
The Use of Simulation Models in Model Driven Experimentation

Holly A. H. Handley, Zainab R. Zaidi, and Alexander H. Levis∗∗

System Architectures Laboratory, C3I Center
George Mason University

Fairfax, VA 22030

Abstract

In model driven or model based experimentation, the model of the experiment is a key
component of the closed loop model of the process. The model is created through interaction
with the team designing the experimental organizations as well as the team creating the
experimental environment. Starting with preliminary descriptions, the model evolves as more
specific details are available and influences the final experimental design.

The methodology used to design the model reflects both the types of design information
available and the underlying hypothesis of the experiment. Experiments validating fixed types of
structures or processes lead to a model designed with a Structured Analysis Design Technique
which leads to an explicit but rigid model design. Experiments investigating adaptation require a
more flexible model which can be created using an Object Oriented design approach. This leads
to a more flexible, object view of the experimental design. Either approach leads to an
appropriate set of models from which an executable model can be derived. The executable model
is used to carry out simulations

In order to analyze the dynamic behavior of the model, an input scenario must be created based
on the actual inputs that will be used in the experimental setting. When the model is stimulated
with the scenario, its behavior can be observed and its performance measured on different
criteria. Because it is a computer simulation, input parameters can be varied, constraints can be
relaxed, and other variables (possibly) affecting the hypotheses can be explored to see their
effect on the model and by inference the experiment. These results can then be made available to
the design teams to influence further iterations of the design. Indeed, the model allows the
consideration of many excursions, a situation that is not possible when the experiments include
teams of humans.

After the experiment is conducted, model validation is carried out by comparing the model
results to the actual experimental results. This is done by driving the model with the original
scenario, but including the actual decisions made by the human subjects, or decision makers.

1.0 Introduction

The development of the experimental model is the second step in the process of model driven
experimentation. After the hypothesis to be investigated has been defined, the development of
the model occurs concurrently with the development of the decision making organizations and

∗ This research was sponsored by the Office of Naval Research under grant no. N00014-93-1-0912.

the experimental situation. These three areas of development evolve together, with early
iterations of the model providing feedback for improvement to the other two areas. As progress
is made on the organizational and environmental designs, this information is incorporated into
the developing model and preliminary simulations conducted. The results from the simulations
are then passed back to the design teams for evaluation. Improvements can then made to the
previous designs. When the experimental organizations and environments are finalized, the
model development is complete; it can now be used to conduct the pre experimental simulations.

The design of the model is directly related to the experimental hypothesis; the hypothesis defines
the purpose of the model. This in turn affects the methodology chosen to design the model. For
example, if the hypothesis is comparing different fixed organizational structures, the model must
be designed in a way to represent the different candidate designs. If the hypothesis is evaluating
an organization responding to a changing environment, the model must be designed in a way to
respond to a variety of inputs. In some cases in may be more important what the model does, in
other cases it may be more important how the model does it. The model must be designed
befitting the hypothesis.

An appropriate model can only be created if the model designer interacts with the designers of
the other parts of the experiment as the model represents the entire experimental design – the
organization, the environment, and the performance measures. The model consists of the
organizational design responding to stimuli from the environmental design and must record or
measure the organization’s response. These three facets are often being designed by separate
groups using different tools. For example, the organizational designer may provide information
in the form of hierarchical organization diagrams, Gantt charts of resource allocations, and
tabular data concerning task requirements. Likewise, the environment designer may talk in terms
of task types, geographic restrictions, and minimum force requirements. The performance
measures may be in terms of time limits, task accuracy, or casualties. The model designer must
be able to integrate and implement this varied information into a cohesive model that accurately
represents the complete experimental design.

The primary reason for modeling is to use the results from the pre experimental model
simulations to improve the experiment before it is conducted, by isolating the conditions that will
generate the most pithy results – those that have the most substance and are in a well defined
region. Using a model eliminates the guesswork surrounding the experimental design; a model
can withstand multiple iterations of the same procedures with minor variations. The model can
be used to explore the extreme boundaries of operation as well as the incrementally small
changes associated with fine-tuning the ranges and values of variables and parameters in the
experimental design. The model’s behavior should be observable and its performance
measurable using the criteria defined in the experimental design. These criteria for evaluation of
the behavior and performance of the modeled system should be defined in the design stage of the
model in order to ensure that these variables are indeed observable or that the necessary data to
generate these measures is available for capture.

2.0 Modeling Methodologies

System engineering provides two distinct approaches for designing models, the Structured
Analysis Design Technique and the Object Oriented approach [Levis, 1999]. Both
methodologies lead to executable models of systems, but they take different paths and emphasize
different aspects of the system. Models that require sequential processes and fixed structures are
best implemented through the Structured Analysis approach. Models that respond to multiply
occurring, independent events are better suited to an Object Oriented approach. Both approaches
will be described and examples given based on the actual models from the Adaptive
Architectures for Command and Control (A2C2) research program. Both models had similar
purposes, however the different models stressed different aspects of the experimental design.

2.1 Structured Analysis Design Technique

The pre experimental models for the second A2C2 experiment (A2C2-2) [Handley et al., 1997]
employed the Structured Analysis Design Technique [Marca and McGowan, 1988]. This
methodology was chosen because the hypothesis compared two distinct, fixed structure
organizational designs, termed “Traditional Architecture” (TA) and “Non-traditional
Architecture” (NTA). Both organizations would be required to complete a predetermined, fixed
task sequence in order to achieve the requisite mission. The mission consisted of conducting
simultaneous troop landings on a northern and southern beach. The southern group proceeds
along the south road to secure the airport. The northern group secures a nearby hill, then
proceeds along the north road to the seaport. Along the way they encounter mines, tanks, and
ground, sea, and air assaults. Because this mission can be viewed as a fixed process, or sequence
of tasks, and because two distinct fixed organizational structures were being evaluated, a
structured approach was appropriate to design the pre experimental models for this experimental
design.1

The structured analysis approach starts by identifying the functions that the modeled system
must perform. A functional decomposition is created, which is a hierarchical description of the
functions the system performs. To completely specify the model design under this methodology,
a set of four models is created based on the functional decomposition: an activity model, a data
model, a rule model and a dynamics model. Each one of these inter-related models contains a
different aspect of the complete model design. The activity model describes the processing of
inputs from the environment into outputs to the environment. The associated data model
describes the relationship between the data at the different stages of processing. The rule model
describes the conditions that must be satisfied for the activities to take place. The dynamics
model describes the states of the system and the transitions between them.

