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Abstract

The principles underlying this paper can be applied not only to C2I systems, but also to many
other complex structures, such as those involving medical, fault or configuration diagnoses and
analyses.

In short, a new relatively simple look-up table of formulas is presented which can be used as a
practical aid in C2 decision-making nodes for deducing conditional or unconditional conclusions
from (conditional or unconditional) premises in probability form.  This results from a recent
breakthrough yielding a new Cognitive Probability Logic -- or Logic of Averages.   This logic is
actually a natural weighting modification of Adams’ well-known High Probability Logic.
Consequently, a number of long-standing conflicts between ordinary probability logic and
“commonsense” reasoning are resolved for the first time, including the well-known transitivity-
syllogism problem.  These results are based upon completely rigorous universal second order
probability principles, together with use of the newly emerging field of product space
conditional event algebra.  Surprisingly, both disciplines are actually technically entirely within
the purview of classical logic and basic probability theory. Applications to linguistic-based
information can also be obtained by use of these techniques, together with one-point random set
coverage representations of fuzzy logic and an extension of product space conditional event
algebra, dubbed relational event algebra.

1. Introduction

1.1  Overall Objectives

The chief thrust of this paper is to provide the basis for a new decision-aid in the form of a
relatively simple look-up table of averaged probability values of conditional or unconditional
potential deductions (or conclusions) that a C2 node decision maker may consider, given a finite
set of conditional or unconditional premises.  However, as in many endeavors, it is equally
important to present both the skeletal derivation of certain of these results, and provide a
background on the controversy and progress involved in this area.  Detailed proofs, as well as
additional important results, will be given in [Goodman & Nguyen, b].
_________________________
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Among the key components in any C2 (or actually C4I) system are its decision nodes operating
on incoming information, which make interactive decisions with other nodes.  These take into
account the distributive and hierarchical nature of the overall system, as well as all relevant
geographical -- and even political -- constraints present.  Such incoming information may
typically arise from sensor-based sources, with uncertainties measured through probability
considerations or from human-based intelligence sources, possibly in linguistic form and
modeled through some combination of fuzzy logic or probability, for example.  It is obvious that
all such node-based decision making is crucially dependent upon the initial data screening and
data fusion aspects.  In particular, it is essential to be able to have a reasonably efficient, yet
mathematically / logically sound, method for dealing with deductions resulting from probability-
based premises.

1.2  The Basic Issue

In spite of the above remarks, surprisingly at first glance, there exists to this day, a large class of
simple-appearing probability-based premises for which commonsense or intuitive analysis, as
well as classical logic, yields deductions quite different from those obtained via the application
of standard probability techniques. One fundamental example of this will be given in Section 5.

This paper provides the beginning of a remedy to the above difficulty, utilizing, in tandem, two
newly developed mathematical tools – product space conditional event algebra (PSCEA) and the
use of second order probabilities (SOP).  In addition, these results can be further extended to
encompass linguistic-based information via two additional tools: one-point random set coverage
representation of first order fuzzy logic (RSC)-- in conjunction with fuzzy logic (FL), classical
logic (CL), and traditional probability theory (PL) -- and relational event algebra (REA).  All of
these tools enhance the scope of applicability of FL, CL, and PL to many classes of real-world
problems, previously either ignored or only superficially treated.  Because of space limitations,
for completeness only the essential aspects of RSC and REA are provided.  A basic reference,
detailing use of RSC and REA in treating linguistic-based deductions, is detailed in [Goodman &
Nguyen, a].

2.  Notation and Some Basic Relations

This paper depends in a key way on the fundamental identification, beginning with the Stone
Representation Theorem, of propositional calculus – and in fact, aspects of its further
development into first and higher order predicate calculus, all part of CL – with (concrete)
boolean algebras of events or sets and their metalevel extensions.  For background on the basic
theory of CL (as well as even a separate Chapter on basic PL) see, e.g., [Copi, 1986]; for
applications, see, in addition to the Copi reference, [Bergmann et al., 1980], [Oesterle, 1963],
and [Neblett, 1985].  (The last reference, combines use of CL with induction and empirical
approaches, but avoids probability.)  For boolean algebra(s) and the Stone Theorem, the reader
should consult, e.g., [Mendelson, 1970].  Although the identification between CL and boolean
algebra concepts has been known for a long time, the two areas for the most part have developed
separately – with separate notation and concepts.  Thus, in this work, references at times will be
relative to the literature of CL, while at other times to boolean algebra and related disciplines.



Throughout this work we employ certain symbols to indicate generic and special events (or sets
or propositions): lower case letters near the beginning of the roman alphabet, with or without
subscripts, such as a, a1, b, b2, c, d, for generic events; ∅ for the null event; Ω for the universal
event (a relative usage).  In addition, we use particular symbols to indicate specially designated
boolean operators and relations, including: &, or absence of any symbol when no ambiguity
arises, for conjunction (or intersection or “and-ing”) of events; ∨ for disjunction (or union or “or-
ing”) of events; prime as in a′ for negation (or complement) of event a relative to Ω.  Μore
generally, the event difference between say a and b is indicated by a-b, which is the same as ab′,
i.e., a-b = ab′, whence we also have a′ = Ω-a.  In addition, event inclusion or partial ordering is
indicated by the same standard symbol for numerical partial ordering ≤.  So, a ≤ b is the relation
that a is a subevent (or subset) of b.  Thus, we always have ∅ ≤ a ≤ Ω.  Also, a < b indicates a is
a proper subevent of b, i.e., a ≤ b, but not (a = b), i.e., a ≠ b.  On the other hand, when dealing
with classes or collections of events – usually indicated by capital letters (which may or may not
be italicized to indicate some additional property -- see below) near the beginning of the
alphabet, with or without subscripts – such as A2 = {a, b, c4} or B = {b1, b2,…}, we employ the
notations A2 ∩  B, A2 ∪ B, to indicate, the classes resulting from the intersection and union of
the classes A2 and B, respectively.  If, say,  class A = {c, d, …} is a subclass of class C = (a, b, c,
d,…}, we write A ⊆ C.  If the relation is proper, then analogous to the event level, we write A ⊂
C, etc.  The italicized capital letter B – with or without subscripts -- is reserved for either a
boolean algebra or sigma algebra of events.  (Recall that the former is a class of events closed
under all finite applications of conjunctions, disjunctions and negation, while the latter is
similarly closed under both finite and countable infinite applications of such operators.)

We indicate a probability space by the triple (Ω,B,P), where Ω (as well as ∅) are in B and, using
functional notation, P:B→[0,1] is a probability measure over B.  P (or P(.)) may or may not have
subscripts, depending on the situation and P(a|b) = P(ab)/P(b) indicates, as usual, the conditional
probability of a given b, provided P(b) > 0.  In addition, we reserve the double arrow symbol ⇒
to indicate the binary boolean operator known as the material conditional, whereby for any
events a, b (usually in some common boolean algebra B),

b⇒a = b′ ∨ a = b′ ∨ ab,     (2.1)

(the second equality holding by the law of absorption).  The material conditional is one basic
way classical logic interprets the natural language conditional expression “if b, then a”. For
background on the use of the material conditional operator – as well as a number of “paradoxes”
connected with it, see, e.g., [Copi, 1986] and [Bergmann et al., 1980]. It follows immediately
from eq.(2.1) that the probability evaluation of the material conditional is

                     P(b⇒a) = P(b′) + P(ab) = 1-P(b) + P(ab) = 1-P(a′b).     (2.2)

Recall that one fundamental connection among conditional probability, the probability of the
material conditional and subevent ordering is that for any a, b in Ω with P(b) > 0,

  P(a|b) = 1   iff    P(a′b) = 0  iff  P(b ≤ a) = 1 (slightly abusing notation) iff  P(b⇒a) = 1.       (2.3)
One other important relation among the material conditional, conditional probability, and
conjunction is provided in the easily proven (but not that well-known) relation [Goodman et al.,
1997]



    P(b⇒a) = P(a|b)  +  P(a′|b)P(b′)  ≥  P(a|b)  =  P(ab)  +  P(a|b)P(b′) ≥  P(ab),            (2.4)

where it is assumed that P(b) > 0.  Strict inequality holds in general, in place of the right and left
≥ relations.  Equality holds on the left side of eq.(2.4) iff  [P(b) = 1  or  P(a|b) = 1].  Equality
holds on the right side iff [P(b) = 1 or P(ab) = 0].

Two other special binary boolean operators should be mentioned: the boolean symmetric sum (or
difference) ∆, defined as

a∆b = a′b  ∨  ab′,     (2.5)
with probability evaluation

    P(a∆b) = P(a′b)  +  P(ab′) = P(a) + P(b) – 2P(ab),   (2.6i)
whence

P(a∆b | a∨b) = (P(a) + P(b) – 2P(ab)) / (P(a) + P(b) – P(ab)),            (2.6ii)

etc.  The double conditional or biconditional ⇔ defined as
                  a⇔b  = (b⇒a) & (a⇒b) = ab  ∨ a′b′  = (a∆b)′ ,     (2.7)

with probability evaluation

P(a⇔b) = P(ab) + P(a′b′) = 1-P(a∆b) = 1-P(a)-P(b) +2P(ab).     (2.8)

We usually make the identifications
[P(a = b) = 1] iff  [P(a≤b) = P(b≤a) = 1] iff P(a⇔b) = 1 .     (2.9)

The evaluations  P(a∆b)  and P(a∆b | a ∨ b) as functions of events a and b in B are legitimate
(pseudo)metrics over B.  See [Kappos, 1969, Chapter 1] for use of the first; see [Goodman et al.,
1997, Part III] for use of both metrics and additional background and applications to determining
measures of similarity, as well as testing of hypotheses of similarity of events. Cartesian product
of events is indicated by ×, with the superscript j as in bj×c meaning the iterated cartesian product
b×...×b×c (j b-factors) with b0×c interpreted as c.  In addition, the following multivariate notation
will be employed throughout: Finite (nonvacuous) index sets will be usually denoted as J, K, or
L, with or without subscripts.  Given a collection of events aj in B, for given boolean algebra B, j
in J: aJ denotes the family of events (aj)j in J; &(aJ) denotes &(aj) ; ∨(aJ) denotes ∨(aj); &(b′)J

    j in J                         j in J

denotes &(bj′); (ab)J denotes (ajbj)j in J
 ; (ab, b)J denotes (ajbj, bj)j in J, etc. More generally, any finite

                   j in J

well-defined combination of boolean (or CL) operators &, ∨, (.)′, applicable to any collection of
events aJ indexed by J, is denoted generically as comb(&,v,(.)′;J) (not depending upon any
particular aJ) with corresponding event formation comb(&,v,(.)′;J)(aJ) , or more simply,
comb(&,v,(.)′)(aJ) in B.  In a similar vein, given aj, bj in B, j in J, &(b⇒a)J denotes
&(bj⇒aj),  ×(aJ) denotes ×(aj),  aJ ≤ bJ  denotes (aj ≤ bj, j in J), etc.       j in J

j in J

Other special symbols will be introduced as needed.



3.  Executive Summary of  the Key Mathematical Tools

First, note that FL, beginning with [Zadeh, 1965, 1975], has grown to become an important
alternative to the use of PL in modeling many real-world situations, being especially valuable in
capturing the essence of linguistic-based information (essentially initiated in [Zadeh, 1978a,b]).
While Zadeh originally considered only the fuzzy logic conjunction, disjunction operator pair
(min, max), later he and others realized the worth of the alternative operator pair (prod,
probsum), and other classes of operator pairs, as well, where “prod” is ordinary product and
probsum is the DeMorgan transform of prod. (See, e.g., [Goodman & Nguyen, 1985, Chapter 2]
for more details.)

3.1  PSCEA

3.1.1  Introduction to CEA

Given any probability space (Ω,B,P), with P arbitrarily variable, conditional event algebra (CEA)
is an attempt at providing (1) a rigorous and systematic interpretation  of the natural language
conditional statements “if b, then a”, denoted for simplicity as (a|b), with a denoted as the
consequent and b as the antecedent of (a|b), for any a, b in B and (2) obtaining the probability of
any finite boolean operator combination of such conditional statements, when the statements
individually are naturally evaluated as corresponding conditional probabilities. Certainly, if the
probabilities of the conditional statements are not interpreted as conditional probabilities, but as
the probabilities of the material conditional, then one can readily obtain – at least theoretically –
any desired finite combination of boolean operators, such as conjunctions, disjunctions or
negations.  This is because all such operations applied to material conditional forms in B remain
in B and are determined and/or simplified according to the usual laws of boolean algebra.  In
turn, one can then evaluate the probability of any such combination – again, at least theoretically,
if one knows all required contributing probabilities of its components.  However, inspection of
eqs. (2.2) and (2.4) easily shows that a great discrepancy exists between the probability of the
material conditional and the corresponding conditional probability evaluation, whenever the
antecedent has a small probability value.  In fact, for this range of antecedent probability values,
the value of the overall material conditional form P(b⇒a) is close to unity, and hence also close
to its “opposite” conclusion probability P(b⇒a′).  On the other hand, no matter how small the
value of the probability of the antecedent, one always has the simple – but critical – relation

P(a′|b) = 1-P(a|b)     (3.1)

which nontrivially depends on the ratio of P(ab) to P(b).  Other, more logical / algebraic
objections (or “paradoxes”) to the use of the material conditional operator can be found, e.g., in
[Copi, 1986], though if one goes no further than employing the material conditional in a logical
context only – with no probability evaluations – it appears as a reasonable interpretation of
conditioning.

In a natural sense, no such issue arises when the antecedents of all events for a given problem are
restricted to be identical, such as symbolized as (a|b), (c|b), (d|b),…, since in that case one can



replace the original probability space by the conditional probability – or trace -- space (Ω, B, Pb),
or actually equivalently, (b, Bb,Pb), assuming P(b) > 0, where

             Βb = {cb: c in B}, Pb  = P(. |b) (conditional probability for b fixed).     (3.2)

Then, all issues involving (a|b), (c|b), (d|b),…. with respect to P reduce essentially to
corresponding ones involving  ab, cb, db,… with respect to Pb .  On the other hand, often in real-
world problems, the antecedents of conditional expressions change within a given problem.  Of
course, if, e.g., they change in a particular patterned way, we may not need to introduce any new
concepts, such as in the computation of P(ac | b) from knowledge of P(a | bc) and P(b|c) because
of the chaining relation

                            P(ac | b) = P(a | bc).P(c|b).     (3.3)

However, often the antecedents of conditional expressions in a given problem differ in a way that
cannot be treated by purely numerical techniques, such as the use of chaining in eq.(3.2) or by
related properties of conditional probabilities. For example, one basic motivation for attempting
to develop CEA (in general, many such can exist) is to be able to compare, in a universally
systematic and quantitative manner, similarity and differences of inference rules whose validity
is interpreted via naturally associated conditional probabilities.  This is because of the following
analogy extended to conditional probabilities: Given a and b in B, a basic way to compare them
for similarity in terms of P is via any of the probability metrics P(.∆..) or P(.∆..| . ∨..) described
in eq.(2.6).  Note, however, that the full evaluation of these metrics depends on not only knowing
the individual probabilities P(a), P(b), but also in a critical way, knowing the conjunctive
probability P(ab). Even for this simple case, where a, b, ab all lie in B, if ab is not available, or
even if ab is known, but P(ab) is not obtainable, then the metrics cannot be completely
determined.  All of the above is applicable to the situation where a and b are themselves actually
some finite combination of other events e1, e2, e3, f1, f2, f3 in B, such as a = e1 ∨ e2, b = f1 ∨ f2, c =
e1 ∨ e3, b = f1 ∨ f3, etc.

