =  
  repeat (free (detect (targets)), hop first (infra)); 

 repeat (free (select_shoot (Seen)), hop first (infra))) 
 

This constantly looping, self-evolving and self-spreading 
distributed program, providing global collection of 
possible targets throughout the region of concern and 
their subsequent distribution back to local units (the 
latter selecting which targets to shoot individually), can 
start from any component of the system having SGL 
interpreter installed (communication links between the 
interpreters, which can be dynamic and casual, are 
represented as infra). 
 
6   Expressing Battlefield Scenarios 
 
Formalization of Command Intent (CI) and Command 
and Control (C2) in general, are among the most urgent 
and challenging problems on the way to creation of 
effective multinational forces, integration of simulations 
with live control, and natural transition to robotized 
armies. Specialized languages for unambiguous 
expression of CI and C2 (like BML and its derivatives C-
BML, JBML, geoBML, etc., [12, 13]) are not 
programming languages themselves, needing therefore 
integration with other linguistic facilities and 
organizational levels to provide required system 
parameters. 
 
On the contrary, working directly with both physical and 
virtual worlds, SGL allows for effective and universal 
expression of any battlefield scenarios and orders in 
parallel and fully distributed manner, also allowing for 
their straightforward implementation in robotized up to 
fully robotic systems. SGL scenarios are much shorter 
and simpler, as in the following example taken from [13] 
(Fig. 24 and the following BML code). 
 
The task is to be performed by two armoured squadrons 
BN-661 Coy1, and BN-661 Coy3, which are ordered to 
cooperate in coordination. The operation is divided into 
four time phases: from TP0 to TP1, from TP1 to TP2, 
from TP2 to TP3, and from TP3 to TP4, to finally secure 

objective Lion, and on the way to it, objective Dog. Their 
coordinated advancement should be achieved by passing 
Denver, Boston, Austin, Atlanta, and Ruby lines, while 
fixing and destroying enemy units Red-1-182, Red-2-
194, Red-2-196, and Red-2-191. 
 

 
Fig. 24. Coordinated advancement in physical space 

 
Tasks assigned to Coy1 in BML are as follows:  
 
deploy BN-661 Coy1 at Denver end before TP0  

in-order-to enable label-o11 label-o10;  
advance BN-661 Coy1 from Denver to Boston start at 
TP0  

in-order-to enable label-o12 label-o11;  
fix BN-661 Coy1 Red-1-182 at Boston end nlt TP1  

in-order-to enable label-o33 label-o12;  
advance BN-661 Coy1 to Austin start at TP1  

in-order-to enable label-o14 label-o13;  
fix BN-661 Coy1 Red-2-194 at Dog end nlt TP2  

in-order-to enable label-o35 label-o14;  
advance BN-661 Coy1 to Atlanta start at TP2  

in-order-to enable label-o16 label-o15;  
fix BN-661 Coy1 Red-2-196 at Atlanta end nlt TP3  

in-order-to enable label-o37 label-o16;  
advance BN-661 Coy1 to Ruby start at TP3  

in-order-to enable label-o18 label-o17;  
fix BN-661 Coy1 Red-2-191 at Lion end nlt TP4  

in-order-to enable label-o39 label-o18;  
seize BN-661 Coy1 Lion at Lion end nlt TP4  

in-order-to cause label-ci1 label-o19;  
 

Tasks assigned to Coy3 in BML:  
 

deploy BN-661 Coy3 at Denver end before TP0  
in-order-to enable label-o32 label-o30;  

support BN-661 Coy3 Coy1 at Troy start at TP0 end at 
TP4 label-031;  
attspt BN-661 Coy3 Red-1-182 from Denver to Boston 
start at TP0 end nlt TP1  

in-order-to enable label-o12 label-o32;  
destroy BN-661 Coy3 Red-1-182 at Boston end nlt TP1  

in-order-to enable label-o13 label-o33;  
attspt BN-661 Coy3 Red-2-194 from Boston to Dog start 
at TP1 end nlt TP2  
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in-order-to enable label-o14 label-o34;  
destroy BN-661 Coy3 Red-2-194 at Dog end nlt TP2  

in-order-to enable label-o15 label-o35;  
attspt BN-661 Coy3 Red-2-196 from Dog to Atlanta start 
at TP2 end nlt TP3  

in-order-to enable label-o16 label-o36;  
destroy BN-661 Coy3 Red-2-196 at Atlanta end nlt TP3  

in-order-to enable label-o17 label-o37;  
attspt BN-661 Coy3 Red-2-191 from Atlanta to Lion start 
at TP3 end nlt TP4  

in-order-to enable label-o18 label-o38;  
destroy BN-661 Coy3 Red-2-191 at Lion end nlt TP3  

in-order-to enable label-o19 label-o39;  
 