Two pre experimental models were created for this experiment, one representing each of the two
proposed organizational architectures. For each of the two organizations under evaluation, the
information available from the organizational design team was the number of decision-makers,
the platforms they controlled and the command hierarchy. Platforms represent the deployable
resources of the organization, for example a tank or a helicopter, as well as a troop battalion.

1 The first A2C2 experiment (A2C2-1) also used a structured analysis approach. However, because that modeling
effort was not completed prior to the experiment being conducted, it is not discussed here.

Both the TA and the NTA had six decision-makers but arranged in different command
hierarchies with a different distribution of platforms as shown in Figs. 1 and 2. The information
from the environmental team was the mapping of decision maker responsibility to the sequence
of tasks necessary to support the mission. This information was extracted from the written
description of the experimental environment which provides a situational assessment, including
enemy and friendly forces, and the concept of operations, including task assignments and
coordination instructions. The experimental design allowed the transfer of platforms from one
decision maker to another. This only occurred if a decision-maker had responsibility for a task in
which he did not have the proper platform, then a transfer was initiated through the chain of
command. Since this occurs infrequently, the request and transfer for a specific platform for a
specific task was reflected in the functional decomposition as specific functions and was
embedded in the activity model.

Figure 1: Traditional Architecture Organizational Structure

4.0

4.34.24.1

4.3.14.1.1

1 LHA
1 LPD
1 DDG
2 Cobra
1 Medevac
1 MH-53

1 LHA
1 LPD
1 DDG
2 Cobra
1 Medevac
1 MH-53

1 CV
1 CG
2 FFG
8 Fighter
8 CAS

1 Recon

3 Rifle
1 Eng
1 Stinger
2 AAAV
1 MV22

3 Rifle
1 Eng
1 Stinger
1 AAAV
2 MV22

Figure 2: Nontraditional Architecture Organizational Structure

The functional decomposition for a model is based on the operational concept defined for the
organization being modeled. The operational concept describes how the organization should
carry out its mission; it may be that there are several possible ways to achieve a mission so one
must be chosen and specified. For the two organizational designs under consideration, the
operational concept was defined as the sequence of tasks indicated in the concept of operations
as necessary to complete the mission. These mission tasks were decomposed into subtasks,
which were in turn further decomposed. The decomposition continues until each element of the
“tree” is distinct, there are no repetitions or duplications. An additional requirement for the
lowest level of decomposition was that each function can be accomplished by a single decision-
maker utilizing a single platform. There is some flexibility on the approach taken to perform the
functional composition. In this case functions were decomposed first by geography and secondly
in order to maintain sequential processing. Different functional decompositions are acceptable
depending on the operational concept and the modeling objective. This functional decomposition
consisted of 72 distinct functions. Fig. 3 shows the top-level decomposition and the A1 block,
“Generate Orders”, further decomposed to the second level decomposition. Each of the other
three branches, “Attack Beaches and Hill”, “Clear Roads and Advance”, and “Secure Port and
Airfield”, are also further decomposed, but not shown here for clarity.

4.0

4.34.24.1

4.2.24.2.1

1 LHA
1 LPD
3 Rifle
1 AAAV
2 MV22
1 Stinger

1 LHA
1 LPD
3 Rifle
2 AAAV
1 MV22
1 Stinger
2 Cobra

2 Cobra

1 Recon
1 CV
8 CAS

2 DDG
1 Eng
1 CG
1 Medevac
1 MH-53

2 FFG
1 Eng
1 Medevac
1 MH-53
8 Fighter

Figure 3: Functional Decomposition - A1 Branch

Once the functional decomposition is complete, the activity model takes the distinct functions
and arranges them in a specific order, that when activated will achieve the defined mission. The
activity model was created using IDEF0™. The blocks represent the functions, the input arrows
on the left of the block are the data input to that function, the output arrows on the right of the
block are the output data from the function. The input arrows on the top of the block are the
control information for the function and the input arrows on the bottom of the block are the
mechanisms necessary to perform the function. In this case, orders and enemy threats are
represented as inputs, completed tasks are outputs, which become control information for future
functions, and the decision-makers and the platforms are modeled as mechanisms. The offensive
actions necessary to complete the mission are represented as the sequence of activities. The
resulting activity model had 20 pages. The context page, shown in Fig. 4, indicates the model’s
objective, “Seize Port and Airfield of Sfax”. “Sfax” is the hypothetical city in which this
engagement is taking place. The first level decomposition is shown in Fig. 5, which shows the
three main sequential activities: “Attack Beaches and Hill”, “Clear Roads and Advance” and
finally “Secure Port and Airfield”. The “Generate Orders” box represents the coordination for
each major activity. Note that these are also the top level functions of the functional
decomposition: there is a direct relationship between the activity model and the functional
decomposition.

A0
Seize Port and Airfield

A11: Attack Order

A1
Generate Orders

A2
Attack Beaches and Hill

A3
Clear Roads and Advance

A4
Secure Port and Airfield

A12: Launch Order

A13: Secure Order

A14: Advance Order

A15: Final Attack Order

Figure 4: Activity Model – Top Level Context Diagram

Figure 5: Activity Model – A0 Page of IDEF0 Diagram

The data model identifies the relationships between the information elements identified in the
activity model, the attributes they may have, and the allowable values. Each data flow between
the functions identified in the activity model becomes an entity in the data model, represented as
a box. The attributes of the data are listed in the box. The relationships are indicated on the
association lines between the boxes. The one page data model was created using IDEF1X™ and
is shown in Fig. 6. The rule model defines the logical operation of each leaf function in the
activity model; they may be activation, interaction, or coordination rules. Fig. 7 shows the block
of rules for the “Generate Orders” activity, which was implemented using structured English.
The fourth model, the dynamics model captures the expected behavior of the system. It is

Seize Port
and Airfield

of Sfax

HIGHER_AUTH_ORDERS

ENEMY_THREATS

RULES_OF_ENGAGEMENT

OUTCOME_OF_ATTACK

DMS RES_AVAILABLE

A0

DMS

Attack
Beaches and

Hill

A2

P. 4

Clear Roads
and Advance

A3

P. 8

Secure Port
and Airfield

A4

P. 19

Generate
Orders

A1

P. 3

ORDERS

described using a state transition diagram. Since the operational concept is based on a task
sequence of two distinct paths, the state of the system corresponds to the current place in the
sequence of events, with states transitioned on the giving of orders as shown in Fig. 8.