Now, consider two inference rules, say,

R1 = “if it snows or temperature is below 30 degr.F, then enemy will attack in Sectors A or B”,
R2 = “if it snows or temperature is between 20 and 45 degr.F, then enemy will attack in  Sectors
          B or C”.           (3.4)
Denoting the relevant  events in B, part of probability space (Ω,B,P),
     f1 = “it snows”,   f2= “temp. ≤ 30 degr.F”,   f3= temp. is between 20 and 45 degr. F,
     e1 = “enemy attacks in Sector A”,   e2 = “enemy attacks in Sector B”,
     e3 = “enemy attacks in Sector C”,     (3.5)
then

a = e1 ∨ e2 ,      b = f1 ∨ f2  ,     c = e2∨ e3 ,      d = f1 ∨ f3 ,      (3.6)

and it is reasonable to interpret symbolically
R1 = (a | b) ,   R2 = (c|d).     (3.7)

Furthermore, assume we can obtain the evaluation of P for all of the individual events ei, fj, as
well as for some some collection of boolean operators among them (conjunctions, disjunctions,



negations, and certain combinations of such), with the conditional probability compatibility
conditions

P(R1) = P(a|b) ,  P(R2) = P(c|d).     (3.8)

This may possibly abuse notation, in that R1, R2 may very well lie in some space Bo properly
containing B and require extending the original P to some Po.   Suppose we can extend eq.(2.6)
somehow in a natural sense so that the ordinary events a and b there are replaced by inference
rules (a|b), (c|d), we must to be able to compute not only P(a|b), P(c|d), but also P((a|b)&(c|d)) --
or, if need be, Po((a|b)&o(c|d)), where &o is some extension of ordinary conjunction to Bo. In
order to compute such conjunctive probability computations, it is hoped that Bo will be such that
(a|b)&o(c|d)) in Bo is sufficiently simple that Po((a|b)&o(c|d)) requires only a finite (and
hopefully, relatively small) number of computations involving P applied to certain combinations
of boolean operators applied to the antecedents and consequents a,b,c,d – and hence the ei and fj

-- in B.
Happily, such CEA indeed exist and allow us to address the above – and many other types – of
problems.  (See [Goodman et. al., 1999] for this, as well as a number of other motivating issues
behind the use of CEA.  See [Goodman et al., 1997, Part III] for more details on not only the
practical implementation of the above problem on comparison of inference rules, but when a
form of CEA (PSCEA) is employed in conjunction with the use of SOP (see Sections 3.1.2 and
3.4 for some background on SOP as utilized here) an extension to actual formal testing of
hypotheses for sameness vs. distinctness can be achieved.

More formally, a CEA is a pair of mappings ((.|..),τ), where for any (B,P) as above, we denote
for simplicity, τ(B,P) = (Bo,Po) (with Bo not dependent on any P or Po) and any a,b,…, aj,bj,... in
B, conditional event (a|b) in Bo , where, in general the collection of all first order conditional
events {(a|b): a, b in B} may or may not be a proper subclass of Bo, such that:

(1) Bo is a set with an algebraic structure (not necessarily itself boolean) which has
formal counterparts of all of the boolean (or CL) operators &, ∨, (.)′,… over B, which
for convenience are also denoted by the same symbols -- unless there is a problem of
ambiguity, in which case appropriate subscripts are attached.  All conditional events
(a|b) lie in Bo, with (a|b) identifiable with (ab |b).

(2) The relation a ↔ (a|Ω), for all a in B, is an isomorphic imbedding of B into Bo.
(3) For each choice of P, there is an extension Po:Bo → [0,1] such that the compatibility

relation holds:
Po((a|b)) = P(a|b), for all P, provided P(b) > 0.     (3.9)

Thus, assumptions (1)-(3) imply that, for any finite well-defined combination of boolean
operators &, ∨, (.)′, over B, and hence comb(&, ∨, (.)′;J) over B, the operator counterparts over
Bo when applied to a finite collection of conditional events (a|b)J = (aj|bj)j in J, for any aj, bj in B ,
and hence (aj|bj) in Bo, j in J, have well-defined counterparts, comb(&, ∨, (.)′)((a|b)J), in Bo.  In
turn, Po(comb(&, ∨, (.)′)((a|b)J)) can then be fully evaluated.  In conjunction with this, a
reasonable additional property to require any CEA to satisfy is that

(4) For any J and any comb(&, ∨, (.)′; J)), there exist finite index sets L, Ki and operator
combinations comb(&, ∨, (.)′;Ki) , i in L, and finite well-defined combination of any

or all of the four basic arithmetic operators, G(.,+,-,./..;L), with all of these quantities,



in general, dependent upon comb(&, ∨, (.)′; J)), such that for any finite collection of
first order conditional events (a|b)J as above,

           Po(comb(&, ∨, (.)′)((a|b)J)) = G(.,+,-,./..;L) ((P(comb(&, ∨, (.)′)((ab,b)Ki)))i in L).    (3.10)

That is, we can obtain the evaluation of the probability extension of any finite boolean operator
combination of conditional events as a finite combination of arithmetic operators acting upon
finite boolean combinations of ordinary events consisting of the antecedents and consequents of
the conditional events in question.  Obviously, it is desirable not only for (4) to hold, for any
given J, but for index sets L and Ki, i in L, to be as small as possible and for G to be as simple as
possible.

3.1.2  PSCEA and Related CEA’s

PSCEA is a further development of earlier non-boolean-structured algebras or logics of
conditionals that are compatible with corresponding conditional probability evaluations– also
called conditional event algebras (CEA’s). These non-boolean CEA’s are all related
isomophically to some corresponding three-valued logic.  Conversely, a fundamental theorem
shows that any three-valued logic is isomorphic to some corresponding CEA [Goodman et al.,
1991b]).

First, and foremost, Adams’ partially developed a CEA [Adams, 1975] in the sense that he did
not specify what the underlying space was that contained the conditional events, but did specify
the negation, conjunction-like and disjunction-like operators (as well as other ones, not
considered here).  The purpose of introducing, in effect, this CEA by Adams was to characterize
in a complete algebraic sense his high probability deduction scheme of which we will elaborate
on later (see Section 4 et passim). Independently, some years later, Calabrese [Calabrese, 1987,
1994] considered the same operators, as Adams, but (unlike Adams) developed a full CEA with
explicit interpretations for the conditional events involved, as well as postulating that all second
order conditional events – i.e., conditional events with antecedents and consequents themselves
being conditional events -- could be identified as first order conditional events.  The non-boolean
conjunction-like or (as Adams has dubbed it) “quasi-conjunction” operator &AC and its
DeMorgan dual ∨AC (or “quasi-disjunction”) operator play a crucial role in deduction, both
possessing certain similarities, yet critical differences, with respect to the corresponding natural
boolean conjunction and disjunction operators of PSCEA.  &AC and ∨AC -- together with the
universal negation operator valid for essentially any (non-intuitionistic) three-valued logic of
interest --

   (a|b)′ = (a′|b) = (a′b | b) , all a, b in B,   (3.11)

correspond isomorphically to Sobocinski’s three-valued logic [Rescher, 1969].

Another non-boolean approach to CEA based initially upon the interpretation of conditional
events as cosets in a union of quotient boolean algebras – or equivalently, as appropriately
determined intervals of events with corresponding operators being functional image extensions
of the ordinary boolean operators acting upon unconditional events – is provided in [Goodman et
al., 1991b, 1991c], the special issue of IEEE Transactions on Systems, Man & Cybernetics
[Dubois et al., 1994]. Apropos to this CEA, we use the subscript DGNW (apropos to  the



originators of this CEA, including initially B. DeFinetti in the 1930’s who first realized its
isomorphism with a corresponding fragment of Lukasiewicz’ three-valued min, max logic
(again, see [Goodman et al., 1991b] for a history of this CEA).  We will see that a basic
imbedding of both the AC and DGNW CEA’s into PSCEA plays a natural role in probabilistic
deduction.

PSCEA – unlike its predecessors -- now permits us to represent any simple or compound
conditional expression in a legitimate boolean (or sigma) algebra of conditional events.  In
general, this boolean algebra and associated probability space do not coincide with the boolean
algebra and probability space in which the initial (relative) unconditional events making up the
antecedents and consequents of the conditional expressions lie.  In fact, the resulting probability
space containing the desired conditional events is the countable infinite cartesian product
probability space formed from the original probability space connected with the unconditional
events, all of whose factor or individual marginal spaces are identical to the initial probability
space, a standard type of construction in probability theory [Neveu, 1965, Section III.3 et
passim]. Moreover, a well-known result (Lewis’ Triviality Theorem – see [Lewis, 1976], as well
as later results in [Eells & Skyrms, 1994]) precludes, in general, the spaces from being the same.
The conditional events themselves in the product probability space are simply the algebraic
counterparts of the power series expansions of arithmetic divisions, with complements playing
the role of subtraction, disjoint disjunctions the role of addition, and cartesian products playing
the role of products and (when reiterated) powers.  Also, this space contains natural isomorphic
probability-preserving imbeds of all of the original unconditional events. Independent of the
investigations of Goodman & Nguyen, earlier Van Fraasen [Van Fraasen, 1976] derived
preliminary results for PSCEA.  Later, independent of Van Fraasen, Goodman, and Nguyen,
McGee, via a game-theoretic approach (without obtaining the space and events explicitly)
obtained the PSCEA conjunction operator  (see [McGee, 1989] and an extension of his technique
in [Goodman & Nguyen, 1995]).

In turn, all of the standard laws of boolean algebra and probability can then be applied to such
conditional events – much as standard probability has been applied to unconditional events and
logical operators and relations among them – but with an additional number of calculations
involved that can grow exponentially as the number of arguments increase.  Nevertheless, all
finite logical combinations of conditional events of PSCEA can be put in finite “closed-
computable” form.  (For expositions on PSCEA, see, e.g., [Goodman & Nguyen, 1995],
[Goodman et al., 1997, Part III], and [Goodman & Kramer, 1997].)

One basic application of PSCEA– as utilized in this paper -- is its use as a rigorous basis for
uniting, for the first time, classical deductive logic, commonsense reasoning, and probability
logic (see Section 6).   Another use of PSCEA (see also the example at the beginning of Section
3.1.1) is to compare in a universal quantitative manner similarity and differences of inference
rules whose validity is interpreted via naturally associated conditional probabilities. This also
makes use of the tool SOP to be explained below and the fact that all probability spaces can be
made into (pseudo-)metric spaces using relatively simple unconditional and conditional
probabilities involving the boolean symmetric sum operator – as considered, e.g., in [Kappos,
1969, Chapter 1]. For additional background, history, and applications of PSCEA, see, e.g.,



[Goodman & Kramer, 1997], [Goodman et al., 1997, Part III], [Goodman, 1998a], and
[Goodman & Nguyen, 1998].

Summarizing here only the barest properties, for any a, b, c, d,…  in B, for given probability
space (Ω,B,P) and countable infinite product probability space derived from it, (Ωo,Bo,Po), where

Ωο = Ω×Ω×... ,   (3.12)

conditional events (a|b), (c|d),… in Bo, where, e.g., (a|b) is defined directly and recursively and,
provided P(b) > 0, evaluated as

   +∞             +∞

(a|b) = (ab | b) = ∨ (b′)j× ab × Ωο  = (ab × Ωο)  ∨  (b′×(a|b)) ;  Po((a|b)) = ∑ (P(b′))jP(ab) = P(a|b).
    j=0              j=0

  (3.13)
We call any conditional event (a|b)  nontrivial (or proper) iff  ∅ < a < b, where  b may or may
not be Ω. Ιf b = Ω, there is the natural identification (isomorphic probability preserving
imbedding) of unconditional event a in B with (a|Ω) in Bo.  But, again, note that they are not
identical and Lewis’ Theorem is respected.  (In fact, this issue is discussed in detail in [Goodman
et al., 1997], p. 395.)  Then, for any P and a, b, c, d in B, with P(b) > 0, where required,
indicating all boolean operators and relations extending the usual ones for (Ω,B,P) to (Ωo,Bo,Po)
by the same symbols, when unambiguous,

          a ↔  (a|Ω) = a×Ωο , P(a) = Po((a|Ω)).               (3.14)
                  (a|b) = ∅o  = (∅ |b) iff  ab = ∅ ;       (a|b) = Ωο = (b|b) =(Ω|Ω)  iff  a ≥ b >  ∅.    (3.15)

 (a|b)′ = (a′|b) = (a′b | b) , Po((a|b)′) = 1- P(a|b) = P(a′|b) ,   (3.16)
(a|b)&(c|d),  (a|b) ∨ (c|d) in Bo ,   (3.17)

Po((a|b)&(c|d)) = [P(abcd) + (P(abd′)P(c|d)) + (P(cdb′)P(a|b)] / P(b ∨ d) ,   (3.18)
           Po((a|b) ∨ (c|d)) = P(a|b) + P(c|d) - Po((a|b)&(c|d)),   (3.19)

Po((a|b) | (c|d)) = Po((a|b)&(c|d)) / P(c|d) , etc.   (3.20)

If a, b, c, d in B arbitrary such that (a|b), (c|d) are nontrivial, then:
(a|b) ≤ (c|d)  iff   (a|b)&(c|d)′ = ∅  iff [(a|b) = (a|b)&(c|d) ]  iff (c|d) = (a|b) ∨ (c|d)
                     iff   [ ab ≤ cd   and  b⇒a  ≤ d⇒c ] iff [ ab ≤ cd   and  a′b  ≤ c′d ]
                     iff   [P(a|b) ≤ P(c|d), for all (well-defined) P ] ,   (3.21)

(a|b) = (c|d)  iff   [(a|b) ≤ (c|d)  and  (c|d) ≤ (a|b)]  iff  (a|b)&(c|d) = (a|b)∨(c|d)
                     iff   [ ab = cd   and  b = d ]
                     iff   [P(a|b) = P(c|d), for all (well-defined) P ].               (3.22)

Many other important properties hold, as well as full algebraic characterizations (again, see
above-cited references).  Other critical properties, used as the basis for deduction investigations
within the framework of PSCEA are provided in later sections of this paper.