The following same mission description, but now in SGL 
(reflecting what to do in a distributed space and which 
key decisions to make rather than who/what will be 
doing this) is much shorter. It can be created and 
modified on the fly and executed by manned, mixed, or 
fully robotic forces (with most of command and control 
hidden and shifted to automatic internal SGL 
interpretation). This can effectively relieve human 
commanders from multitude of traditional explicit C2 
routines, allowing them concentrate on global mission 
objectives and efficiency instead. 
 
 
FIXER = BN_661_Coy1;  
SUPPORTER_DESTROYER = BN_661_Coy3; 
advance ( 
  deploy (Denver, TFIN = TP0), 
move_destroy (PL: Boston,  
   TARGET: Red_1_182, TFIN = TP1), 
move_destroy (PL: Austin, OBJ: DOG,  
   TARGET: Red_2_194, TFIN = TP2), 
move_destroy (PL: Atlanta,  
   TARGET: Red_2_196, TFIN = TP3), 
move_destroy (PL: Ruby, OBJ: LION,  
   TARGET: Red_2_191, TFIN = TP4)); 

seize (LION, TFIN = TP4) 
 
Any further scenario generalization in SGL can be 
provided within the same SGL syntax, as follows. 
 
Not Mentioning Own Forces: 
 
advance ( 
  deploy (Denver, TFIN = TP0), 

move_destroy (PL: Boston,  
   TARGET: Red_1_182, TFIN = TP1), 
move_destroy (PL: Austin, OBJ: DOG,  
   TARGET: Red_2_194, TFIN = TP2), 
move_destroy (PL: Atlanta,  
   TARGET: Red_2_196, TFIN = TP3), 
move_destroy (PL: Ruby, OBJ: LION,  
   TARGET: Red_2_191, TFIN = TP4)); 

seize (LION, TFIN = TP4) 
 
Not mentioning adversary’s forces: 

 
deploy (Denver, TFIN = TP0); 
move (PL: Boston, TFIN = TP1); 
move (PL: Austin, OBJ: DOG, TFIN = TP2); 
move (PL: Atlanta, TFIN = TP3); 
move (PL: Ruby, OBJ: LION, TFIN = TP4)); 
seize (LION, TFIN = TP4) 
 
Setting main stages only: 
 
deploy (Denver, TFIN = TP0); 
advance (PL: Boston, Austin, Atlanta, Ruby); 
seize (LION, TFIN = TP4) 
 
Final goal only: 
 
seize (LION, TFIN = TP4) 
 
Expressing operations in the integral spatial formalism 
provided by SGL directly operating with distributed 
spaces enables us to drastically clarify and simplify 
mission descriptions and increase flexibility of their 
possible implementations with any available resources, 
both manned and unmanned, which can appear and 
change at runtime. 
 
Many other applications of the spatial grasp paradigm 
can be found in [14-27], some examples exhibited below. 
 
7  Other Application Scenarios 
 
7.1  Europe-Related Missile Defense  
 
Let us consider here some scenarios related to the 
European missile defense plans, copied in Fig. 25. 
 

 
a) 

 
b) 
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c) 

 
d) 

Fig. 25. Possible European missile defense scenarios. 
 
The missile defense system is supposed to work in the 
following stages: 
 

a) 1: Infrared satellite system picks up heat signatures 
of hostile missiles launched towards target. 2: 
Information transmitted to ground stations for 
processing. 3: Processed information sent to C2 network;  

b) The C2 network relays information to sensor and 
weapons systems in the region;  

c) 1: Long-range sensors continue to track the missile 
to help command system calculate options for destroying 
them. 2: Information is constantly shared among the 
sensors and weapons systems;  

d) Command system has the option of shooting down 
the hostile missiles while in the upper or lower layers of 
the atmosphere. 