Figure 6: Data Model – IDEF1X Diagram

[A1] Generate Orders

 [A11] Generate Attack Order:: IF Auth_Order = Attack AND Rules=Plan
THEN Order.A1=Clear_Beaches AND Complete.A11=Yes

 [A12] Generate Launch Order:: IF State.A214=Bmines_Cleared AND Rules=Plan
THEN Order.A1=Launch_Marines

 [A13] Generate Secure Order:: IF State.A225=Marines_Launched AND Rules=Plan
THEN Order.A1=Secure_Beach_Hill

 [A14] Generate Advance Order:: IF State.A235=Beaches_Hill_Secure AND Rules=Plan
THEN Order.A1=Advance_Roads

 [A15] Generate Final Attack Order:: IF State.A315=North_Road_Cleared
OR State.A325=South_Road_Cleared AND Rules=Plan
THEN Order.A1=Coord_Attack

Figure 7: Rule Model – Generate Orders Functions

Rules

RULES_OF_ENG

Auth_Order

HIGHER_AUTH_ORDERS

Threat_Type
Present

ENEMY_THREATS

Owner
Comm_link
DM_T (FK)

DMS

Resource
Platform
Res_status
Owner (FK)

RES_AVAIL

Port_Out
Air_Out
Outcome

OUTCOME_OF_ATTACK

Order
Rules (FK)
Auth_Order (FK)
State (FK)

ORDERS

State
Complete
Threat_Type (FK)
Resource (FK)
DM_T (FK)

TASK_COMPLETE

Port_Ready
Air_Ready
Inst

COORD_INST

State (FK)

OP_STATUS

DM_T
Request
Resource (FK)
Owns

RES_XFER

affect generate initial

generates

affects next

may be contained in

are needed for

owns

may be needed for
needs to check

needs to check

results in

result in

Figure 8: Dynamic Model – State Transition Diagram

A system dictionary was created which accompanies the set of four models. Each individual
model generates a dictionary of elements and definitions for that model. The system dictionary
integrates all the model dictionaries to provide the sole reference for definitions and cross-
reference of all elements of the system. While the system dictionary provides a consistency and
completeness check for the set of models, model concordance insures that all models are in a
representative state of agreement. Model concordance is achieved through a process of creating
hypertext links between all objects in the static models. [Levis et al., 1999] This was completed
in order to achieve a cohesive set of models.

Up to this point in the model design, the different organizational structures have not played a role
in the design. Now two distinct models were created, by assigning a decision-maker and
platform, where appropriate, to each leaf function of the functional decomposition. If the
decision-maker owns the platform he needs to accomplish his assigned task, none of the
additional resource transfer function activities were retained for that mission task. If he did not
own that resource, the number of transfer resource functions retained depended on how many
steps through the chain of command were necessary to complete the transfer. For example, in the
mission task “Remove wounded from North Road” in the TA model, two steps were necessary to
transfer the Medevac platform from the owner decision-maker to the responsible decision-maker.
In the NTA model four steps were necessary. In most cases, no resource transfer was necessary
at all. By customizing the activity models appropriately for each architecture, the static model
designs were now complete.

Red Beach Cleared

Marines Landed on
Red Beach and Hill

Red Beach and Hill Secured

North Road Clear

Port Secure

Order to Launch Marines

Order to Secure Beaches

Order to Clear Roads

Order to Coordinate Final Attack

Blue Beach Cleared

Marines Landed on
Blue Beach

Blue Beach Secure

South Road Clear

Airport Secure

Order to Launch Marines

Order to Secure Beaches

Order to Clear Roads

Order to Coordinate Final Attack

Order to Clear Beaches

Awaiting Orders

Order to Clear Beaches

Mission Complete
Airport Secure ConfirmedPort Secure Confirmed

Some limitations of this model and approach should be noted. By choosing a structured analysis
approach, the functional decomposition becomes the foundation of the model. However, in the
case where similar tasks were being performed in different branches of the tree, the functional
decomposition becomes clumsy, in the sense that more and more adjectives need to be added to
distinguish the functions. For example the geographic qualifiers “north road” or “south road”
were added to the function “clear road mines” to distinguish them. Secondly, because only two
instances occurred where the transfer of resources was necessary, embedding them within the
activity model was not difficult. However, if transferring resources were a much more common
occurrence, it would complicate the model significantly to embed those in both the functional
decomposition and the process model. Thirdly, in this model, the tasks are grouped
geographically. For example all the north road functions appear on one page. This supports the
sequential processing of tasks, however, the decision-makers responsible for the tasks are
interwoven, making it difficult to gauge the activity level of the individual decision-makers.
Fourth, noticeably missing from this model, is the random, enemy threats that occur
independently of the task sequence of the mission, for example, the submarine strikes at sea.
With this type of approach, it was not feasible to include them in the model. Lastly, because only
two variants of the architecture were under consideration, it was not difficult to create two
separate models. But for a larger number of candidate architectures, or for more design
iterations, this would prove difficult.

2.2 Object Oriented Approach

The third experiment of the A2C2 program (A2C2-3) expanded on the results of the second
experiment and considered a hypothesis that evaluated different organizational structures with
both a varying number of decision makers and number of platforms. The number of decision-
makers was no longer restricted to six, there could be less, and the number of platforms could be
either “full” (36 platforms) or “reduced” (20 platforms.) Moreover, at the time of the hypothesis
definition, the number of variant architectures or design iterations was not fixed. With the
possibility of many variants and iterations, it was not feasible to anticipate creating a new set of
models with each design change. Therefore, one of the modeling objectives became to create a
re-configurable model, that is a model that could be easily modified to incorporate new
organizational designs with different numbers of decision makers and platform parameters.
While the mission and operational concept remained the same for this experiment as in the
previous ones, with minor variations such as including a bridge task, much more information was
made available from the environmental design team concerning the number and nature of enemy
threats. Most of these threats would occur randomly and independently of the task sequence
representing the mission objectives. Based on this information, the structured approach used in
A2C2-2 was no longer appropriate. An Object Oriented approach was taken to design the pre
experimental model for A2C2-32, creating a flexible and re-configurable model [Handley et al.,
1998].

In order to create the model using an object oriented approach, the structure of the system was
defined first instead of the process, or task sequence. By examining the basic characteristics of
the system, three abstract entities or object classes were defined: Decision Maker (DM),

2 The fourth A2C2 experiment, (A2C2-4), was an extension of the third experiment. It used the same re-configurable
model designed for A2C2-3 with minor modifications.