Consider now the imbedding of the non-boolean AC and DGNW into PSCEA.  Though these
operators in their original setting were all commutative, associative DeMorgan, and well-defined
over all of the conditional events they acted upon, due to the boolean structure of Bo – especially
using eq.(3.15) -- a discrepancy exists between these operators acting in their original spaces and



acting over Bo, even in imbedded form. (See [Goodman & Nguyen b] for a more complete
analysis.)  However, this can be completely remedied for our purpose here:  These operators will
defined in a non-associative way for each number of arguments separately and restricted to only
nontrivial first order conditional event arguments in Bo. Eq.(3.22) guarantees that this produces
well-defined operators for all four conjunction and disjunction AC and DGNW operators relative
to Bo.  Let us denote the class of first order nontrivial conditional events in Bo as Bo* .  Hence, for
any finite index set J, &AC, ∨AC, &DGNW, ∨DGNW: (Bo*)J→ Bo are now all well-defined and
formally the same operators as in their original context with the exception of the identifications
of eq.(3.15), needed for Bo.  In addition, we can also obtain in recursive form the full evaluations
algebraically and probabilistically of PSCEA &, ∨: (Bo*)J→ Bo ,as well as their extrensions to all
of Bo

J.   Using multivariate notation introduced earlier, for arbitary ∅ < aj < bj in B, j in J, where
now (a|b)J indicates (aj|bj)j in J , etc., first define

          α((a,b)J,K) =   &(b′)J−Κ & &aK ,                            (3.23)

α((a,b)J) =  ∨(α((a,b)J,K)),               (3.24)
                         ∅≠K⊆J

     αο((a,b)J) =  ∨(α((a,b)J,K) × &(a|b)J-K ).   (3.25)
              ∅≠K⊆J

Next, using eqs.(3.23), (3.24), define and derive for  &AC:(Bo*)J→Bo ,
&AC(a|b)J = (&(b⇒a)J | ∨ (bJ))  = (α((a,b)J) | ∨ (bJ) ) ,   (3.26)

with evaluations
Po(&AC(a|b)J) = P(α((a,b)J) | ∨ (bJ) ) = P(α((a,b)J)) / P(∨ (bJ)),   (3.27)

   P(α((a,b)J)) =  ∑ P(α((a,b)J,K)).               (3.28)
                   ∅≠K⊆J

Note that we can also determine recursively the full general form in Bo of the PSCEA
conjunction of any finite number of first order conditional events by extending the recursive
form in eq.(3.13) (see eq.(3.30) and straightforward combinatorics involving the cartesian
products (see also, e.g., [Goodman & Nguyen, 1995]):

&(a |b)J =  [αο((a,b)J)  | 
 ∨ (bJ)].   (3.29)

The notation [α |b] for any b in B and α in Bo stands for the analogue of the direct definition in
eq.(3.13), but formally replaces a in B by α &(b×Ωο) in Bo:

 +∞

[α |b] = ∨ ((b′)j × (α &(b×Ωο)))  =  α&(b×Ωο)   ∨  (b′×[α|b])   in Bo,                        (3.30)
 j=0

yielding
        Po([α |b]) = Po(α &(b×Ωο)) / P(b)  = Po(α|b×Ωo).   (3.31)

Then, the recursive evaluation  of eq.(3.29), using  eqs.(3.30), (3.31) yields
Po(&(a |b)J) =  Po(αο((a,b)J)) /  P(bJ) ,   (3.32)

Po(αο((a,b)J)) =  ∑( P(α((a,b)J,K)).Pο(&(a|b)J-K ).   (3.33)
                  ∅≠K⊆J

Note the close analogy of forms between &AC and PSCEA &: formally speaking, &AC is the
same as (PSCEA)& with all cartesian product factors omitted.  But this difference is enough to
make the former non-boolean, while the latter is boolean.  This also immediately shows  &AC



always dominates & in size.  Since ∨AC is defined as the DeMorgan transform of &AC, it readily
follows, using eq.(3.26) that

                ∨AC(a|b)J =  (∨(a)J | ∨ (bJ)),   (3.34)
with evaluation

Po(∨AC(a|b)J) = P(∨(a)J | ∨ (bJ)).   (3.35)

Analogously, ∨(a|b)J and Po(∨(a|b)J) can be obtained; the latter, e.g., via the usual Poincaré
alternating sign expansion, and dually, ∨ΑC becomes dominated by PSCEA ∨.

Next, we consider &DGNW:(Bo*)J→ Bo , where, for any (a|b)J in (Bo*)J, the above-cited references
show

&DGNW((a|b)J) = (&(aJ) | ∨(a′b)J) ∨ (&(aJ)),   (3.36)
with DeMorgan transform

∨DGNW((a|b)J) = (∨(aJ) | &(a′b)J) ∨ (∨(aJ)),   (3.37)

and with straightforward probability evaluations.  Additional ordering properties involving
PSCEA &, ∨, and the imbedding of  &AC, ∨AC, &DGNW, ∨DGNW with respect to PSCEA ordering
are shown in Section 4.

3.2  RSC

The field of RSC began in the mid 1970’s to 1980’s with the realization that a fundamental link
exists between FL and PL via random sets, with emphasis on nested or level random sets (see,
e.g., [Orlov, 1978], [Nguyen, 1979], [Goodman, 1981], [Höhle, 1981]). In a related direction,
around the same time, non-random (isomorphic) counterparts between fuzzy sets and collections
of level sets were pointed out in [Negoita & Ralescu, 1975]; but little progress has taken place
beyond these original ideas. In a somewhat different, but non-probabilistic, direction, a possible
alternative to the representation of certain FL concepts via RSC may well lie in generalized
techniques based upon traditional interval analysis (such as originally exposited in [Alefeld &
Herzberger, 1983]), typified by [Aubin & Frankowska, 1990].

Prior to the development of RSC, emphasis on the use of random sets  -- which are no more than
actually set-valued random quantities – was focused overwhelmingly in the obvious area:
geometry and pattern recognition.   To this day, this still remains a chief area of activity.  (To see
this, peruse, e.g., through the earlier monographs of [Kendall & Moran, 1963], [Harding &
Kendall, 1974], [Matheron, 1975], and [Ripley, 1981], and the more recent works of [Stoyan &
Stoyan, 1995], [Goutsias et al., 1998].)

However, by extending the scope of random sets beyond random rectangles, circles, and even
numerical ranges, to truly general set-valued forms, it is seen that there is one basic function
associated with the local behavior of any random set – namely, its one-point coverage function,
i.e., the probability of the coverage event that any arbitrary, but fixed, point is covered by (or is
in) the random set.  This plays a role in partially specifying a random set, analogous to the role
expectation plays in partially specifying a random variable or random vector.  If one’s
knowledge of a random set extends beyond its one-point coverage function to its (arbitrary, but
fixed) two-point coverage function,…, and in fact to its (arbitrary, but fixed) set coverage



function, this is indeed the well-known Dempster-Shafer doubt function, which, under mild
assumptions, uniquely characterizes the random set in question. See, e.g. [Shafer, 1976],
[Nguyen, 1978], and [Goodman & Nguyen, 1985, Chapters 3-5] for a further general exposition
on this area, as well as relations to Choquet’s earlier work [Choquet, 1954] on infinite capacities,
and the similar, but distinct, Dempster-Shafer belief and plausibility functions, the knowledge of
either also fully characterizing the corresponding random set.  These quantities, as well, serve as
natural lower and upper bounding functions on the induced probability measure under a
particular function of a random variable when the actual range values of that function are only
known up to being in prescribed events (rather than being actual points) [Dempster, 1967]. (See
also a generalization of this in [Walley, 1991].)

On the other hand, the relatively weak knowledge of the one-point coverage function of any
random set is just sufficient in many situations to construct a natural bridge (i.e., a
homomorphic-like relation) between fuzzy logic concepts and corresponding probability ones.
The following summary of results is fully documented in [Goodman & Nguyen, 1985, 1999],
[Goodman, 1994, 1999], [Goodman et al., 1997, Part III], and [Goodman & Kramer, 1997]:
In brief, compatible with the above comments, it can be demonstrated that any random subset of
a finite set  (with obvious modifications for the extensions of the result to the infinite set
situation) is uniquely determined by two quantities: its one-point coverage function and some
appropriately chosen copula, i.e., joint cumulative distribution function (cdf) over the unit n-cube
all of whose marginal cdf’s are uniform ones over the unit interval.  (For background on copulas,
see, e.g., [Goodman & Nguyen, 1985, Chapter 2], [Sklar, 1973], [Schweizer & Sklar, 1983], and
[Dall’Aglio et al., 1991].)  Noting that the one-point coverage function of any random set is also
a fuzzy set (membership function), the above result demonstrates that any random subset of a
finite set is partially specified by an appropriate (and uniquely corresponding) fuzzy set over its
domain, and also by choosing an appropriate copula, it is fully determined by both.  Conversely,
it can be shown that any choice of fuzzy set membership function over a finite domain and any
choice of copula, produces a uniquely corresponding random subset of that domain whose one-
point coverage function matches the given fuzzy set.  Because, for a given fuzzy set, any copula
can be chosen generating a random set satisfying the last statement, and that in general, distinct
copulas produce distinct random sets, a full many-to-one natural relation exists between random
sets and fuzzy sets.  Moreover, all of the above results can be extended to establishing a many-
to-one (one-point coverage) relation between any finite collection of fuzzy sets over finite
domains and appropriate joint collections of random subsets of those domains.

In turn, for any choice of copula and corresponding cocopula (the DeMorgan dual of the copula
– e.g., see again [Goodman & Nguyen, 1985, Chapter 2]), leading to a corresponding FL
conjunction and disjunction operator pair, the above one-point coverage relations between fuzzy
sets and random sets can then be augmented to homomorphic-like relations between such fuzzy
logic operators separately and corresponding CL operators acting upon one-point coverage
events resulting from the random sets involved. (For an explanation of this term and
documentation of these results, again see the above Goodman & Nguyen and Goodman &
Kramer references.)  It should be noted at this point that the FL operator pairs (min, max) and
(prod, probsum) are also copula, cocopula pairs. By appropriately restricting the class of copulas
and corresponding cocopulas – which still includes (min, max) and (prod, probsum), these RSC
relations may be further extended to represent in a homomorphic-like sense through random sets



arbitrary finite combinations of well-defined (and requiring non-repeatable arguments for the
choice of (prod, probsum)) fuzzy logic conjunction and disjunction operators.

The above RSC relations can be specialized to a wide variety of well-known FL concepts,
including: Zadeh’s now universally used “extension principle” (the fuzzy logic counterpart of
probability theory’s propagation or transformation of errors / randomness  - see, e.g. the texts of
[Dubois & Prade, 1980] and [Nguyen & Walker, 1997] for background); a new approach to
defining conditional fuzzy sets which extend the PSCEA approach to conditional events; and, in
conjunction with REA (see below), fuzzy logic modifiers can be interpreted probabilistically
(Again, see [Goodman, 1999] and [Goodman & Nguyen, 1999] for details.)  In short, RSC serves
as both a means to interpret many fuzzy logic concepts in a probabilistic context and as a guide
for defining new fuzzy ideas, based upon homomorphic-like random set counterparts.  Most
importantly here, RSC and REA (see just below) applied to cognitive probability logic, as
discussed in Sections 4-6, allow that logic to be extended to treat linguistic-based information. It
is also hoped that the sound homomorphic-like relations established between FL and PL via use
of RSC will dispel misconceptions concerning the nature and relations between both disciplines,
such as in [Elkan, 1993].  (See [Goodman, 1998b] for a survey of the controversy.)

3.3  REA

REA includes PSCEA as a special case.  (For basic background on REA, see [Goodman et al.,
1997, Part III], [Goodman & Kramer, 1997], and [Goodman & Nguyen, 1998, 1999].)

First, recall that conditional probabilities are simply divisions of probabilities of consequent
events by antecedent events (with the proviso, in effect, that the consequent is a subevent or
subset of the antecedent).  That is, conditional probabilities are simply special cases of functions
of probabilities with values lying in the unit interval, subject to certain (algebraic or logical)
constraints among the events involved.  More generally, models of real-world situations may
involve functions of probabilities, also with values in the unit interval, but other than just
divisions, both explicitly and implicitly.  These two terms will be clarified as follows: One class
of examples illustrating models based upon explicit probabilities consists of weighted linear
combinations of probabilities of possibly overlapping events representing fused expert judgments
of complex situations; one class of examples illustrating based upon implicit probabilities is in
the use of operators over the unit interval or n-cube with range in the unit interval as FL
modifiers, representing such linguistic concepts as the one-argument (n = 1) modifiers “very”,
“much”, “more or less”, “not extremely” – these often being in the form of exponential or power
functions over the unit interval, or more generally, as monotonic (increasing functions from 0 up
to 1 in the first three cases and decreasing down from 1 to 0 in the last case). Even more
generally, the functions could be unimodal, analytic, etc.  But, from the above discussion
concerning RSC, the fuzzy set membership functions that such FL modifiers act upon,
themselves are the same as probabilities of one-point coverage events.  Hence, using RSC, one
can always interpret such FL modifier statements as models which are (explicit) functions of
probabilities.  (For more specifics, see [Goodman & Kramer, 1997] and [Goodman & Nguyen,
1999].)



Thus, a number of real-world situations can arise which are modeled as various functions of
input probabilities.  Then, analogous to the role that PSCEA plays in representing conditional
expressions compatible with conditional probability evaluations, one seeks REA to obtain a
probability space which contains, in a natural imbedded sense, all of the initial unconditional
events and, as well, for each such model a single “relational” (replacing “conditional”) event
which is compatible with the model, i.e., the probability evaluation of the event  (for this
extended space) coincides with the given function of probabilities the model represents.

  Numerical-valued
  function f:[0,1]n→→[0,1]

Relational event counterpart
fo:B

n→→Bo satisfying  for all n event
arguments a,b,c,.. in B, possibly
constrained, and all P,
Po(fo(a,b,c,…))=f(P(a),P(b),P(c),…)

       Restrictions, Explanations

Addition:                      P(a) + P(b)         a ∨ b n=2; a, b disjoint
Subtraction:                   P(b) –P(a)         b-a =  a′b n=2; a is subevent of b

Multiplication:                P(a).P(b)          a×b n=2

Constant functions:          λ in [0,1]          θ(λ) see [Goodman et al.,1997, Part III]
for explanation

Positive integer powers:       (P(a))m          am = a×...×a (m factors) n=1
General real positive powers: (P(a))r           ar = a[r] ×a{r} ; see above for a[r]

;

         )(a)(a'a rj,
j

0j

{r} λθ××
+∞

=
= ∨

n=1; r real > 0; [.] greatest integer
function,{.} = [.]- . ,  fractional part
function,
λj,r = (1-{r}).(1-({r}/2))…(1-({r}/j))

Finite polynomials:  
j

P(a))ë (j

m

0j
⋅

=
∑

     m-1

     V(aj×a′×θ(λ(j)))  ∨  (an×θ(λ(m)))
     j=0

n=1;
all 0 ≤ λj ≤ 1, λ(j) = λ0 + λ1 +...+ λj ≤ 1

Infinite series / analytic functions
around 0 :

                    j

0j
j (P(a))ë ⋅

+∞

=
∑

         +∞

         V(aj×a′×θ(λ(j)))  
         j=0

n=1;
 all 0 ≤ λj ≤ 1, λ(j) = λ0 + λ1 +...+ λj ≤
1

Weighted affine functions in multiple

arguments: 0jj

n

1j
ë  )P(aë +⋅

=
∑

Ex: λ0  + λ1P(a1) + λ2P(a2)

             V (aκ×θ(λκ))
          ( κ in {∅,Ω}{1,...,n})
Ex:  a1a2×θ(λ0+λ1+λ2)
∨  a1a2′×θ(λ0+λ1)
       ∨  a1′a2×θ(λ0+λ2)  ∨  a1′a2′×θλ0) 

n ≥ 1;
all 0 ≤ λj ≤ 1,

λκ = ∑ λj   +  λ0 ≤ 1 ;

       
j in κ-1(Ω)

          
n

 aκ =  &(aj∆(κ(j))′)
         j=1

Exponentials: e-P(a)
         +∞

         V((a′)j×a×θ(µ(j)))  
         j=0

 n=1;
                             j

 µ(j) = (1/e).∑1/k! ,  j=0,1,2,...
                  k=0

Division: Conditional events:

P(a)/P(b)=P(a|b)

                 +∞

   (a|b) =    V((b′)j×a×Ωο)  in Bo;
                  j=0

  n=2;
  a is subevent of b
   (see Section 3.1)

                        Table 1.  Examples of Relational Events Corresponding to Given Numerical Functions.