Having extended these with advanced capabilities like 
DEW (say, high power lasers) located in space or on 
airborne (manned or UAV) platforms (synchronized with 
infrared satellite sensors), we can write the following 
very simple DSL scenario integrating infrared satellites, 
DEW facilities, long range sensors and upper and lower 
layer shooters into a dynamic distributed system capable 
of discovering hostile objects, tracing them at different 
stages of flight, and (re)launching target impact facilities 
with verification of their success or failure, until the 
targets are destroyed.  
 

hop (infrared_satellite_sensors);  
loop ( 

   nonempty (New = infrared (new_targets)); 
   release (  
       split (New); frontal (Target) = VALUE; 
       cycle ( 
          visible (Target); update (Target); hop (DE);     
          if (try_shoot_verify (Target), done)); 
          hop (long_range_sensors); 
          cycle (  
             visible (Target); update (Target); 
             if (distsance (Target) > threshold, 
                 hop (upper_layer_shooters), 
                 hop (lower_layer_shooters)) 
             if (try_shoot_verify (Target), done)))); 
 
The advantages of this scenario are that it can be initially 
applied to any available system component, 
automatically creating distributed C2 infrastructure 
particularly oriented on the currently discovered targets 
and dynamic situations. The automatically created 
distributed system organization can also self-recover at 
runtime after indiscriminate damages to any system 
components mentioned above (due to fully interpreted, 
mobile, virus-like implementation of SGL in distributed 
networked spaces).  
 
7.2  Distributed Hostility Reconnaissance Scenario 

 
An SGL solution is presented below where distributed 
physical space is randomly searched by simultaneous 
propagation of multiple reconnaissance units, which 
when discover unwanted activities encircle hostile zones, 
collect their perimeter coordinates, transfer them to 
mission headquarters (HQ), and initiate massive impact 
on the zones. Close to initial and final stages of this 
scenario are depicted in Figs 26 and 27. 
 

 
 

Fig. 26. Initial development 
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Fig. 27. Encircling and impacting hostile zones 
 
move (HQ); create (1, 2, 3, 4, 5, 6); 
repeat ( 
  shift (random (limits));  
  if (check (fire), 
      (Zone = WHERE;  
        Direction = random (clockwise, anticlockwise); 
        repeat ( 
           move_around (fire, Direction, depth); 
           append (Zone, WHERE); 
           if (distance (WHERE, Zone [1]) < threshold,  
               (hop (HQ); impact (massive, Zone); done)))))) 
 
 
7.3 Distributed Objects Tracking by Mobile 
Intelligence 
 
SGT allows us to use distributed sensor networks as 
highly integral self-organizes systems discovering, 
tracing, analyzing and impacting single and multiple 
mobile objects on vast areas despite physical limitations 
of individual sensor nodes. 
 
Single Object Tracking in a Sensor Network 
 
For a single object moving through the controlled area 
(as in Fig. 28), the following program starting in all 
sensors catches the object it sees and then follows 
wherever it goes, if not seen from the current point any 
more (i.e. its visibility becomes lower than a given 
threshold).  
 

 
 

Fig. 28. Single object tracking 
 
frontal (Object, Threshold = 0.1); 
hop (all sensors); Object = search (aerial); 
visibility (Object) > Threshold; 
repeat ( 
      loop (visibility (Object) >= Threshold); 
      max_destination ( 
                hop (neighbor, all); visibility (Object)); 
      if (visibility (Object) < Threshold),  
          (output (Object & ‘lost’); stop))) 
 
Multiple Objects Tracking & Shooting 
 
The following SGL scenario dealing with multiple 
object/targets including their shooting (as in Fig. 29) 
operates as: 
 

 Each sensor is regularly searching for new 
targets. 

 Each new target is assigned individual tracking 
intelligence which propagates in distributed 
virtual space following the target’s movement in 
physical space. 

 If there are available shooters in the vicinity and 
shooting is allowed and technically feasible, a 
kill vehicle is launched against the target, 
decreasing the number of available kill vehicles 
in the region. 