Platform, and Task. These are general descriptions that represent a whole class of objects. The
description of these object classes is shown in Fig. 9. Each object is given an identifier based on
the type of object it is. For example the DM objects are DM0, DM1, etc. Each object also has
attributes or characteristics specific to that object class. For example the DM object class has
attributes Skills, Owned Platforms, and Assigned Tasks. Giving the attributes values defines the
different instances of a particular object class. For example to instantiate the Platform instance
whose ID is SAT, the fixed attributes would be set as follows: resources = 6 IDES, Owner
platform = CV, Trigger Eliminated = No, and Velocity = 0.7. The instances have initial
conditions that fix the variable attributes until they are changed in order to accomplish a
particular task. For example the Platform instances are given an initial Current_Location,
indicated by the environmental design, and the Distance_to_Travel is set to zero until the
platform is assigned to a target. Then the target location is used to calculate the distance the
platform must travel from its current location to the target’s location. The method or operation
that the instance implements is also identified. The Platform object class has one method,
Travel_to_Task.

Decision Maker
Object Class

Task
Object Class

Platform
Object Class

ID DM_ID TASK_ID PLT_ID

Attributes: Fixed Skills Value Resources

Owned Platform Time Superplatform
Assigned Tasks Type Trigger

Location Velocity
Resource Required
Skill Required

Attributes: Variable Current_Location

Distance_to_Travel
Methods Launch Platforms Execute Task Travel_to_Task

Enable Tasks

Figure 9: Object Class Definitions

Conceptually, the model operates as follows: when a task arrives, the DM mapped to that task
recognizes it. The DM then launches the appropriate platform by checking what platform is
applied to that task. When a platform is launched, it begins to travel to the location of the task.
Travel time to the task is included in the model based on the individual platform’s speed and its
previous location. Once the platform has arrived at the task location, the DM enables the
platform and the task is executed for the corresponding duration. Once the duration time has
expired, the platform is then available to be assigned to another task. In the case of coordinated
tasks, multiple platforms are required to complete a task. The DM responsible for the task
identifies the other DMs who own the necessary platforms to complete the task. He sends out
messages over communication channels to the other DMs to check the availability of the other
platforms. Once the platforms are all available and present at the task location, the responsible
DM sends out the message to enable the platforms, and the task is then executed.

As described above, the interaction of these object classes is how the system operates to
complete the mission objectives. Following the Object Modeling Technique of Rumbaugh,
[1991], three views of the system are necessary in order to complete the model design. The

object view describes the relationships between the object classes. A functional view must be
defined for each method in the object class definitions; it shows data transformation through the
use of data flow diagrams. The dynamic view depicts the behavioral aspects of the system
through the use of state transition diagrams, similar to the dynamics model of the structured
analysis approach.

The object view shown in Fig. 10 depicts the three interacting object classes, DM, Platform, and
Task, and their relationships. The Scenario Driver is also shown which provides the type, timing,
and ordering of the tasks to which the organization must respond. An object definition file
describes in detail all the allowable instances of each object class. For each method defined in
the object view, a functional view must be created. For example, Fig. 11 shows the functional
view for the method Execute_Task. It shows the objects that provide data, how the data are
transformed by the method, and the output data to other objects. Finally, the event trace shown in
Fig. 12 depicts the behavioral aspects of the model. It shows two instances of a DM interacting
to launch two platforms to accomplish a task.

Figure 10: Object View

Figure 11: Functional View – Execute Task Method

PlatformDM launches

messages

Scenario Driver Task

travels toenables

provides

 : Task

 : Platform

 : DM
 : DM

 : Platform1: Travel to Task

2: Enable Task

 : Scenario Driver

3: Platform Available

4: Update Current Location

5: Next Task

Figure 12: Dynamic View – Coordinating Decision Makers

Up to this point in the design, the variants of the different organizational architectures have not
been considered. After several design iterations, three candidate organizational structures were
identified for the experiment. The decision maker hierarchies with the major platform
distributions are shown in Figs. 13 - 15. Recall that this model was designed to be re-
configurable, meaning one model was designed and initialized to a different organization prior to
simulation. Changing the mapping, the relationship between the DM, the platforms he owns, and
the tasks he is responsible for, customizes the model. A sample of this mapping information is
shown in Fig. 16. Once the mapping information is recorded, the static design of the model is
complete.

Fig. 13: Organizational Architecture A0-6

Responsible :
DM

Coordinating :
DM

Primary :
Platform

 : TaskSecondary :
Platform

Assess Platform

Request Message

OK Message

Launch

Launch Message

Enable

Launch

DM0
(SAT,VF)

DM3
(INF,ENG)

DM2
(DDG,MED)

DM1
(CG,FFG)

DM5
(SOF)

DM4
(AH1,CAS)

Figure 14: Organizational Architecture A1-4

Figure 15: Organizational Architecture A2-5

UConn ID DDD ID PLATFM A0-6 A1-4 A2-5
731 [T10-PZ5] (D:AC:Air-Sea) DDG-4 DM2 DM1 DM1
731 [T17-PZ5] (D:SC:Submarine) FFG-3 DM1 DM1 DM1
731 [T7-PZ5] (D:GC:Silkworm) CAS-13 DM0 DM0 DM0
741 [T15-PZ5] (D:GC:Dummy Silk) SAT-8 DM0 DM0 DM0
731 [T16-PZ5] (D:SC:Patrol Boat) DDG-4 DM2 DM1 DM1
741 [T19-PZ5] (D:SC:Neutral Patrol) SAT-8 DM0 DM0 DM0
741 [T18-PZ5] (D:SC:Neutral Sea) SAT-8 DM0 DM0 DM0
741 [T21-PZ5] (D:AC:Neutral Air) SAT-8 DM0 DM0 DM0

Figure 16: Sample Task – Platform – DM Mapping for North Fleet Tasks

Some limitations of this model and approach should also be noted. Because the mission tasks, as
well as the threat tasks, were included as part of the scenario driver, the two types of tasks are
indistinguishable and this model does not prioritize one type of task over the other, regardless of
the consequences. Secondly, the model was designed to complete all tasks received, regardless of
how long they are delayed before they are executed. Tasks can be delayed when the required
platform is busy with another task. Likewise, the model does not stop processing tasks when the
mission tasks are complete, and delayed tasks may still be active long after it is appropriate. It’s
worth noting that the resource transfer function, which was an issue in A2C2-2, [Handley et al.,

DM0
(SAT)

DM2
(ENG,SOF)

DM3
(INF,MED)

DM1
(DDG,FFG)

DM0
(SAT,CAS)

DM3
(INF,MED)

DM2
(ENG,SOF)

DM1
(CG,FFG)

DM4
(INF,MED)

1997] did not occur in A2C2-3. Each decision-maker was only assigned tasks for which he had
the appropriate resources. Ironically, the object-oriented model could have incorporated that
function quite easily.