Indeed, it has been shown that REA can be applied to a wide class of unary and n-ary argument
functions of probabilities, including linear, bilinear, exponential, restricted analytic and
polynomial forms (again, see the above listed references).  In summary, the basic problem REA
– including CEA – addresses and solves, can be formulated mathematically as follows for the
case of two models to be compared or combined:
Given probability space (Ω,B,P), with P variable, construct probability space (Ωo,Bo,Po)
extending the initial space in an isomorphic probability preserving way (such as in the case of
PSCEA) with Ω, B, Ωo, Bo not depending on any choice of P and corresponding Po, so that for
given functions f,g: [0,1]n → [0,1] : we can find event-valued functions fo, go: B

n → Bo such that
for all P (well-defined) and all a1,…, an in B – subject to some possible fixed constraints –
          Po(fo(a1,…,an)) =  f(P(a1),…,P(an)), Po(go(a1,…,an)) = g(P(a1),…,P(an)).   (3.38)

Obviously, the relational events here are fo(a1,…,an), go(a1,…,an) in Bo, representing in eq.(3.38)
the numerical models f(P(a1),…,P(an)), g(P(a1),…,P(an)), respectively. Equivalently, this can be
thought of as a commutative relationship between f, g acting upon the P(aj)’s and Po evaluating
the relational events. One can then logically combine fo(a1,…,an) with go(a1,…,an), as needed,
relative to Bo and then evaluate this combination via Po. We provide a table below of basic
functions of probabilities and corresponding relational event pairs (f, fo) for a number of
situations.  Finally, the tie-in between REA and Lindley’s result on characterizing a large class of
functions of (finitely additive conditional) probabilities via a two person zero sum game
[Lindley, 1982] should be mentioned. (See the discussion in Section 4.4.)

3.4  SOP

SOP techniques have been around for some time, as documented in the text of [Aitchison, 1986].
However, in-depth applications to: problems of logical deduction [Goodman & Nguyen, 1998]
and updating information [Goodman & Nguyen, b] have only recently been attempted, the latter
in connection with [Grove & Halpern, 1997] for the “Judy Benjamin Problem”.  In a nutshell, the
SOP approach is theoretically applicable to any situation where one seeks initially, relative to the
same possible choice of probability measure, the determination of bounds on the (unconditional
or conditional) probability of certain events of interest, given a collection of bounds or
constraints on the probability of the same and/or other events.  SOP is then carried out in three
or, optionally four, basic steps:

(1)    One forms either the collection of all (nonvacuous) relative atomic events generated
by all of the initial relevant events involved in the problem or any finite refinement of
such.
(2)    One identifies any possible probability measure for this problem in a natural way as
a corresponding constant vector, where each entry corresponds to a particular atom being
evaluated by that probability measure.  Thus, the size of the vector matches the
cardinality of the set of distinct atomic events involved and the components of the vector
lie in the unit interval and add up to unity.  (Kosko in several papers and texts – see, e.g.,
[Kosko, 1990, 1997] – extends this idea to the class of fuzzy sets over a finite domain.)
Thus, the collection of all possible probability measures here is identifiable either as the
face of a multidimensional simplex (due to the unity sum constraint) or, if the last
component is omitted, as a full multidimensional simplex of one less dimension.



(3) The bayesian aspect of the approach commences when one chooses a prior (and
hence, second order) distribution over the simplex representing the possible probability
measures relative to their evaluations of the atoms.  Thus, in effect, the deterministic
possible probability measures of interest are replaced by a joint random vector and all
given constraints on the probability of events of interest become corresponding
constraints on (parts of the) joint random vector.  Finally, the initial problem is modified
by replacing the goal of determining the bounds on the possible probability values
(subject to the same constraints) by the evaluation of the posterior expectation of the joint
random vector.  Often, it is reasonable to choose the prior to be a uniform, or more
generally (and more flexibly), a dirichlet one.
(4) For either choice in step (3), one can also show, using an extension [Goodman &
Nguyen a] of Lukacs’ characterization of the gamma and dirichlet distributions [Lukacs,
1955], that a transformation exists which converts the problem to an analogous one of
computing the posterior expectation subject to constraints, but no longer confined to the
simplex.  Instead the constraints involve the all-positive orthant of multidimensional
space and the transformed random vector consists of independent marginal gamma
random variables. In the case of a joint uniform assumption, this reduces to independent
exponential random variables with common parameter being unity.

Because the above-mentioned theorem will be used in Section 6, a full statement of it is provided
here.  First, recall [Johnson & Kotz, 1972], [Wilks, 1963] the following standard probability
distributions.  For any fixed positive real numbers q, r, the gamma distribution Gam(q,r) with
corresponding probability density function (pdf) gamq,r is given for its non-zero values as

                         gamq,r(x) = γq,r .x
q-1.e-x/r , if  x > 0 ;      γq,r = 1/(rq.Γ(q)),               (3.39)

where Γ(.) is the standard gamma function.  For any q =(q1,…,qn+1), with each qj a fixed positive
real number, the dirichlet distribution Dir(q), with corresponding joint pdf dirq is given for its
non-zero values as 

dirq(y1,…,yn) = λq.y1
q

1
-1… yn

q
n
-1.(1-y1-…-yn)

 q
n+1

-1, if  (y1,…,yn) in Qn  ;                    (3.40i)
λq= Γ(q1+…+qn+1) / (Γ(q1)…Γ(qn+1)) ;                         (3.40ii)

and full n-simplex
Qn = {(y1,…,yn): 0 ≤ yj ≤ 1, j=1,…,n; y1+…+yn ≤ 1}.                         (3.41)

Theorem 3.1.  [Goodman & Nguyen, a]  Extension of Lukacs’ characterization to dirichlet
 distributions.

Let Y1,…,Yn be any n positive non-degenerate random variables.  Then:

(I)  Y1,…,Yn are jointly distributed as Dir(q)  iff   there exist n+1  positive non-degenerate
random variables X1,…,Xn+1 such that they are mutually independent, with each Yj =
Xj / (X1+…+Xn+1) and being independent of X1+…+Xn+1, j =1,…,n.
(II)  In (I), each Xj may always be chosen so that each is independently distributed Gam(qj,r),
where each qj is the jth component of q and r>0 is arbitrary fixed.                                                n



4.  The Four Tools and Their Relations to PL and Associated Logics

4.1  Preliminary Remarks and Notation

The chief application of SOP here, in conjunction with the use of CEA, REA, and RSC, is to the
development of Cognitive Probability Logic (CPL). This logic successfully addresses, for the
first time in a fully quantitative manner, the following quandary: We know that use of the
classical logic operator representing “if, then” (see Section 2) produces a whole host of valid – as
well as invalid -- deductive relations.  It would be desirable to have, in some sense,  a sort of PL
validity, so that a number of deductions that are valid for the material conditional interpretation
of “if, then” would also be PL-valid.  In the following development, for purpose of efficiency,
we extend our use of multivariable notation and introduce a basic assumption which will be used
a number of times later:
First, for any probability space (Ω,B,P), finite (nonvacuous) index set J, and any events aj, bj in B,
recall – as well as define -- the following symbols: aJ for (aj)j in J; bJ for (bj)j in J; (b⇒a)J for
(bj⇒aj)j in J; (a|b)J for (aj|bj)j in J, where each conditional event (aj|bj) in Bo; P(b⇒a)J for 
(P(bj⇒aj))j in J, tJ in [0,1]J for (tj)j in J, where each real number tj in [0,1]; in particular, letting tj =1,
all j in J, 1J = (1)j in J, &(aJ) for &(aj), &(a|b)J for &(aj|bj),  etc.
                          j in J        j in J

Next, introduce our two basic assumptions, where, depending on the situation, the first or the
stronger second holds:

Assumption I:  (Ω,B,P) is any given probability space, with PSCEA extension, denoted, as usual,
by (Ωo,Bo,Po); J is a finite index set, (a|b)J in Bo

J is a family of nontrivial conditional events, each
in Bo, i.e., ∅ < aj < bj, j in J; (c|d) in Bo is a nontrivial conditional event, i.e., ∅ < c < d;  and P –
and hence Po – is arbitrarily variable but, subject to the restriction that 0 < P(∨(bJ)).  When all bj

= Ω = d, apropos to the isomorphic probability-preserving imbedding of B in Bo discussed in
Section 3.1.2 (but with the caution of Lewis’ theorem being present), we identify aj in B with
(aj|Ω) in Bo, j in J,  and c in B with (c|Ω) in Bo.

Assumption II: Assumption I, together with the assumption that P(b)J > 0J , i.e., P(bj) > 0, for all j
in J and all bJ and P satisfying Assumption I.                      n

Note also that under Assumption II, apropos to the discussion following eq.(3.22), the PSCEA-
imbedded AC and DGNW operators &AC, ∨AC, &DGNW, ∨DGNW: (Bo*)J→ Bo are all well-defined
slightly modified versions of the original non-boolean operator counterparts (relative to the
inclusion of trivial conditional event arguments and trivial conditional event range
values)conditions), where we recall Bo* is the set of all nontrivial (first order) conditional events
in Bo.  In brief review, it is readily seen by inspection, that the usual definition of tautological
deduction in CL is actually the same as conjunctive deduction relative to the boolean algebra
interpretation. (For the former situation, see, e.g., [Copi, 1986] and [Bergmann et al., 1980].)
Thus, we say that (unconditional) premise aJ (tautologically) deduces (unconditional) conclusion
c in CL iff aJ conjunctively deduces c in CL, i.e., iff

&(aJ) ≤  c .                 (4.1)



Extending this, we will say that linguistic premise (“if bj, then aj”) j in J deduces conclusion “if d,
then c” in the material conditional sense iff

&(b⇒a)J ≤  d⇒c ,                 (4.2)
i.e., when (b⇒a)J deduces d⇒c in CL, noting the obvious reduction when all bj = d = Ω.  Let us
denote the logic based upon this reasoning as Material Conditional Logic (MCL), an actual
fragment of CL.

4.2   Extending Deduction to PL

Next, it is desirable to be able to extend CL in some way to PL: a number of attempts have been
made, including the use of conditional probabilities, one of which we will discuss below.  (See,
e.g.,  [Hailperin, 1996] and [Rescher, 1969, Section 2.27, et passim] for general background.)  In
any case, relative to PL, under Assumption I, in light of the conjunctive form in eq.(4.1), one
basic function that measures the degree that given premise aJ deduces conclusion c is simply the
conditional probability

P(c | &(aJ)),     (4.3)

assuming P(&(aJ)) > 0.  In fact, in view of eq.(2.3) and standard results,
    [P(c | &(aJ)) = 1, for all P so that P(&(aJ)) > 0]    iff     &(aJ) ≤ c.                 (4.4)

But, since the quantity in eq.(4.3) is dependent upon a particular probability measure P, a
reasonable alternative measure not dependent directly upon any one probability measure -- yet
apparently dependent upon probability in general -- is the minimum conclusion function
(following Adams’ ideas – see any of his references) minconc(aJ;c):[0,1]J → [0,1], where, for
any 0 ≤ tj ≤ 1, j in J, letting tJ = (tj)j in J,

  minconc(aJ;c)(tJ) = inf{P(c): all prob. meas. P:B →[0,1] with P(aj) ≥ tj, j in J}.         (4.5)

Again, analogous to eqs.(4.3) and (4.4), for a given P, one could use as a basic function that
measures the degree that a given (conditional) premise (a|b)J deduces (conditional) conclusion
(c|d)  is simply the conditional probability with respect to PSCEA

Po((c|d) | &(a|b)J) = Po((c|d)&&(a|b)J) / P(c|d),     (4.6)

etc., since PSCEA obeys all the laws of PL.  In fact, relative to Bo,

                 if  &(a|b)J ≤ (c|d), then for all P with Po(&(a|b)J) > 0,  Po((c|d) | &(a|b)J) = 1.          (4.7)

Analogous to the above comments for the unconditional situation (following eq.(4.4)), we may
seek to find only a general dependency on probability for deduction by extending the minconc
function to possible deduction schemes involving conditional statements “if bj, then aj” in the
premise and “if d, then c” in the (potential) conclusion whether interpreted, e.g., via probabilities
of material conditionals or conditional probabilities in the obvious senses via the definition in
eq.(4.5),

    (4.8)
minconc((b⇒a)J;d⇒c)(tJ) = inf{P(d⇒c): all prob. meas. P:B →[0,1] with P(bj⇒aj) ≥ tj, j in J},



   minconc((a|b)J;(c|d))(tJ) = inf{P(c|d): all prob. meas. P:B →[0,1] with P(aj|bj) ≥ tj, j in J},   (4.9)

noting for either eq.(4.8) or (4.9), minconc [0,1]J → [0,1] has same domain and range.

Adams has produced several reasonable forms of probability logic, including High Probability
Logic (HPL) and Certainty Probability Logic (CPL) which intimately involve the use of the
minconc function:  Under Assumption II, HPL yields as valid deductions those premise,
conclusion pairs (a|b)J, (c|d) so that for any P, whenever P(a|b)J is “sufficiently high”, P(c|d) is
“high”; while CPL yields as valid deductions those pairs such that for any P, whenever P(a|b)J is
unity, so is P(c|d). (See, e.g., [Adams, 1975, 1996, 1998], as well as work of [Schurz, 1983] and
[Goodman & Nguyen, b] in clarifying certain of Adams’ proofs and results.)  These definitions
certainly apply to unconditional expressions as well.  In terms of the minconc function, Adams’
HPL and CPL can be conveniently defined as follows in a PSCEA context, under Assumption II,
for any pair (a|b)J, (c|d):

                  (a|b)J deduces (c|d) in HPL sense, written as  (a|b)J ≤HPL (c|d),
 iff                      limit ( minconc((a|b)J;(c|d)) (tJ) ) = 1;               (4.10)

                ( t
J
 ↑ 1

J
 , uniformly)

under only Assumption II,
        (a|b)J deduces (c|d) in CPL sense, written as  (a|b)J ≤CPL (c|d),

                    iff                minconc((a|b)J;(c|d)) (1J) ) = 1 ,   if P(bJ) > 0,   (4.11)

or, weakening this to Assumption I, replace the latter in eq.(4.11) by

minconc((a|b)J-K;(c|d))(1J-K)) = 1, if there is some ∅ ≠ K ⊂ J  with  P(bK) = 0K.