 If the target is hit, it is removed form the 
observation. 
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Fig. 29. Multiple Objects Tracking  
 
Nodal (Seen);  
frontal (Object, Threshold = 0.1);  
hop (all sensors); 
whirl ( 
   Object = search (aerial, not_belong (Seen));  
   visibility (Object) > Threshold; 
   release ( 
      repeat ( 
         append (Seen, Object); 
         loop (visibility (Object) > Threshold;  
                  if ((hop (shoot_link); CONTENT > 0;  
                       allowed (fire, Object);  
                       shoot (Object); decrement (CONTENT);  
                        success (shoot, Object)),  
                      (withdraw (Object, Seen); done)));                   
         withdraw (Object, Seen); 
         max_destination ( 
              hop (neighbor, all); visibility (Object)); 
              if (visibility (Object) < Threshold),  
                  (output (Object & ‘lost’); stop)))))        
     
 
7.4  Swarm-Against-Swarm Scenario 
 
This describes a collective fight of a friendly unmanned 
swarm (consisting of “chasers”) against group target 
which can be another robotic swarm or a manned team 
(or mixed), as in Fig. 30. The following SGL scenario 
operates by the following rules: 
 

 Initial launch of the swarmed chasers into the 
targets area. 

 Forming targets priority list by their positions 
in physical space. 

 Highest priority is assigned to topologically 
central targets as potential command and 
control units. 

 Other targets are sorted by their distance from 
the topological center of the group. 

 The most peripheral targets are considered 
particularly dangerous too as having better 
chances to escape from chasers and cause 
damage. 

 Assigning available free chasers to targets, 
classifying them as engaged, and 
subsequently returning them back to status 
free (if were not destroyed themselves). 

 The vacant chasers are again engaged in the 
priority targets selection and impact. 

 All chaser swarm management is done 
exclusively within the swarm itself, without 
any external influence. 

 

 
 

Fig. 30. Swarm against swarm operation 
 

The scenario in SGL will look like follows: 
 
nodal (Targets, Aver, List, Chaser); frontal (Next); 
sequence ( 
  Initial launch (chasers, targets (Seen)), 
  repeat ( 
    hop (random, free chasers); 
    Targets = (hop (all free chasers);  
    seen (targets, coordinates)); 
    nonempty (Targets);  Aver = average (Targets); 
    List = sort (split (Targets);  
                      distance (VALUE, Aver) & VALUE); 
    List = append (withdraw (last, List), List);                                 
    loop ( 
      nonempty (List); Next = withdraw (first, List) : 2; 
      Chaser =  
         min (hop (all free chasers);  
         distance (WHERE, Next) & ADDRESS) : 2; 
      release (hop (Chaser); STATUS = engaged; 
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      pursue_shoot_verify (Next); STATUS = free))))  
 
Many more SGT applications in various areas can be 
found in existing publications on this approach [14-27]. 
  
8   Conclusions 
 
We have briefed a new type of ideology and resulting 
networking technology aimed at establishing global 
control and supervision of distributed systems with any 
electronic means of communication and data processing 
embedded.  
 
Within the technology developed, it is possible to 
describe in a special high-level language any local and 
global operations and control in both physical and virtual 
worlds and set up and supervise their behavior, including 
world’s modifications and initial creation. The approach 
also allows us to penetrate into other systems and their 
organizations, both friendly and hostile, analyze their 
internal structures and behavior and change them in the 
way required, as well as integrate with other local and 
global communication and management means while 
establishing powerful over-operability layer on top of 
them. 
 
On the implementation layers, SGT effectively employs 
replication and mobile code capability, allowing mission 
scenarios spread instructions, data and control in 
distributed worlds, spatially linking them with each other 
in a super-virus pattern-matching mode, effectively 
confronting other networking technologies, computer 
viruses including. Electronic communications between 
system components may be local, limited, unsafe, and 
changing at run time, but the self-spreading interpreted 
spatial scenarios may always survive and fulfill 
objectives. 
 
Applications of the technology offered may be numerous 
and in most diverse fields -- from network management 
to networked battlefields and future robotized combat 
systems. Also, taking into account the overwhelming 
world computerization, use of internet, billions of mobile 
phone users, the technology’s scalability and its virus-
like nature, it can help launch and supervise global world 
missions in a great variety of areas including 
environmental protection, education, demographics, 
economy, space research, security, and defense. 
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