3.0 Creating an Executable Model

Once the design of the model has been completed, an executable model is created. An executable
model can be created regardless of the design approach used. The model design at this point is
static, it is a description of the model and how it should behave. In order to execute the model, it
must be created in a dynamic environment. Colored Petri nets provide a modeling and simulation
environment in which an executable model can be created. The executable model combines all
the information in the various static models or views into one model that can illustrate dynamic
behavior: the flow of data, the conditions under which functions are performed, and the order in
which they are performed. Behavior analysis and performance evaluation can then be carried out
using scenarios consistent with the operational concept.

Colored Petri nets [Jensen, 1992] are a generalization of ordinary Petri Nets [Murata, 1989].
Ordinary Petri nets are bipartite directed graphs. There are two sets of nodes: places denoted by a
circle node and transitions modeled by a bar node. The arcs or connectors that connect these
nodes are directed and fixed. They can only connect a place to a transition or a transition to a
place. A Petri net also contains tokens. Tokens are depicted graphically by indistinguishable dots
and reside in places. A marking of a Petri Net is a mapping that assigns a non negative integer,
representing the number of tokens, to each place. A transition is enabled by a marking, if and
only if all of its input places contain at least one token, since each input arc represents a single
connection between the place an the transition. An enabled transition can fire. When the firing
takes place, a new marking is obtained by removing a token from each input place and adding a
token to each output place. The dynamical behavior of the system is embedded in the changing
of the markings.

In Colored Petri nets (CPN), the tokens are no longer indistinguishable; they now carry attributes
or colors. Tokens of a specific color can only reside in places that have the same color set
associated with them. The requirements to fire a transition are now specified through arc
inscriptions; each input arc inscription specifies the number and type of tokens that need to be in
the place for the transition to be enabled. Likewise, output arc inscriptions indicate what tokens
will be generated in an output place when the transition fires. Code segments can also be
associated with a transition; these are blocks of code that execute when the transition fires,
representing the functionality of the transition. A global declaration node of the Colored Petri net
contains definitions of all color sets and variables with their domains for the model.

Although there is not an automated process for creating an executable model using CPN from the
static designs, some general guidance is available and there are associations between the
different static models and the components of the executable model. For designs created with the
structured analysis approach, the CPN most often follows the activity model. Each activity is
converted to a transition and each arrow becomes a place with the color set of the data label. The
information in the data model is used to specify the color sets and their respective domains,
while the rules in the rule model result in arc inscriptions. The top-level page of the A2C2-2

model is shown in Fig. 17. The transitions represent the main mission tasks and the places
represent the data. In order for the task transition to fire, there must be a token in each of the
input data places. After the transition fires, these tokens are removed, and tokens are produced in
the output data places. This model is hierarchical, similar to the activity model. Sub pages, such
as shown in Fig. 18, show the complete sequence of functions for each mission task. Figs. 19 and
20 show the effect of the different organizational structures requiring more embedded functions
for the resource transfer in the Remove_Wounded_from_North_Road task.

Figure 17: Top Level Executable Model – A2C2-2

Figure 18: Sub Page – Clear North Road

Order

1`(Bmines_Red,1)+
1`(Bmines_Blue,1)+
1`(Gmines_North,1)+
1`(Gmines_South,1)+
1`(Counter_Attack_North,1)+
1`(Counter_Attack_South,1)+
1`(Wounded_North,1)+

Complete

Complete

Complete

Complete

Complete

Complete

Generate
Attack Orders

A1

Clear Mines
from Beaches

A21

Launch
Marines

A22

Complete

Complete

Secure
Beaches and

Hill
A23

Complete

Complete

Clear North
Road
A31

Clear South
Road
A32

OutcomeSecure Port and
Airfield

A4

A312
Clear North Road

Mines

A313
Suppress North
Counter Attack

A314
Remove North

Wounded

CompleteComplete

Enemy_Threats

Op_Status

Order

Op_Status

Op_Status

Op_Status

A315
Report North

Road @+2

Order

Order

Order

A311
Coordinate
North Road

@+2

Order

A315
Suppress North
Frog Launcher

Op_Status

Advance_North_Road

Advance_North_Road

Advance_North_Road

Gmines_North_Cleared

Counter_Attack_North_Suppressed

Wounded_North_Removed

1`(Gmines_North,status)

1`(Counter_Attack_North,status)

1`(Wounded_North,status)

yes

yes

Gmines_North_Cleared

Counter_Attack_North_Suppressed

Wounded_North_Removed

North_Road_Cleared

Advance_North_Road Advance_North_Road

Advance_North_Road

Advance_North_Road

Advance_North_Road

Advance_North_Road

Frog_North_Suppressed

Figure 19: Sub Page – Remove Wounded from North Road, TA Variant

Figure 20: Sub Page – Remove Wounded from North Road, NTA Variant

For object oriented designs using OMT, the CPN most often follows the object view. The
executable model for A2C2-3 contains a top-level page representing the object view and the
scenario driver as shown in Fig. 21. In this case each object class has become a transition and the
associations have become places. There are sub pages for the scenario driver, the task, the
platform, and the organization object classes. The organization, Fig. 22, has a further sub-page,
the decision-maker, Fig. 23. Although the organization page contains instances of six decision-
makers, organizations with fewer than six can be created by placing “dummy” markings on the
unnecessary DMs. The DM objects were enumerated in this case, as opposed to using an object
class, in order to provide the customization necessary to reconfigure the organization. Each DM
object on this page has a distinct DM Data place. The initial marking on this place customizes
the organization by indicating each decision maker’s platforms and tasks for this configuration.