4.3  Fundamental Relations among PL and CL Deductions

The following theorems characterize and relate HPL, CPL, MCL, and CL deductions for
unconditional and conditional events in PSCEA, as well as with the imbedded AC and DGNW
operators.

Theorem 4.1.  [Goodman & Nguyen 1998, b]

Noting that there are four possible pure ordering relations between (a|b)J and (c|d) with respect to
&, ∨ over Bo, the following characterizations hold involving the imbedding &AC, ∨AC, &DGNW,
∨DGNW, under Assumption II:
(i) (a|b)J ≤ (c|d) , i.e., And( (aj|bj) ≤ (c|d) )     iff       ∨(a|b)J ≤ (c|d)   iff     ∨DGNW(a|b)J ≤ (c|d).

  j in J                         
(ii) (c|d) ≤ (a|b)J, i.e., And( (c|d) ≤ (aj|bj))       iff       (c|d) ≤ &(a|b)J   iff      (c|d)  ≤  &DGNW(a|b)J.

j in J

(iii)      &(a|b)J ≤ (c|d)  iff      Or( &AC(a|b)K ≤ (c|d) ).
        ∅≠K⊆J

(iv) (c|d)  ≤  ∨(a|b)J  iff      Or( (c|d) ≤ ∨AC(a|b)K).
         ∅≠K⊆J

Proof:  (i) follows directly from use of the criterion in middle right of eq.(3.21).  (iii) is shown in
{Goodman & Nguyen, b]. By DeMorgan duality: (ii) follows from (i), (iv) from (iii).                 n



Corollary 4.1.  Under Assumption II,
&DGNW (a|b)J ≤ & (a|b)J ≤ &AC(a|b)J ≤ ∨AC (a|b)J ≤ ∨ (a|b)J ≤ ∨DGNW (a|b)J .

Proof: Theorem 4.1(ii) shows &DGNW (a|b)J ≤ & (a|b)J and inspection of the very definitions
readily show  & (a|b)J ≤ &AC(a|b)J.  The remainder of results follows from DeMorgan duality.   n

In addition to Adams characterizing HPL purely algebraically, via a certain non-boolean-
structured conditional event algebra (“quasi”-conjunction) operator (again, see the basic Adams
references), more recently it has been demonstrated that HPL deduction when placed in a
PSCEA setting is fully characterized as the natural extension of CL conjunctive deduction:

Theorem 4.2.  [Adams, 1996], [Goodman & Nguyen, b] Combination of Adams’ algebraic
characterization of HPL via &AC and use of & in PSCEA.  Under Assumption II,

        (a|b)J ≤HPL (c|d)     iff         Or (   &AC(a,b,K) ≤ (c|d) )    iff     &(a|b)J  ≤ (c|d).   (4.12)
                                                                    ∅≠K⊆J

Proof: Follows immediately from Adams’ algebraic characterization (left-hand side equivalence
shown in [Adams, 1996] and right-hand side equivalence shown in Theorem 4.1(iii).                 n

Thus, Theorem 4.2 shows that standard CL deduction (again see, e.g. [Copi, 1986], [Bergmann
et al., 1980]), which is actually conjunctive deduction relative to a boolean algebra
interpretation, extends directly to Adams’ HPL in a PSCEA setting.  Obviously, this enhances
the possible use of Po((c|d) | &(a|b)J) as a measure of the degree of deduction of (a|b)J with
respect to (c|d), for a given P (again, see eqs.(4.6), (4.7)).  Adams has also provided other
characterizing criteria, as well as full axiomatizability,  for HPL deduction [Adams, 1996, 1998].

In a related direction, the following negative conclusion proven by Adams throughout his works,
dispels the belief that the limit( minconc((a|b)J;(c|d))(tJ))  somehow can be used as a natural

       tJ
→1

measure of the degree of deduction of premise (a|b)J with respect to (potential) conclusion (c|d).

Theorem 4.3. [Adams, 1996]
Under Assumption II, either limit( minconc(a|b)J;(c|d))(tJ)) = 1 or 0, with no nontrivial values in

                  t
J
→1

between, accordingly as (a|b)J ≤HPL (c|d) or not[(a|b)J ≤HPL (c|d)].
Proof: See above Adams’ reference.                  n
It also appears that, in many cases, Theorem 4.3 can be strengthened to include non-limiting tJ,
but this remains to be investigated.

Theorem 4.4.  ([ Adams, 1996] modified)  Characterization of CPL being the same as MCL.
Under Assumption I:
    (a|b)J ≤CPL (c|d)   iff   for all P (with P(b1∨b2) > 0), if P( &(b⇒a)J) = 1, then P(d⇒c) = 1

       iff   &(b⇒a)J ≤ d⇒c .   (4.13)

Proof: It is instructive to show this here.  Note that the top equivalence readily follows from the
definition in eq.(4.11).  Apropos to eq.(2.3), for any P such that P(bj) > 0, j in J, P(d) > 0,



         1J = P(a|b)J  iff  1J = P(b⇒a)J  iff   1 = P(&(b⇒a)J);       1 = P(c|d)  iff  1 = P(d⇒c).     (4.14)

Hence, by monotonicity of probability, if RHS(4.13) holds, then eq.(4.14) shows holds.
Conversely, we show first LHS(4.13) implies RHS(4.13), first for J = {1}, where, for
convenience, we replace a1 by a, b1 by b. Suppose LHS(4.13) so holds, but RHS(4.13) doesn’t.
Thus, ∅ < (b⇒a)c′d , implying either Case 1: ∅ < ac′d  or  Case 2: ac′d = ∅  and   ∅ < b′c′d:

Case 1: Let ω in ac′d and define P(ω) = 1, yielding P(b) = P(d) = 1 > 0, satisfying Assumption II,
with P(a|b) = P(c′|d) = 1, whence P(c|d) = 0, contradicting CPL property on LHS(4.9), where
P(a|b) = 1 must imply P(c|d) = 1.
Case 2: Since by Assumption I, ∅ < a = ac′d  ∨ ac ∨ ad′, one of these must be nonvacuous,
implying two Subcases: Subcase 1: ∅ < ac  and   ∅ < b′c′d or  Subcase 2: ∅ = ac  and ∅ < ad′
and ∅ < b′c′d.
Subcase 1: Let ω1 in b′c′d, ω2 in ac and define P(ω1) = P(ω2) = ½.  This yields P(b) = ½ > 0, P(d)
= 1 > 0, satisfying Assumption I, with P(a|b) = (1/2)/(1/2) = 1, but P(c|d) = (1/2)/1 = ½,
contradicting CPL property that P(a|b) = 1 must imply P(c|d) = 1.
Subcase 2: Let ω1 in b′cd, ω2 in ad′ and define P(ω1) = P(ω2) = ½.  This yields P(b) = P(d) = ½ >
0, thus satisfying Assumption I, but P(a|b) = P(c′|d) = (1/2)/(1/2) =1, implying P(c|d) = 0,
contradicting CPL property that P(a|b) = 1 must imply P(c|d) = 1.

Hence, for J = {1}, LHS(4.13) implies RHS(4.13).  For J = {1,2}, under Assumption I, note that

(b1⇒a1)&(b2⇒a2) = (b1∨b2) ⇒ α,      (4.15)
where
                                   α = (b1⇒a1)&(b2⇒a2) &(b1∨b2) = a1b2′ ∨ a2b1′ .               (4.16)

For any P satisfying Assumption I, note that P(b1∨b2) > 0.  Furthermore, similar to eq.(4.14),
1= P(b1⇒a1) = P(b2⇒a2)  iff  P(b1⇒a1)&(b2⇒a2) = 1 iff  P((b1∨b2) ⇒ α) = 1.         (4.17)

When any equivalent part of eq.(4.17) holds, note that we cannot have P(α) = 0, since that
implies P(b1∨b2) = 0, contradicting Assumption I.
In any case, for J = {1,2}, LHS(4.13) implies RHS(4.13) by simply considering the result for J=
{1} with b replaced by b1∨b2 and a by α, etc., taking into account all boundary cases, such as α =
b1∨b2, whence it can be shown that this implies, e.g., aj′bj = ∅, contradicting Assumption I.  The
procedure can then be continued inductively in this way for arbitrary finite J.  Hence, LHS(4.13)
implies RHS(4.13) in general.          n

Next, the basic relation between HPL and CPL deduction is shown:

Theorem 4.5. ([Adams, 1996], modified for PSCEA setting)

(i) HPL deduction implies CPL deduction in the following slightly restricted sense: Under
Assumption II, for any (a|b)J≤HPL (c|d)  and P,

if P(a|b)J = 1J, then P(c|d) = 1. 



(ii)        In (i), if P does not satisfy Assumption I, the conclusion may not hold.  In particular,
suppose α1,…, α5 are any events in B which are nonvacuous, mutually disjoint and with α1∨...∨
α5 ≤ Ω.  Let J = {1), a1 = α1, b1 = α1 ∨ α3 ∨ α4 , c = α1 ∨ α2 , d = Ω.  Clearly, (a1|b1), (c|d)
(identified with c) are nontrivial conditional events in Bo, and by the criterion in eq.(3.21), (a1|b1)
≤ (c|d) (in fact, < holds here), whence by Theorem 4.2, (a1|b1) ≤HPL (c|d) easily holds.   On the
other hand, choose any P such, P(α1) = P(α3) = P(α4) = 0 < P(α5)  , implying 0 ≤ P(α2) ≤ 1- P(α5)
< 1.  Thus, P(b1) = 0, violating Assumption I, yielding P(b1⇒a1) = 1 > P(α2) = P(d⇒c), meaning
not [(a|b) ≤CPL (c|d)].

(iii)       Under Assumption I, there are pairs (a|b)J, (c|d) such that (a|b)J≤CPL (c|d) holds but where
not [(a|b)J≤HPL (c|d)] holds, such as those corresponding to transitivity-syllogism, positive
conjunction, and strengthening antecedents in Table 4.1 (as explained in Section 4.4).

Proof: (i) is shown immediately by using Theorem 4.2 (RHS(4.12)) and basic properties of
probabilities.          n

The final theorem in this series shows for unconditional premises and conclusions the reduction
of HPL and CPL to CL and related deductions.

Theorem 4.6.  (See also [Goodman & Nguyen, 1998]).  Then, under Assumption I,

(i)   (a|Ω)J ≤HPL (c|Ω)     iff     (a|Ω)J ≤CPL (c|Ω)     iff     &(aJ) ≤ c
   iff     limit (minconc((a|Ω)J;(c|Ω))(tJ)) = 1, etc.
                                    tJ

 → 1

(ii)  (a|b)J  ≤CPL (c|d)    iff     (b⇒a | Ω)J ≤HPL (d⇒c|Ω)     iff    (b⇒a | Ω)J ≤CPL (d⇒c|Ω)
                           iff    limit (minconc((b⇒a)J;d⇒c)(tJ)) = 1, etc.
                                   tJ

 → 1

Proof: (i): In Theorems 4.2 and 4.4 simply set all antecedents bj = Ω = d, j in J, etc.
          (ii): Apply (i) above to Theorem 4.4.          n

4.4   A Listing of Some Patterned Deduction Schemes for Application to CPL and/or  HPL

Next, consider the following list of some well-known patterned potential deductions given in
linguistic form (see, e.g., [Pearl, 1988], [Dubois & Prade, 1993], and [Kraus et al., 1990].  For
any propositions a, b, bj, c, d,…in B :

1. Disjunction (Adams’ R4): “if b, then a” and “if c, then a” deduces “if (b ∨ c), then a”
This implies Sure Thing Principle: “if bc, then a” and “if bc′, then a” deduces “if b, then a” .
In turn, this specializes to: Disjoint Antecedents: “if b, then a” and “if b′, then a” deduces a

2. Bayes (Adams’ R5): “if b, then a” and “if ab, then c” deduces “if b, then c”
3. Cautious Monotonicity (or Triangle or Adams’ R6): “if b, then a” and “if b, then c” deduces

“if bc, then a”, as well as “if ab, then c”
4. PSCEA Order (Adams’ R7): Under the assumption that ab ≤ cd and c′d ≤ a′b: “if b, then a”

deduces “if d, then c”.  This implies with no assumptions:



“if b, then ac” deduces “if b, then c” , as well as “if ab, then c”;
“if ab, then c” deduces “if b, then c”

5. Reflexivity (Identity): “if b, then a” deduces “if b, then a”
6. Cut: “if b, then a” and “if ab, then c” deduces “if b, then ca”, as well as “if b, then c”
7. Exceptions: “if bc, then a” and “if b, then a′” deduces “if b, then c′”
8. Equivalence: “if b, then a” and “if a, then b” deduces a⇔b
9. Strict Modus Ponens: “if b, then a” and b deduces ab , as well as a
10. General Modus Ponens: “if (b∨c), then a” and b deduces ab, as well as a
11. Conditional Bound 1: “if b, then a” deduces b⇒a
12. Conditional Bound 2:  ab deduces “if b, then a”
13. Transitivity-Syllogism:“if c, then b” and “if b, then a” deduces  “if c, then a”
14. Contraposition: “if b, then a” deduces “if not a, then not b”
15. Positive conjunction:“if b, then a” and “if c, then a” deduces “if bc, then a”
16. Strengthening of Antecedents: “if b, then a” deduces “if bc, then a”
17. Penguin Triangle: “if b, then a” and “if c, then b” and “if c, then d” and “if d, then a′b”

deduces “if c, then a′”
18. Modified Penguin Triangle: Under the assumption d ≤ a′b : “if b, then a” and “if c, then b”

and “if c, then d” deduces “if c, then a′”
19. Consequent 1: if b, then a” deduces a
20. Consequent 2: “if b, then a” deduces b
21. Consequent 3: a deduces “if b, then a”
22. Consequent 4: b deduces “if b, then a”
23. Nixon Diamond: “if c, then ab” and “if a, then d” and if b, then d′” deduces “if c, then d”
24. Reverse Conditional Bound 1: b⇒a deduces “if b, then a”
25. Reverse Conditional Bound 2: “if b, then a” deduces ab
26. Abduction: “if b, then a” and a  deduces b
27. Induction: Under the assumption that J is a finite index set,  all bj, j in J are mutually disjoint,
and ∨ (bJc)   < c : And “if bjc, then a” deduces “if c, then a”

                          j in J

28. Augmented Induction: Under the assumption that J is a finite index set,  all bj, j in J are
mutually disjoint, and ∨(bJ)c  < c: And “if bjc, then a”  and  “ if c, then ∨(bJ)” deduces “if c, then
a”        j in J

As before, we consider two basic interpretations of “if then”: Approach 1 via the material
conditional and MCL = CPL and Approach 2, via conditional probability and HPL.  Table 4.1 in
Section 4.5 shows which of the deduction schemes are valid for either approach, utilizing in a
straightforward way the basic criteria in Theorem 4.4 (for MCL = CPL) and Theorem 4.2 (for
HPL).

4.5 Discrepancies between CPL and HPL and Effect on Choice of PL as a Basic Measure
      of Uncertainty

Despite many reasonable properties holding for HPL, such as indicated in Theorem 4.2 and by
“YES” in the last column of Table 4.1 below, unfortunately a number of intuitively appealing
deduction schemes are invalid for HPL, in general, including the very natural schemes 13-16,
which are all valid for MCL.  (Details on the failure of the one of the most important deduction



No. and Name of Possible
 Deduction Scheme

      Valid for CPL ?       Valid for HPL ?

 1. Disjunction                YES                   YES
 2. Bayes                   YES YES
 3. Cautious Monotonicity                   YES YES
 4. PSCEA Order                   YES YES
 5. Reflexivity                   YES YES
 6. Cut                   YES YES
 7. Exceptions YES  YES
 8. Equivalence YES  YES
 9. Strict Modus Ponens YES  YES
10. General Modus Ponens YES  YES
11. Conditional Bounds 1 YES  YES
12. Conditional Bounds 2 YES  YES
13. Transitivity-Syllogism YES NO
14. Contraposition YES NO
15. Positive Conjunction YES NO
16. Strengthening Anteced. YES NO
17. Penguin Triangle  NO                         NO
18. Modified  Penguin  Triangle                   YES                         YES
19. Consequent 1 NO                          NO
20. Consequent 2 NO NO
21. Consequent 3 YES NO
22. Consequent 4 NO NO
23. Nixon Diamond YES NO
24. Reverse Cond. Bnd. 1 YES NO
25. Reverse Cond. Bnd. 2 NO NO
26. Abduction NO NO
27. Induction NO NO
28. Augmented Induction                  YES                         YES

                    Table 4.1.  Validity or Non-Validity of Various Deduction Schemes for CPL and HPL.

schemes, transitivity-syllogism (no. 13), is provided in Section 5.)  This shows a basic disconnect
between HPL and CL; yet it is generally  purported that probability theory is a natural extension
of CL to account for uncertainties and errors.  In fact, PL has been characterized as the unique
approach to the modeling of propositions with uncertainty, among all possible approaches,
satisfying certain natural relations.  (See, e.g., [Aczél, 1966], [Cox, 1946, 1979] -- but see
Halpern’s negative claims for the characterization for finite domains [Halpern, 1999], and more
recently, P. Snow's counter claims to that [Snow, 1998].  In [Lindley, 1982] the classical two
person zero sum game characterization of PL was extended as originally given, e.g., in
[DeFinetti, 1974], where the latter considered sums of squared loss between the 1-0 evaluation of
occurrence vs. non-occurrence of membership functions of collections of ordinary events vs.
corresponding uncertainty values pre-assigned to their occurrences-non-occurrences. Lindley
considered a much more general class of loss functions and showed the set of all admissible
uncertainty functions, for each choice of such a loss function, coincides with a corresponding
nontrivial nondecreasing fixed functional compositionof arbitrary (finitely additive conditional)
probability measures.  By suitably varying such loss functions, the functional compositions can
vary arbitrarily over essentially all nondecreasing functions (composed with arbitrary finitely
additive conditional probability measures). But, each such functional composition, in general, is



quite distinct from the identity composition on probabilities, and only reduces to actual
probabilities when the loss function becomes summed squared loss.  However, Lindley’s
conclusion from this sound mathematical result is another matter: that only probability need be
considered as the reasonable measure of uncertainty.  This is due to his confusion of probability
with functions of probability, which include certain Dempster-Shafer functions, as well as, in an
asymptotic sense, FL-related functions.  (See, the second part of [Lindley, 1982] as well as, e.g.,
[Goodman et al., 1991a].)  On the other hand, whenever the REA problem is solvable for such
functional compositions, indeed those compositions themselves become probabilities in a higher
order space. Even if a superior universal characterization of the usual measure-theoretic
definition of PL can be achieved, relative to all competing approaches to modeling uncertainty,
the very basis for connecting PL to real-world phenomena, i.e., randomness, still appears to be a
problem of great difficulty. See, e.g., [Ayton et al., 1989, 1991] for the psychological aspect of
the issue, [Kyburg, 1983] for an attempt at an axiomatic approach, and [Kalman, 1994] for an
overall negative conclusion concerning use of probability for the real-world.

The above-mentioned perplexing discrepancies between CL and PL or HPL, as well as the basic
controversies surrounding probability have led to intensive investigations and the development of
non-monotonic and default logics as outlined, e.g., in [Kraus et al., 1990], [Pearl, 1988, 1990]
and [Pearl & Goldszmidt, 1996], or other nonstandard and “hybrid” logics as in [Dubois &
Prade, 1993, 1996].  Essentially, a monotonic logic is one in which once a premise set of events
deduces a particular conclusion, any addition to the premise set will continue to deduce the same
conclusion.  A non-monotonic logic allows for the possibility of switching back and forth
between deducing or not deducing a conclusion, depending on what collection of new events (or
conditional events) are added to the original premise collection.  However, all is not lost, in that
application of SOP to a number of deduction schemes, including all three mentioned above
(schemes 13-16), leads to valid deductions in the asymptotic sense that when the premise
probability constraints are required to be “high”, so will the conclusion probabilities be “high”,
but on the average. More details of the resulting non-monotonic logic can also be found here in
Section 6 and [Goodman & Nguyen b]. Moreover, by again straightforward (but rather tedious
use in some deduction schemes), posterior expectations for deductions can be obtained for all of
the above-mentioned deduction schemes (and more), not just in the asymptotic sense, but for a
wide variety of constrained probability levels, thereby allowing practical quantitative
implementations.  (See again Section 6.)

5.   A Motivating Example: More Details on the Problem of Transitivity-Syllogism Deduction

In a very natural sense, it can be stated that probability theory extends classical logic to deal with
situations where one seeks to quantify the percentage of time an event occurs or does not occur,
or equivalently, where some uncertainty may be present in the occurrence of events.  Yet, as
stated earlier, there exists a gap between many of the concepts in classical logic and seemingly
corresponding ones in probability theory.  One basic example that illustrates this somewhat
surprising lack of continuity between classical logic and probability theory is the transitivity-
syllogism problem (deduction scheme 13 of Table 4.1) which can well occur at any given C2
decision node: Let a, b, c be three events of interest, all lying in some boolean algebra B.   If a
≤ b  and b ≤ c, then clearly a ≤ c .  This is essentially the same form as the classical “barbara”
syllogism whose origins go back to Ancient Greece with the well known example “all men are



mortal”, “I am a man”; therefore, “I am mortal”.  (See, e.g., [Prior et al., 1968] for a history of
this problem.)  However, let us add a little uncertainty between a and b and between b and c,
such as in the real-world interpretation

a = “enemy ships will be stationed in Sector A tomorrow night”,
b = “fog condition B is expected to hold tomorrow afternoon and night”,
c = “it is expected tonight for war condition C to be declared and for the temperature to
        be around 40 degrees F”.

Denoting P(.) for probability, suppose, for simplicity, at this node, the only information that is
received “now” is the premise P(if b, then a) = s,  P(if c, then b) = t, where s, t are somewhat
high values, such as 0.92, 0.85, respectively, based on previous intelligence-gathering sources
and past performances.  Otherwise, we have no knowledge of the subevent relations among the
three events.  The individuals at this decision node must, as soon as possible, transmit their
assessment of the key value P(if c, then a) in a secure one-way manner to another specified node.
What should they conclude P(if c, then a) is ?  We first present two well-tried approaches to this
problem which at first glance should produce satisfactory solutions to the quandary, but instead
yield great difficulties.  In all of the following we can reasonably suppose that a, b, c all lie in
common boolean algebra B relative to probability space (Ω,B,P).

Approach 1.  One models P(if b, then a) – and analogously, P(if c, then b) and P(if c, then a) – by
the material conditional operator ⇒ , as discussed in the previous section.  (Actually, this is the
approach of [Nilsson, 1986] and others.)

From the very definition of the material conditional operator, by identifying:
   “if b, then a”   with  b ⇒a ;  “if c, then b”   with  c ⇒b ; “if c, then a”   with  c ⇒a  ,           (5.1)

we have from eq.(5.1) and the basic assumption,
P(if b, then a) = P(b ⇒a) = 0.92 ,   P(if c, then b) = P(c⇒b) = 0.85 ,                (5.2i)

P(if c, then a) = P(c⇒a) = ?               (5.2ii)

Note that now a, b, c, b⇒a, c⇒b, c⇒a all are in B and subject to the usual laws of boolean
algebra (or classical logic); it follows that the conjunction
 (b ⇒a)&(c ⇒b) = b′c′ ∨ abc′ ∨ abc  =  b′c′  ∨  abΩ  =  b′c′  ∨  ab  ≤  c′ ∨  a  =  c⇒a .           (5.3)

Although according to our comments in Section 4 this is sufficient to show MCL deduction (see
eq.(4.2) and ensuing remarks), consider some further details: Applying the usual monotonicity
law of probability to eq.(5.3), we have, for any choice of P,

                                P((b ⇒a)&(c ⇒b))  ≤  P(c ⇒a).                 (5.4)

Next, we apply another basic property of all probability spaces, the Fréchet-Hailperin bounds
which provide the tightest upper and lower bounds for the probability of the conjunction or
disjunction of events in terms of the probabilities of the individual (or marginal) events (see, e.g.,
[Hailperin,  1965, 1984].   For the case of two events, these bounds reduce to simply

 max(P(a)+P(b)-1,0) ≤  P(a&b) ≤ min(P(a), P(b))                (5.5i)
                (≤ )    max(P(a), P(b)) ≤ P(a∨b) ≤ min(P(a)+P(b),1),              (5.5ii)



where, in general, strict inequality holds and, e.g., equality holds on right-hand side of eq.(5.5i)
iff equality holds on left-hand side of eq.(5.5ii) iff  (slightly abusing notation) either P(a ≤ b  or
b ≤ a) = 1, i.e., iff P(ab′) = 0  or  P(a′b) = 0.

Considering the left-hand side of eq.(5.5i) and replacing there a by  b⇒a  and b by c⇒b, shows
that eq.(5.4) expands to include a lower bound
                max(P(b ⇒a) + P(c ⇒b) – 1, 0)  ≤   P((b ⇒a)&(c ⇒b))  ≤  P(c ⇒a).     (5.6)

Next, using the premise levels s, t, together with eq.(5.1) in eq.(5.6), finally shows
             max(s + t – 1, 0) ≤  P(c ⇒a) =  P(if c, then a)                                                   (5.7)

Thus, for sufficiently large values of s and t, such as above, where s = 0.92, t = 0.85,  eq.(5.7)
shows that

                       0.77  ≤  P(if c, then a).     (5.8)

This is certainly a reasonable conclusion, agreeing with “commonsense” reasoning that if the
pattern of probability of b to c  and a to b  are high, so should be the probability of a to c –
though possibly somewhat degraded in value as seen here – provided we have no other
information on the relations of a, b, c to each other.   Thus, it would seem that the material
conditional operator satisfactorily solves our problem.  However, though the mathematical
concepts leading from eqs.(5.1) to (5.8) are quite sound, one important factor is missing:  Note,
that while it is possible to have P(b ⇒a) = 0.92 and P(c ⇒b) = 0.85 – and consistent with
eq.(5.8), one must have 0.77 ≤ P(c ⇒a) – the actual values of P(b), P(ab), P(c), P(bc) can be,
e.g.,
                           P(b) = 0.10 ,  P(ab) = 0.02,  P(c) = 0.20,  P(bc) = 0.05,     (5.9)
implying
                    P(a′b) = 0.08  ,   P(b′c) = 0.15).               (5.10)

Eq.(5.9) holds compatibly with all of the above equations by simple use of eq.(2.2) applied to
eq.(5.2i)  But, by being consistent with respect to the interpretation of P(if b, then a) via
P(b ⇒a), we should now interpret
                           P(if b, then a′) = P(b⇒a′) ,   P(if c, then b′) = P(c ⇒b′).               (5.11)

Thus, computing the values in eq.(5.11), via eqs.(5.9), (5.10), readily shows
   P(if b, then a′) = 0.98 ,    P(if c, then b′) = 0.97.               (5.12)

Comparing eq.(5.12) with the basic assumption given in eq.(5.2) shows
P(if b, then a) = 0.92; P(if b, then a′) = 0.98;P(if c, then b) = 0.85; P(if c, then b′) = 0.97.  (5.13)

Eq.(5.13) illustrates a most disquieting situation: there is relatively little difference between the
probability of the negation of the consequents and the affirmation of the consequents for the
same antecedents.   Similar difficulties arise, if P(b) and P(c) in eq.(5.9) were any relatively
small values, with P(ab), P(bc) determined accordingly.  On the other hand, if in place of
eq.(5.9), the antecedent probabilities were medium or even large in value, it is easily seen that
the differences between the probabilities of the negation and affirmation of consequents, for
common antecedent grows larger, producing a more satisfactory result.



Thus, we must conclude that while the use of the material conditional in interpreting the
probability of a conditional statement provides a reasonable formal solution to the transitivity-
syllogism problem overall, it can be a poor model of the individual conditional expressions due
to its insensitivity to consequents when antecedents have low probabilities.

Approach 2.  One models P(if b, then a) – and analogously, P(if c, then b) and P(if c, then a) – by
the well-known conditional probability counterparts (as considered also in the last section)  
            P(if b, then a) = P(a|b) ,   P(if c, then b) = P(b|c),  P(if c, then a) = P(a|c).                  (5.14)

Before attempting to address the transitivity-syllogism problem, we note the obvious difference
between this interpretation and the material conditional one: no discrepancy can arise as in
Approach 1 given in eqs. (5.9)-(5.13), because of the basic properties
                            P(a′|b) = 1-P(a|b),  P(b′|c) = 1-P(b|c) , P(a′|c) = 1-P(a|c),                             (5.15)

as well as the fact that conditional probability is sensitive only to the ratio of (conjoined)
consequent probability to antecedent probability -- it is not essentially forced to approach unity
when the antecedent probabilities grow small.

Returning now to the main problem at hand, consider Figures 5.1 and 5.2, where probability
space (Ω,B,P)  and events a, b, c in B are interpreted so that in both figures below: Ω represents a
solid rectangle in two dimensions; a, b, c are solid triangles of different sizes and shapes; P is
uniform probability measure, and thus all conditional probabilities are proportional to the relative
areas of the triangles involved.

             c
b

         a
 c       a       b

       Ω         Ω

          Figure 5.1.  Situation with All Moderate                     Figure 5.2. Situation with High Values
          Values  for P(a|b), P(b|c), P(a|c)                                   for P(a|b), P(b|c), but P(a|c) Low

Thus, the above illustrations show how events a, b, c and probabilities P can be chosen so that –
by a simple continuity argument – one can pick situations where P(a|b), P(b|c) can be moderate
or high and P(a|c) can take any value between 0 and 1, depending on the construction.  Note also
that in these two figures, while the underlying probability distribution over Ω is uniform, it does
not induce equal probabilities over the (at most 8 relative) atoms formed by intersecting various
combinations of affirming or negating a, b, c.  Indeed, the particular situations the figures
describe are essentially determined by the non-uniform pattern of such values.