A3146
Remove North

Wounded @+15

Order
No Wounded on

Road

A3141
Ask for

resources
@+2

A3145
Execute the

Transfer

@+5

ReqMedevac ReqMedevac

ReqMedevac ReqMedevac

A3146
Remove North

Wounded @+15

Order

No Wounded on
Road

A3141
Ask for

resources

@+2

A3145
Execute the

Transfer

@+5

A3143
Task

@+4

A3144
Forward
Tasking

@+2

ReqMedevac

ReqMedevac

ReqMedevac

ReqMedevac

ReqMedevac

ReqMedevac

ReqMedevac ReqMedevac

Figure 21: Top Level Executable Model – A2C2-3

Figure 22: Sub Page – Organization

Scenario Driver

Task

TaskPlatDM

PlatLocation

PlatDMLocTaskDM PlatDM

Organization Platforms

Task

Tasks

Plat

Task

Ta TaskPla

D

D

D

D

D

MsMs

Trans
Ms

@

D

DMD

DMD

DMD

DMD

DMD

DMD

(dm2,dm1,tid(dm2,dm1,tid

Figure 23: Sub Page – Decision Maker

4.0 Simulating the Model

Once the executable model has been completed, a set of stimuli for the model to must be created.
This is termed a scenario or scenario driver. It represents the type, frequency and arrival time of
the inputs the organization under study must respond to in the experimental environment. For the
A2C2 series of experiments, the human subjects were arranged in the different organizational
architectures and responded to a set of inputs from a simulated military environment. The DDD-
III Simulator, located at the Naval Postgraduate School, is an interactive computer environment
that can be configured to represent different missions. The monitor displays a map of the area of
conflict, including the terrain, and also the friendly and enemy platforms involved in the mission.
The screen also has a dialog box for messaging among the decision makers. The decision makers
communicate and manipulate platforms to complete the mission, much like a video game. The
input file which configures the simulator for a particular mission can be used to extract the
information necessary to create a scenario driver for the executable model.

Creating a scenario driver for a model depends on the boundary that was established between the
organization and its environment when the model was designed. In the A2C2-2 model, for
example, much of the experimental environment was included within the model that was
developed; the order, type and geographic location of tasks were embedded in the model itself.
Consequently, the line between the organization and the environment was often obscure. On the
other hand, the model developed for A2C2-3 incorporated no environmental information. The
modeled system represented the organizational structures generated by the system design team.
[Levchuk et al., 1999] It has the ability to complete tasks, but the tasks themselves are not
captured within the framework of the model. The task information must be generated external to
the model with a scenario driver.

Plat

Mag

Plat
DM

Plat
Status

MSG

Task
Plat
DM

OK Msg

Request
Msg

Launch
Msg

Enable
Task

Launch
Platform

Need to
Request

Assess
Platform

Task
Plat
DM

Task
Plat

Task

Task
Plat

Task
Pla
Listt

Task
DM

Task

Because so much of the environmental information for the A2C2-2 experiment was captured in
the model, the scenario driver used to stimulate the model is very simple. The scenario driver
initializes the state of the artillery and frog threats to be “yes” or “no” and then initiates the
model execution by generating the initial attack order. All the rest of the defensive (enemy
threats) and offensive actions are embedded in the model. However, for the model for A2C2-3
experiment, a complex input scenario was created that represented the occurrence of independent
enemy threats and the mission task sequencing. Although the environmental design team did not
release the exact input file for the simulator, a list of the types of threats, the number and
geographic region of each threat occurrence was available as well as restrictions or relationships
between them. For example, some tasks occur multiple times at different time intervals through
out the scenario, some tasks must precede other tasks as depicted in the mission task graph, and
some tasks trigger other tasks. Using a scenario designer with domain experience, an input
sequence of 175 tasks was created based on this information and distributed over the time
allowed to complete the mission. This scenario driver is shown in Fig. 24. Through the use of
the scenario driver the expected simulator events were represented in the executable model
simulation.

Figure 24: Scenario Driver - A2C2-3 – North Fleet Portion

Once the scenario driver has been created the model can be executed. The first simulations are
logical in nature; they insure that the model is behaving correctly and as expected. These are
followed by baseline simulations. Baseline simulations are simulations run with variable
parameters set at default or design values, the values assumed during the design of the model,
organizations and environment. The results of these simulations provide a basis for comparison
to future simulations where the parameters are varied.

The executable model for A2C2-2 was evaluated for behavior but not for performance. This
means that only baseline simulations were conducted and the results of the two different
organizational structures were compared to each other but not ranked. The two variants were
simulated with the simple scenario driver described above and the sequence of events that
occurred was recorded and compared to a scripted key thread. Key threads are sequences of
activities initiated by a certain event and traced through the modeled process to an organizational

En_Task
s

Tas
k

Threats1
1

Even
t

1`("T20-PZ1A",H,29)+
1`("T0-PZ1",H,44)

Tas
k

Defend_N_
Fleet

@+h*30

Take_Hill

@+ h*30

1`("T18-PZ7",DN,59)+
1`("T21-PZ7",DN,61)+
1`("T18-PZ7",DN,62)+
1`("T21-PZ7",DN,63)+
1`("T19-PZ7",DN,61)+
1`("T18-PZ7",DN,65)+
1`("T19-PZ7",DN,64)+
1`("T21-PZ7",DN,65)+
1`("T18-PZ7",DN,67)+
1`("T19-PZ7",DN,67)+
1`("T16-PZ7",DN,60)+
1`("T21-PZ7",DN,69)+
1`("T9-PZ7",DN,59)+
1`("T19-PZ7",DN,70)+
1`("T18-PZ7",DN,69)+
1`("T9-PZ7",DN,67)+
1`("T16-PZ7",DN,70)

ti
d

tidSend_Event

Threats1
2

Event

response. The sequence of tasks is first identified in the activity modeled so that a key thread is
generated and then traced in the executable model to do the comparison. These key threads are
used to verify that the executable model correctly represents the activity model and that this
behavior is what is desired in the experiment. If timing information is included in the model,
which was added to the A2C2-2 model later, delays between the variants completing the scenario
can be compared. A key thread used for A2C2-2 is shown in Fig. 25. The resulting traces from
the executable models are shown in Figs. 26 and 27.

Figure 25: Key Thread – A2C2-2

Generate

Attack
OrderA1

1

Coordinate

Mine
sA21
1

Clear
Minesfrom Red

Beach
A212

Report
MinesA21

4

Generate

Launch
OrderA1

2

HIGHER_AUTH_ORDE
R

ORDER
S

ORDER
S

Coordinate

Launch
A221

Launch

Marines on

Red
A222

Report

Launch
A225

Generate

Secure
OrderA1

3

Coordinate

Secure
A231

ORDER
S

OP_STATU
S

Secure Red

Beach
A232

Report

Secure
A235

Generate

Advance

Order
A14

Coordinate

North Road

A31
1

Clear
NorthRoad
Mines
A312

OP_STATU
S

OP_STATU
S

Report
NorthRoad
A316

Generate

Final Attack

Order
A15

Coordinate

Attack
A41

Attack Port

A42
1

OP_STATU
S

ORDER
S

OP_STATU
S

ORDER
S

ORDER
S

OP_STATU
S

ORDER
S

OP_STATU
S

ORDER
S

ORDER
S

OP_STATU
S

COORD_INS
T

OUTCOME_OF_ATTAC
K

Figure 26: Results – TA

Figure 27: Results - NTA

Text1 Task Name

A11 Generate Attack Order

A211 Coordinate Mine Clearing

A214 Report Mine Clearing

A12 Generate Launch Order

A221 Coordinate Launch

A225 Report Launch

A13 Generate Secure Order

A14 Generate Advance Order

A15 Generate Final Attack Order

A212 Clear Red Beach

A222 Launch Marines on Red Beach

A231 Coordinate Secure

A235 Report Secure

A311 Coordinate North Road Advance

A316 Report North Road Advance

A41 Coordinate Attack

A232 Secure Red Beach

A312 Clear North Road Mine

A421 Attack Port

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.3

4.3

4.3

4.3

4.3

4.3

4.3

4.3.1

4.3.1

4.3.1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 0 4 8 12 16 20 24 28 32 36 40 44 48 52

8:00 AM 9:00 AM

Text1 Task Name

A11 Generate Attack Order

A12 Generate Launch Order

A13 Generate Secure Order

A231 Coordinate Secure

A235 Report Secure

A14 Generate Advance Order

A3223 Task EngPlat S

A15 Generate Final Attack Order

A41 Coordinate Attack

A211 Coordinate Mine Clearing

A214 Report Mine Clearing

A221 Coordinate Launch

A225 Report Launch

A3224 Forward Tasking EngPlat S

A213 Clear Blue Beach

A223 Launch Marines on Blue Beach

A3225 Transfer EngPlat

A321 Coordinate South Road Advance

A326 Report South Road Advance

A233 Secure Blue Beach

A3221 Ask for EngPlat

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.2

4.2

4.2

4.2

4.2

4.2.2

4.2.2

4.2.2

4.3

4.3

4.3

4.3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 0 4 8 12 16 20 24 28 32 36 40 44 48 52

8:00 AM 9:00 AM

The model for A2C2-3 included more realistic timing information based on the simulator input
files. When this model was simulated for behavioral analysis, evaluations of each modeled
organization were made based on overall processing time, processing of individual tasks,
instances of resource contentions, and delays associated with decision maker coordination. This
information, shown in Fig. 28 was displayed in a Gantt chart for review by the organizational
designers. This feedback resulted in a second iteration of organizational design, dropping some
previous organizations that did not behave as anticipated and adding new ones. When the variant
organizations were finalized, the baseline simulations were conducted. The results from these
baseline simulations are shown in Fig. 29. The primary performance measure for the pre
experimental simulations became the completion time of the final mission tasks: securing the
airport and securing the seaport.

Latency: All Tasks A0-6 A1-4 A2-5
Average 27.67 79.24 83.76
Standard Deviation 45.44 130.03 143.92
MAX 313 792 793

Figure 28: Preliminary Results – A2C2-3

Mission Tasks
Completion Time

A0-6 A1-4 A2-5

Hill (T0-PZ1) 464 514 514
North Beach (T4-PZ2) 407 447 447
South Beach (T4-PZ3) 419 417 417
Bridge (T27-PZ9) 546 660 574
Airport (T1-PZ4) 921 868 1090
Seaport (T2-PZ0) 870 835 909
Final 1116 1389 1390

Figure 29: Baseline Results – A2C2-3

The main contribution of pre experimental models is the ability to explore variations in either the
organization or the environment and gauge the effect on the experimental design. This allows the
“fine-tuning” of the experiment design before the subject experiment is commenced, and insures
that the experiment is conducted in a manner that will lead to the most meaningful results. The
parameters to be explored depend on the hypothesis itself and in the uncertainties within the
design of the specific experiment.

The model for the A2C2-3 experiment was used extensively for pre experimental simulations.
When the scenario driver was created for the model, it included the ability to vary the inter-
arrival time, ordering and number of each type of task. In this way the effect of changes to the
experimental environment could be explored. Although the ordering and number of particular
tasks had only a minimal effect on the system, changing the inter-arrival time of the tasks did
have an effect on performance. There were no time anchors in this scenario, meaning no task had
to occur at a fixed time, however the tasks did have a fixed duration once they were initiated. A

factor, h, was included in the design of the input scenario that scaled the inter-arrival time of the
tasks. As the value of h was increased, representing more time between tasks, the performance of
the different organizations converged. As the value of h was decreased, indicating that tasks were
coming faster, the performance among architectures showed differences. In some cases,
organizations could not finish the mission at small values of h. Since the objective of this
experiment was to illustrate differences between the architectures, a value of h was chosen for
the experiment where the architectures could finish the mission, yet still show variation. These
results are shown in Fig. 30.

Figure 30: Varying Tempo Results

The other parameter that was explored with the A2C2-3 model was the number of
communication resources. In this experiment all of the decision-makers were on one network; all
decision-makers were allowed to communicate with each other, they were not restricted to the
command hierarchy. Communication among decision makers increased when they needed to
perform coordinated tasks. The number of communication resources represents the number of
messages that can be exchanged between decision makers simultaneously. In organizations
performing a greater number of coordinated tasks, the number of communication resources had
an effect on performance, especially under increased tempo of operations. By varying the
amount of communication resources the effect of communication resources on performance and
the effect of coordination on performance could be explored. This data provided the feedback to
the experimental design on the communication structure to be implemented in the experiment.

5.0 Model Validation

The pre experimental modeling effort is used to define the experimental design. It incorporates
information from all the design groups involved in the experiment and provides feedback on the
evolving designs as the simulations are conducted. When the model is finalized and the final pre
experimental simulations conducted, the experimental design is concluded based on the results of
these simulations indicating the appropriate settings and regions for experimentation. The
experiment can then be conducted using the human subjects. After the subject experiment is

1

10

100

1000

10000

3 5 10 15 30 60 70 90 100
EXPANSION FACTOR (h)

T
IM

E
 (

si
m

)

A0

A2

A1

complete, the results can now be used to help evaluate and redefine the pre experimental model.
Two issues need to be investigated: first the predictability of the model and second the accuracy
of the modeling assumptions. The two are interrelated; if the assumptions used to design the
model are inaccurate, the model is less likely to be predictive.