Note that certain situations can arise involving additional general relations among a, b, c which
will yield a satisfactory solution to the problem.  For example, it is easily shown that if a, b, c in
B and P are such that there are real numbers 0 < δ, ε1, ε2 < 1  so that
        P(abc′) ≤  δ.P(abc)  ,   P(a|b) ≥ 1-ε1,   P(b|c) ≥ 1- ε2 ,                 (5.16)



then
     (1+δ)P(a | bc) ≥ (P(abc) + P(abc′))/ P(b)  = P(a|b) ≥ 1-ε1  .
Hence,

P( a | bc) ≥ (1-ε1)/(1+δ).                                                           (5.17)
Also,

 P(a|c) ≥  P(ab | c) = P(a |bc)P(b|c).                       (5.18)

Then, combining eqs.(5.16)-(5.18), yields finally
                                                  P(a|c) ≥  (1-ε1)(1-ε2) /(1+δ),                  (5.19)

which obviously includes the special case of  b ≤ c, whereupon δ may be chosen as 0 in
eq.(5.19).  Other than special cases such as the above, the situation in Approach 2 is also not
satisfactory: No conditional probability counterpart of eq.(5.7) can exist in general.  On the other
hand, Approach 2 does not suffer from the difficulties of Approach 1 relative to negations
discussed above.

Thus, both seeming “natural” approaches to dealing with the transitivity-syllogism issue are
unsatisfactory, for two different reasons.  In a similar vein, one can provide other examples
where the material conditional “works” compatibly with “commonsense” reasoning, but its
probability counterpart doesn’t.  Some examples of this include for any a, b, c in B, apropos to
rows 14-16 of Table 4.1:

Contraposition:  When premise P(if b, then a) is high, we want deduction P(if a′, then b′) high
Positive Conjunction: When premise collection P(if b, then a), P(if c, then a) are both high, we
want deduction P(a | bc) high
Strengthening Antecedent: When premise P(a|b) high, we want deduction P(a | bc) high

The next section provides a means for addressing the quandary developed here, not only for the
transitive syllogism problem, but also for a wide variety of deduction problems, including the
above examples and, in fact, the listing of the 28 potential deduction schemes in Table 4.1.

6.  Summary of Cognitive Probability Logic

6.1  Introduction and Basis for Choice

The results of Section 6 stem from a recent mathematical breakthrough, documented more fully
in [Goodman & Nguyen, b], resulting in a new logic, called Cognitive Probability Logic (or the
Logic of Expectations / Averages -- EPL). In fact, the underlying structure of this logic can be
shown to be actually a natural averaging modification of Adams’ HPL discussed in Section 4.
Consequently, a number of long-standing conflicts between ordinary probability logic and
“commonsense” reasoning are resolved for the first time, including the well-known transitivity-
syllogism problem discussed previously. CPL draws heavily upon SOP, as outlined in Section
3.4. In addition, practical applications to the systematic understanding of incoming linguistic-
based information can also be obtained by use of the above-mentioned techniques, together with
one-point random set coverage representations of fuzzy logic.  (See also [Goodman & Nguyen,
1999] for more details.)  Because of the already long length of this paper, most of the long proofs



involved are either omitted, or very much abridged (as in the case of the transitivity-syllogism
deduction scheme in Section 6.2).

The novelty of the result discussed in this presentation is that one can reconcile directly both
commonsense reasoning and classical probability in a fully rigorous and efficiently
implementable way.  The “trick” in accomplishing this involves the basic assumption that, in
actuality, commonsense reasoning in a large number of cases – and certainly including
transitivity as well as the other above-named types of deductions – is actually based on a fixed
abstracted pattern, not on the specific received information.  Thus, for the transitivity syllogism
problem, when one concludes that it is natural to have P(a|c) to be relatively high when both
P(a|b) and P(b|c) are high, one is generally not considering what the specific events a, b, c stand
for, nor the particular type of probability measure P is, but simply what the pattern is, provided
no other possible relevant information is present.  (If it were, then one would add other
constraints, but again stop at some fixed abstracted pattern for further analysis.)  The transitivity
pattern remains valid for completely different situations, such as for a = enemy ship A, b= ship
class B, c = ship class C, with uncertainty measured via the naturally corresponding conditional
probabilities.  In turn, based on the above assumption, it is natural to seek a mathematical model
of the situation where the abstracted pattern of the knowledge structure is taken into account, yet
does not contradict standard probability logic.  The apparent answer to this problem was found
by computing in place of a specific P(a|c) – which, as stated above, one could not obtain in
general anyway, unless one knew all of P (relative to the eight atoms) – an averaged value of
P(a|c), taking into account the variability of possible choices of P, as well as a, b, c, i.e.,
considering a second order probability approach – as opposed to the usual first order one, where
a specific P is used and analyzed.

At this point, it is of some interest to see, via brief survey, how the transitivity-syllogism and
related problems have been treated from a cognitive psychology viewpoint.  [Freeman, 1993]
discusses various methods of implementing reasoning and commonsense reasoning, syllogisms,
but interestingly does not suggest any randomization of patterns in syllogistic reasoning.
[Johnson-Laird, 1983], especially Chapters 2-5, discusses commonsense reasoning and claims
many mistakes are made; he suggests non-truth functional connectives as a possibility for
modeling such, but does not present a specific psychological theory of reasoning that treats
syllogistic reasoning as well as probability concepts.  However, Johnson-Laird discusses
separately syllogistic reasoning in depth and describes a number of numerical experiments run
by him and other colleagues apropos to percentage of (CL) “correct” conclusions and how to
reason syllogistically; but again, he presents no tie-ins with probability logic, even though he
utilizes probability concepts in other sections of his work. [Mayer, 1992] briefly considers
probability, but only applied to the famous Tversky & Kahneman experiments on probability
judgment and decisions, not relating to his presentation on categorical and conditional reasoning
(Chapter 5, pp. 114-151). However, he does discuss a number of experiments concerning
percentage of times deductions (involving conditional or unconditional statements) are
compatible with CL conclusions.  [Solso, 1979], especially Chapter 14, pp. 371-382, treats
syllogistic reasoning and problem solving, but as so with the other above-mentioned writers,
only considers the CL interpretation.



Returning to the SOP approach to the modeling of deductions, one follows the general three or
four step procedure outlined in Section 3.4, formally identifying P as an appropriately chosen
random vector -- most naturally assumed to be uniformly distributed over the relative atoms
comprising the events of interest, but more generally, as in the treatment of the “Judy Benjamin”
updating problem mentioned earlier, assumed to be a dirichlet distribution [Goodman & Nguyen,
a].  At least under the joint uniform distribution assumption, though the effort involved in
achieving closed-form expressions involves a considerable number of computations and
specialized probability techniques, it is not intractable for any of the above-mentioned deduction
forms in Table 6.1, as well as for many others.

6.2  Definition and Basic Properties of EPL

For any variable probability space (Ω,B,P), using again multivariable notation, where, e.g.,
P(a|b)J = (P(aj|bj))j in J, consider any nontrivial finite premise collection (a|b)J in (Bo*)J and
nontrivial (potential) conclusion event (c|d) in Bo.  Then, referring to eq.(4.6), in place of the
function minconc((a|b)J;(c|d)): [0,1]J → [0,1], we seek to evaluate

meanconc((a|b)J;(c|d)):[0,1]J → [0,1],     (6.1)

where now, for any tJ in [0,1]J, comparing with the definition in eq.(4.5),
           minconc((a|b)J;(c|d))(tJ)  ≤ meanconc((a|b)J;(c|d))(tJ) = EP(P(c|d) | P(a|b)J = tJ) .     (6.2)

Here, P is some random vector representing the distribution of probability spaces (Ω,B,P).  More
specifically, one carries out the SOP procedure outlined in Section 3.4, where the atoms
generated by the collection of all consequents and antecedents involved in the potential
deduction are first considered.  P is identified as the random probability function or random
vector resulting from evaluating random probability measure P over all of the atoms,  assumed to
be a joint uniform one.  If under Assumption II, (a|b)J ≤HPL (c|d), then comparing eq.(4.10) with
eq.(6.2) shows

   limit ( minconco((a|b)J;(c|d)) (tJ) ) = 1   implies   limit (  meanconc((a|b)J;(c|d))(tJ) ) = 1.      (6.3)
 ( tJ
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J
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J
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Analogous to the definition of HPL deduction,  we denote EPL deduction as
(a|b)J≤EPL(c|d))  iff    limit (  meanconc((a|b)J;(c|d))(tJ) ) = 1.                (6.4)

             ( t
J
 ↑ 1

J
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Note also that for any random variable Z in [0,1] – as is P(c|d) as a function of random vector P -
-- we have the fundamental result that since Z2 ≤ Z over [0,1],

Var(Z) = E(Z2) – (E(Z))2 ≤  E(Z) – (E(Z))2 = (E(Z))(1-E(Z)).     (6.5)
Hence,

(a|b)J≤EPL(c|d)) implies     limit( VarP(P(c|d) | P(a|b)J = tJ))= 0 ,     (6.6)
       ( t

J
 ↑ 1

J
 , uniformly)

which, in turn, from standard results (such as via the Chebychev Inequality) implies

           limit in probability ( P(P(c|d) | P(a|b)J = tJ)) = 1.     (6.7)
                                  ( tJ

 ↑ 1
J
 , uniformly)



The next result shows that EPL lies properly in between HPL and CPL:

Theorem 6.1  Under Assumption I,
(i)  (a|b)J ≤HPL (c|d)  implies  properly (a|b) ≤EPL (c|d),
(ii)  (a|b)J ≤EPL (c|d)  implies  properly (a|b) ≤CPL (c|d).

Proof:  (i) follows immediately from eq.(6.3).  (ii) is shown in [Goodman & Nguyen, b],
independent of the general proof in [Bamber].          n

Table 6.1 (Section 6.4) illustrates the relations in Theorem 6.1 by determining not only EPL
deduction (or non-deduction) via the limiting froms in the definition in eq.(6.4), but, in fact,
obtaining closed-form expressions for meanconc((a|b)J;(c|d)(tJ), for nonlimiting tJ in [0,1]J, for
many of the 28 types of deduction schemes considered there (and originally in Table 4.1).

6.3  Outline of Proof of Form of Meanconc for Transitivity-Syllogism

For the syllogism problem, e.g., P(a|b), P(b|c) correspond to scalar functions of P, and therefore
correspond to random variables.  Then, in turn, the constraints P(a|b) = s, P(b|c) = t , for any
fixed real s, t in the unit interval, become corresponding events in the second order probability
space over which P occurs.  In this case, there are eight relative atoms, formed in the usual way
out of events a, b, c in B, with respect to variable probability space (Ω,B,P) yielding the
corresponding atoms
   α1 = abc,  α2 = abc′, α3 = ab′c,  α4 = ab′c′,  α5 = a′bc, α6 = a′bc′, α7 = a′b′c, α8 = a′b′c′       (6.8)

forming the vector of atoms
                                                  α = (α1,…,α7,α8).  (6.9)      
Their variable evaluation  by any one choice of P as a vector of probabilities  of the atoms is
                                     y(1) = P(a) = (y1,…,y7,y8) = (P(α1),…,P(α7),P(α8)),                            (6.10)

with the obvious constraints
                                        0 ≤ yj ≤ 1, j=1,…,7,8;     y1+…+y7+y8 = 1.    (6.11)

As (Ω,B,P) varies, so does a, b, c, P, and, in turn, α and Y, clearly covering the region
                         Q(8) = {y(1); y(1) given in eq.(6.10) satisfies eq.(6.13) arbitrarily).      (6.12)

From now on, it is more convenient to eliminate the variable y8, using eq.(6.11), and only
consider the corresponding region Q7, the full 7-dimensional simplex (see eq.(3.41))
                 Q7 = {y: y given in eq.(6.12) satisfies eq.(6.14) arbitrarily},                                  (6.13)
where

        y = (y1,…y6,y7), 0 ≤ yj ≤ 1  , j =1,…,6,7;   y1+…+y6+y7 ≤ 1.         (6.14)

In turn, the variables (random or deterministic) representing the two premise conditional
probabilities P(a|b), P(b|c) as functions of y are, using eqs.(6.8) and (6.10),

        P(a|b) = (y1 + y2) / (y1 + y2 + y5 + y6) ,    P(b|c) = (y1 + y5) / (y1 + y3 + y5 + y7),            (6.15)



while the variable representing the conclusion probability is

                                 P(a|c) = (y1 + y3) / ((y1 + y3 + y5 + y7).               (6.16)

Then, using eqs.(6.15), (6.16), the premise constraints become, for any choice of real fixed s, t,
with 0.5 ≤ s, t < 1,

P(a|b) = s  iff    (y1 + y2) / (y1 + y2 + y5 + y6)  =  s    iff   (1-s)y1  -  sy5      =  -(1-s)y2  + sy6  ,
P(b|c) = t   iff    (y1 + y5) / (y1 + y3 + y5 + y7)  = t     iff   (1-t)y1  +  (1-t)y5 =  ty3  + ty7 .        (6.17)

Hence, if we now introduce Y = (Y1,…,Y6,Y7) as a random vector, whose typical outcome is
denoted by y = (y1,…,y6,y7) as in eq.(6.14) subject to the constraint of being in Q7 given in
eq.(6.13), the random vector and random variable counterparts of eqs.(6.11)-(6.13) all hold with
the replacement of each yj by Yj.  Denote the basic constraint event for the premise as

As,t = {y: y in Q7 and P(a|b) = s, P(b|c) = t} = {y: y in Q7 and y satisfies eq.(6.19)} ⊂ Q7,     (6.18)

where, using eq.(6.17),

          (1-s)y1  -  sy5       =  -(1-s)y2  + sy6 ;          (1-t)y1  +  (1-t)y5 = ty3  + ty7.   (6.19)

In turn, the simultaneous linear equations in eq.(6.19) are easily seen to be always solvable
because of the choice of s, t, yielding the formal solution

                   y1 = h1(v(y3,y7),y2,y6)  ,  y5 = h5(v(y3,y7),y2,y6), y arbitrary,   (6.20)

where the functions h1, h2, and v are defined as

v(y3,y7) = y3 + y7 ,   h1(v,y2,y6) = -(1-s)y2  +  sy6  +  (st/(1-t))v ,

h5(v,y2,y6) =  (1-s)y2  -  sy6  +  ((1-s)t/(1-t))v,  for all y .               (6.21)

Substituting eq.(6.21) into eq.(6.16) yields, up to requiring y to be also in Q7: If y in As,t, then
P(a|c) as a function of y in eq.(6.16) becomes, after simplifying,