It often happens that due to unforeseeable circumstances the experiment is not conducted as quite
expected. This may be due to equipment failures, personnel problems, or even the weather. In
this case the pre experimental modeling results may not be predictive of the actual results. A
review of the actual experimental situation can be used to modify the prior modeling
assumptions and changes made to the model to reflect the experiment as it was actually
conducted. The model can then be re-simulated with these changes to validate that it can
correctly represent the actual experimental conditions and outcomes.
If further discrepancies between the validated model data and the experimental data remain this
indicates there are more subtle differences between the model and the experiment. As these are
resolved hidden variables are often uncovered that are unexpectedly affecting the experimental
design. In a series of experiments, such as the A2C2 program, this validated post experimental
model now becomes the starting point for the pre experimental model for the next experiment.

Before model validation could be conducted for the A2C2-3 experiment, some post processing of
the subject experiment data was necessary. As it happened, some of the organizational
architectures used in the experiment were not included in the pre experimental modeling; data
from those trials was ignored. Secondly, since the model was designed to complete all tasks in
the scenario, only data from teams that also completed all tasks in the experiment were used.
Thirdly, due to technical difficulties, one team’s data from all three of its trials was unreadable.
This left eight of 28 result files available for data comparison. The post processing of this data
resulted in a table of the mission tasks’ completion times for use in the model validation process.

Once the experimental results were in a form similar to the model output data, a comparison of
the two sets of data could be made for an initial assessment in the predictability of the pre
experimental model. The results showed that the experiment was actually being conducted at a
different tempo of operations than planned. That is, the simulator was providing inputs at a
longer inter-arrival time then had been indicated by the pre experimental modeling. This slower
tempo resulted in much less differentiation between the performance of the different
organizational structures than anticipated. This was correctly predicted by the model when
simulated at this slow tempo. However, some organizations did not complete the scenario in the
allotted time, which was unexpected at the slow tempo. Further analysis of the results showed
that these teams spent much more time on the threat tasks than on the mission tasks. This
differentiating of the importance of tasks was not well represented in the model.

A discrepancy in the modeling assumptions and the actual experiment occurred in the ordering of
tasks in the scenario driver. In the subject experiment, the DDD simulator used two slightly
different scenarios, both of which were slightly different from the scenario used to simulate the
model. These scenarios were made available after the experiment, so that two new scenario
drivers could be created that more closely represented the scenarios used in the experiment. Also,
a last minute change to the experimental design changed the communication structure of two of
the organizations from a one-network configuration (all decision makers are able to

communicate with each other) to a two-network configuration, with one common decision-maker
as the link between the networks. The model was revised to incorporate this restriction in
communication for the specified organizations.

The models were then re-simulated with the revised scenario drivers, the revised communication
scheme, and the slower tempo. The model results were now comparable to the subject
experiment results. The results indicated that the revised scenario drivers, which represented a
different ordering of the same tasks, had very little impact on the performance, however the
tempo of the tasks, regardless of the task order has a much bigger impact. The communication
structure results are not clear. Due to the nature of the model, the simulated communications
between the decision makers were restricted to the terse, electronic messages available in the
DDD simulator. However, in the actual experiment, subjects were allowed to communicate
verbally, to broadcast, which was not represented in the model. The proper method of
communication in the experimental design is still under debate.

6.0 Conclusion

The use of simulation models in model driven experimentation has been described. The model is
a key component of the experimental design process as it represents the culmination of design
information from all aspects of the experiment and feedback from the model simulations can be
used to improve the complete experimental design. The modeling approach taken for a pre
experimental model is dependent on the both the hypotheses of the experiment and the types of
information available to the model designer. Both structured analysis and object oriented
modeling approaches lead to executable models that can be used to provide feedback to the
design teams regarding the dynamic aspects of the experimental design. Open communication
between all the design teams is a necessary ingredient for a successful pre experimental
modeling effort and the best indicator of a successful experiment. Post experiment model
validation insures that the modeling assumptions are consistent with the subject experimental
setting and that the model output is predictive of the experimental output. The validated model is
now appropriate to use to begin the next cycle of pre experimental modeling for follow on
experiments.

Experiments with teams of humans involve many variables and are hard to control fully, if the
tasks are to be meaningful and appropriate for the domain of application. The detailed
description of the modeling process and the findings illustrate the types of problems that are
encountered and possible approaches for handling them.

7.0 References

[Handley et. al., 1997] Handley, Holly A. H. ,Didier M. Perdu, Insub Shin, and Alexander H.
Levis. “Architectural Modeling of the A2C2 Second Experiment,” Technical Report
GMU/C3I-183-R, March 1997.

[Handley et. al., 1998] Handley, Holly A. H., Zainab R. Zaidi, and Alexander H. Levis. “Pre
Experimental Modeling of Adaptive Organizational Architectures,” Proceedings of the
1998 Command and Control Research and Technology Symposium, June 29-July 1, 1998,
Naval Postgraduate School, Monterey, California.

[Jensen, 1992] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, Springer-Verlag, Berlin, Germany, 1992.

[Levchuk et al., 1999] Yuri N. Levchuk, Krishna R. Pattipati, David L. Kleinman.
“Analytic Model Driven Organizational Design and Experimentation in Adaptive
Command and Control,” Systems Engineering, Vol. 2,xxx

[Levis, 1999] Alexander H. Levis. “System Architectures,” Handbook on Systems Engineering
and Management, A.P. Sage and W.B. Rouse, Editors, Wiley, NY, 1999.

[Levis et al., 1999] Alexander H. Levis, Lee Wagenhals, Robert F. Phelps, “Architecting
Information Systems,” Report GMU/C3I-165-R, March 1999.

[Marca and McGowan, 1988] David A. Marca and Clement L. McGowan. SADT: Structured
Analysis and Design Technique, McGraw-Hill Book Company, 1988.

[Murata, 1989] Tadao Murata. “Petri Nets: Properties, Analysis and Applications,” Proceedings
of the IEEE, Vol. 77, No. 4, pp. 541-579, 1989.

[Rumbaugh, 1991] James Rumbaugh. Object-Oriented Modeling and Design, Prentice-Hall, Inc.
Englewood Cliffs, New Jersey, 1991.