                            P(a|c) = -(1-s)(1-t)(y2/v)  +  s(1-t)(y6/v)     +  st    +  (1-t)(y3/v).                  (6.22)

Hence, indicating as before, the corresponding random variables Yj to each possible outcome yj,
V to v, etc., eq.(6.22) shows

       meanconc((a|b), (b|c);(a|c))(s,t)) = EP[P(a|c) | As,t]

= -(1-s)(1-t).EP[(Y2/V) | As,t]   +  s(1-t) .EP[(Y6/V) | As,t]  +  st    +  (1-t) .EP[(Y3/V) | As,t].   (6.23)

Next, consider use of Theorem 3.1, where the original random vector P = (Y1,…,Y7) that is
jointly uniformly distributed over Q7 (actually Dir(18), see eq.(3.40))is transformed to a new
random vector Q = (X1,…,X7,X8) over the positive 7-orthant.  Theorem 3.1 then shows, Yj = Xj /
Xo, j=1,…,7, 8, where Xo = X1+…+X7+X8, V = U/Xo , U = X3 + X7, with all Xj being



independently identically distributed as Gam(1,1), i.e., Expo(1), with common pdf g1, given for
non-zero values as

g1(x) = e-x, for all x > 0.  (6.24)

Then, these relations substituted into eq.(6.23) and taking into account the transformation’s
effect on As,t, and cancelling out Xo, where possible,  yields

meanconc((a|b), (b|c);(a|c))(s,t)) = EQ[P(a|c) | As,t]

= -(1-s)(1-t).EQ[(X2/U) | As,t]  +  s(1-t) .EQ[(X6/U) | As,t]  +  st    +  (1-t) .EQ[(X3/U) | As,t].   (6.25)

Now, in terms of the Xj (and U)

                               As,t holds    iff     X1 = h1(U,X2,X6)  and  X5 = h5(U,X2,X6),                     (6.26)

with (deterministic) functions  h1 and h5 the same as before.  Note that eqs.(6.25), (6.26) show
that the only random variables involved in the final computations for meanconc here are X1, X2,
X6 and U = X3+X7, with X1, X2, X6, U, W = X3/U all being mutually independent  (the latter two
from each other by standard properties of gamma distributions).  U is distributed as Gam(2,1),
with pdf g2, and W = X3/U is distributed beta(1,1) = Unif[0,1], with pdf go given for non-zero
values as

g2(u) = u.e-u, for all u > 0;      go(w) = 1 , for all 0 < w < 1.   (6.27)

In particular, the above remarks show the independence of W from As,t, whence

EQ[W| As,t] = EQ[W] = ½

and now eq.(6.25) becomes

meanconc((a|b), (b|c);(a|c))(s,t)) = EQ[P(a|c) | As,t]

                  = -(1-s)(1-t).EQ[(X2/U) | As,t]  +  s(1-t) .EQ[(X6/U) | As,t]  +  st    +  (1/2)(1-t).     (6.28)

Thus, it remains to compute EQ[(Xj/U) | As,t] , j = 2, 6.  Note also by the independence of X1 and
X5 from hj(U,X2,X6) and the fact that the non-zero pdf values for X1 and X6 is the positive real
line, letting region

  Ro = {(u,x2,x6): 0 < u,x2,x6, such that As,t holds with xj = hj(u,x2,x6) > 0, j = 1, 5},              (6.29)

EQ((Xj/U) | As,t) = Nj(s,t) / D(s,t) ,   (6.30)

where, for convenience, indicating the pdfs involved generically by p(.,..,…)  with appropriate
subscripts, etc.,

 626262ts,
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⋅⋅= ∫ , j=2, 6,   (6.31)



  D(s,t) = Q(As,t) = 626262ts,

R
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⋅∫ .               (6.32)

Also, by independence of the relevant random variables, for outcomes (u, x2, x6) in Ro,

       p(As,t | u,x2,x6) = g1(h1(u,x2,x6)).g1(h5(u,x2,x6)) = e-h1(u,x2,x6)-h5(u,x2,x6) = e-(t/(1-t))u.                 (6.33)

Utilizing further constraints required to satisfy Ro and produce positive hj(u,x2,x6), followed by a
good deal of integral computations and intensive crosschecking,

N2(s,t) = [s2(1-s)t(1-t)(1-s(1-t) + t + t2)] / [(s + t –st)(1 – s(1-t))2] ,   (6.34)

N6(s,t) = [st(1-s)2(1-t)(s + (2-s)t  + t2)] / [(s+ t –st)2(1- s(1-t))],   (6.35)

D(s,t)  =  (st(1-s)(1-t)2(t(1+2t)  +  [s(1-s)(1-t)(2 + 3t –t2)]) / [(s +t – st)2(1- s(1-t))2].   (6.36)

Finally, substituting eqs.(6.34)-(6.36) into eq.(6.30), and then into eq.(6.28), yields after further
manipulations, for any real s, t, with  ½ ≤ s, t < 1,

   meanconc((a|b), (b|c);(a|c))(s,t)) = EP [P(a|c) | P(a|b) = s, P(b|c) = t] =  st  +  (1-t)/2   -  f(s,t),      
  (6.37)

where f(s,t) is the additional correction term

f(s,t) =  [s(1-s)(2s-1)t(1-t2)] / [t +2t2 + (s(1-s)(1-t)(2+3t-t2))].              (6.38)

Inspection of eqs.(6.37) and (6.38) shows general agreement with the commonsense conclusion:
the averaged value of P(a|c) has value generally lower than both P(a|b) and P(b|c), but is not that
much lower, and as s, t approach unity, so does the averaged value of P(a|c).  Furthermore, the
expectation in eq.(6.37) may be interpreted as the averaged degree (over all worlds or
probability assignments) to which premise set at level (s, t), (P(a|b) = s and P(b|c) = t), yields the
conclusion “if c then a” relative to a conditional probability interpretation

6.4  Tabulation of Both Limiting and Non-Limiting Evaluations of Meanconc for Various
      Deduction Schemes and Concluding Remarks

The interested reader will find all relevant details omitted here in the sketch of the proof for
meanconc for the transitivity-syllogism pattern in [Goodman & Nguyen, b].  In addition, detailed
proofs for a number of other meanconc computations in Table 6.1 are also presented there.
Apropos to Theorem 6.1, Table 6.1 below illustrates the proper implication aspect of HPL
deduction relative to EPL, by noting, e.g., rows 13-16 (including transitivity syllogism,
contraposition, etc.) among others; the table also emonstrates the proper implication aspect of
EPL deduction relative to CPL, by noting row 23 (Nixon Diamond).

In summary, this paper has presented an introduction to a new type of logic, Cognitive
Probability Logic (EPL) and its key associated function – meanconc – for calculating the degree
of averaged validity of a potential conclusion with respect to given premises in the form of
conditional or unconditional probability constraints for various nonlimiting levels.



Name and
Number of
Deduction
Scheme
(a|b)J Potent.
Deducing (c|d)

Given Levels
of Premises:
P(a|b)J≥≥ tJ, for
minconc,
P(a|b)J== tJ, for
meanconc

Con-
clus.
(c|d)

Minconc((a|b)J;
               (c|d))(tJ)

Meanconc((a|b)J;
                 (c|d))(tJ)

Valid
For
CPL ?

Valid
for
EPL ?

Valid
for
HPL ?

 1. Disjunction
P(a|b) = s,
P(a|c) = t

(a|b∨c) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 2. Bayes P(a|b) = s,
P(c|ab) = t

(c|b) ≥  st ≥  st YES YES YES

 3. Cautious
  Monotonicity

P(a|b) = s,
P(c|b) = t

(a|bc) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 4.PSCEA
    Order

P(a|b) = t,
for ∅ < a < b,
∅ < c < d

(c|d)
≥  t ≥  t

YES YES YES

 5. Reflexivity
P(a|b) = t

(a|b)  t  t YES YES YES

 6. Cut P(a|b) = s,
P(c| ab) = t

(ac|b) ≥  st ≥  st YES YES YES

 7. Exceptions P(a | bc) =s,
P(a′|b) = t

(c|b) ≥ max(s+t-1,0) ≥ max(s+t-1,0) YES YES YES

 8. Equival.  P(a|b) = s,
 P(b|a) = t

a⇔b ≥  st (s+t)/[2(s+t-st)] YES YES YES

 9. Strict Modus
Ponens

P(a|b) = s,
P(b) = t

ab  st  st YES YES YES

10.General
Modus Ponens

P(a|b∨c) = s,
P(b) = t

ab ≥  st  st  + (1-t)/2 YES YES YES

11.Condition.
Bounds 1  P(a|b) = t

b⇒a ≥ t (2+t)/3 YES YES YES

12.Condition.
Bounds 2  P(ab) = t

b ≥ t

2t)-(1

t)-(1t - tlog(t)-
2

YES YES YES

13.Transitiv.-
Syllogism

P(a|b) = s,
P(b|c) = t

(a|c)  0 ≥  st + (1-t)/2 -

t21

)t-1)(1-s)s(2s-1(
2

+

YES YES NO

14.Contra-
position

P(a|b) = t (b|a) 0

   1/t 
2

t

t)t)log(1(1 −−
+

YES YES NO

15. Positive
Conjunction

P(a|b) = t,
P(a|c) = t

(a|bc) 0 (1+t)/3  + [((1+t)(2−t)/(3t)).θ(t)],
    θ(t) 
= (t2/4)[log((2-t)/t)]/(1-t)

 - ((1-t)2/4).log((1+t)/(1-t)

YES YES NO

16.Strengthen.
Antecedent

P(a|b) = t (a|bc) 0 approx. t  (complicated,
but in closed-form)

YES YES NO

17.Penguin
Triangle

P(a|b) = r,
P(b|c) = s,
P(d|c) = t,
P(a′b|d) = u

(a′|c) 0 ?

NO NO NO

18.Modified
Penguin
Triangle

P(a|b) = r,
P(b|c) = s,
P(d|c) = t,
d ≤ a′b

(a′|c) ≥ max(s+t-1,0) ≥ max(s+t-1,0)
YES YES YES

19.Consequ. 1 P(a|b) = t a 0 (1+t)/3 NO NO NO
20.Consequ. 2 P(a|b) = t b 0 1/3 NO NO NO



21.Consequ. 3 P(a) = t (a|b) 0 1/2)(1 + g(t)),
   g(t) = [(1-t).log(1-t)] / t
            -(t.log(t)) / (1-t)

YES YES NO

22. Consequ.4 P(b) = t (a|b) 0 1/2 NO NO NO
23 Nixon
Diamond

P(ab|c) = s,
P(d|a) = t,
P(d′|b) = t

(d|c) 0 1/2
YES NO NO

24.Reverse
Cond. Bnd. 1

P(b⇒a) = t (a|b) 0

t

t)t)(2(1

2
t

t)-t)log(1-2(1
t

+−
+

+
YES YES NO

25.Reverse
Cond. Bnd. 2

P(a|b) = t ab 0 t/3 NO NO NO

26. Abduction P(a|b) = s,
P(a) = t

b 0 If s ≥ t : t/(2s),

If s < t : 
22

23

s)2st2(t

t)s(1t

+−

−

NO NO NO

27. Induction For bjc all disj.
∨(bJc) < c:
P(a | bj&c) = tj,
j=1,…,n;

(a|c)
0 ? NO NO NO

28.Augmented
Induction

For bjc all disj.
∨(bJc) < c:
P(a | bj&c) = tj,
j=1,…,n;
P(∨(bJ) |c) = s

(a|c)
≥ Π(tJ) – (1-s) ≥ Π(tJ) – (1-s) YES YES YES

             Table 6.1.  Tabulation of minconc and  meanconc Functions and Listing of Validity-Nonvalidity
                of 28 Selected Potential Deduction Schemes with Respect to CPL, EPL, and HPL.

Evaluation of EPL-validity and meanconc, utilizes SOP under the assumption that the pattern of
deduction should be held fixed, not the particular situation.  EPL is seen to play a natural role
relative to both HPL and CPL.  In addition, PSCEA is also demonstrated to be a critical factor in
establishing a natural space to formulate the possible deduction schemes for both HPL and EPL.
Tabulations as in Table 6.1 can be used as guidelines for whether certain deduction techniques
are really worthwhile, such as the much-used abduction scheme.  Of course, the relatively poor
showing of abduction – or for that fact, any other CL fallacy which may well have real-world
meaning -- may have its performance in Table 6.1 improved upon, by embellishing it with
additional appropriately chosen premises.  But note, one must be careful in adding premises to a
particular deduction scheme: improvement – unlike the monotonic logic HPL, as well-
characterized numerically by its very definition (eq.(4.10)) in terms of minconc and algebraically
via Theorem 4.2– is not guaranteed because of the non-monotonic nature of EPL. Many other
CL deduction schemes, including classical fallacies gleaned from standard logic texts (again, see,
e.g., the Copi reference), such as the fallacies of “converse accident”, “denying the antecedent”,
“the material conditional”, “converting a conditional”, etc., can all be tested for their degree of
fallaciousness, and it is possible that a number of technically incorrect deduction schemes for
CL, may very well, on the average, produce relatively high validity values for the meanconc
computations, even without the premise levels tJ approaching unity. Furthermore, the above



comments concerning improving abduction apply here as well.  But, of course, all of this must be
investigated in future work.

Such expansion of the fundamental results in Table 6.1 may well be expedited by not only
application of the situation-specific techniques used to evaluate meanconc for transitivity-
syllogism for non-limiting premise probability levels, as illustrated in Section 6.3, but by
determining that a general feasible-to-implement technique may exist for evaluating large classes
of such problems as particular multiple integrals involving products of powers (due to the initial
uniform or dirichlet distribution assumptions) over compact convex regions or polytopes – or via
Theorem 3.1 – as related integrals involving negative exponential forms over linearly
constrained infinite multi-dimensional regions in the positive orthant.  (One basic reference for
this possible direction of research is [Bistriczky et al., 1994].)  In a related vein, the significant
results in [Bamber] should be pointed out: the obtaining essentially of a full workable –albeit,
somewhat complicated -- algebraic characterization of EPL in its limiting form and a larger class
of (limiting form) logics -- based upon the generalization of assumed uniform convergence of the
probability levels of the premises to unity here, by “scaled” convergence rates.  (In addition, see
[Goodman & Nguyen, b] for details of related results.)

The usefulness of EPL can also be extended to linguistic situations, such as the transitivity-
syllogism deduction scheme, where typically, one may have the premise “many enemy tanks of
class C are of class B” and “almost all tanks of class B are of class A” and the desired conclusion
concerns just what rough percentage – or linguistic modifier – should be used to best describe the
number of enemy tanks of class C that are of class A ?  Here, both REA techniques and RSC can
be used together to obtain linguistic results which are fully compatible with the numerical-
probabilistic ones of Table 6.1.  Because of lack of space here, the interested reader is referred to
the recent paper [Goodman & Nguyen, 1999], where Zadeh’s linguistic deduction analysis
utilizing fuzzy logic (as, e.g., in [Zadeh, 1985]) is so addressed.
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