#### SAS-085 C2 Agility Model Validation Using Case Studies

#### 18<sup>th</sup> ICCRTS: C2 in Underdeveloped, Degraded and Denied Operational Environments

Philip S. E. Farrell, Ph.D., Defence R&D Canada – Toronto

Claudia Baisini, Swedish National Defence College

Micheline Bélanger, Defence R&D Canada – Valcartier

Michael Henshaw, Prof., Loughborough University, UK

William Mitchell, Ph.D., Royal Danish Defence College

LTC Arne Norlander, Ph.D., Swedish Armed Forces, Defence Staff

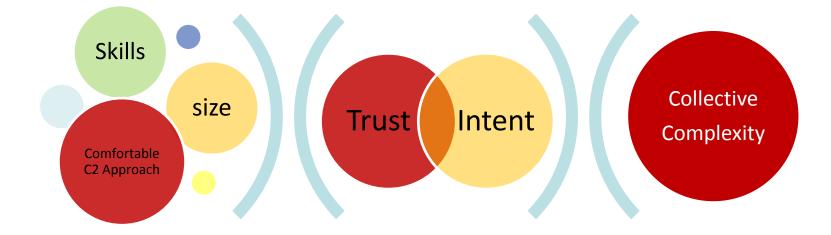
June, 2013





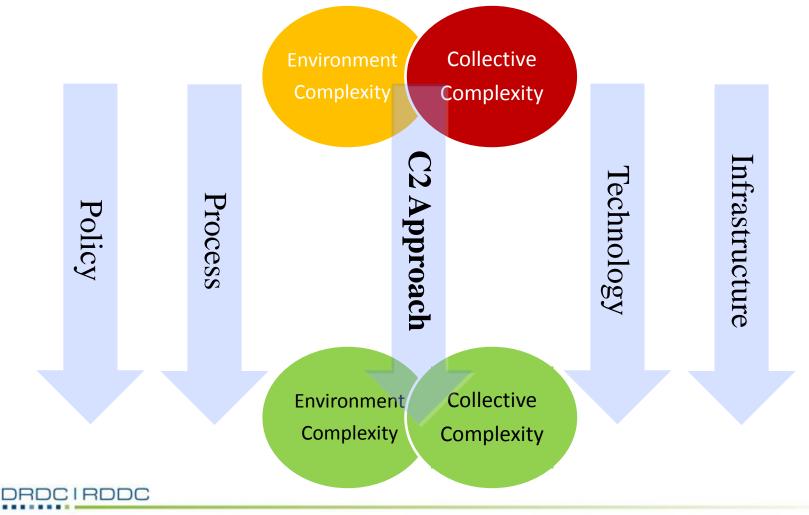

#### **Case Studies**

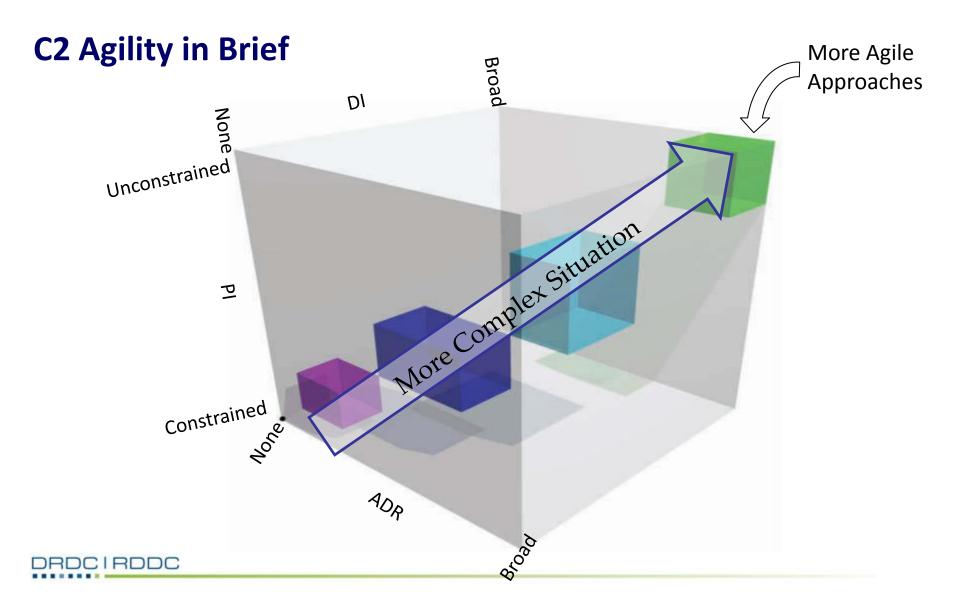
- C2 Agility in Brief
- Case Study Plan
- Case Study Evidence
- Hypotheses Findings
- Conclusions




#### **C2** Agility in Brief – Environment is complex!







#### **C2** Agility in Brief – Collective is complex!





### **C2** Agility in Brief





## **C2** Agility in Brief

 C2 Manoeuvre Agility - transitioning from current to required approach to maximize effectiveness and efficiency

 Situation complexity, Allocation of Decision Rights, Patterns of Interaction, Distribution of Information, self-monitoring.

C2 Approach Agility - the agility of a C2 Approach

Flexibility, Responsiveness, Resilience, Versatility, Adaptiveness, Innovative.





 Detailed analyses of historical situations where evidence is sought that may confirm (or not) concepts, notions, or hypotheses

Advantage: any conclusions drawn from the analysis pertain to real situations, thus providing "face" validity.

 Disadvantage: these conclusions pertain only to those situation(s) being analysed, and therefore it becomes difficult to generalise and extrapolate to other situations.



#### Objectives for conducting Case Study analyses are to:

- 1. Find evidence for key concepts, components, constraints, and behaviours related to C2 Approach Agility and C2 Manoeuver Agility in the cases.
- 2. Help clarify the language of C2 Agility
- 3. Opportunity to demonstrate and verify that the model, in fact, occurs in the real world
- 4. Contribute to validation by testing C2 Agility-related hypotheses



Develop a Template that reflects C2 Agility model

Collect Evidence based on Template

Conduct Meta-analysis looking for:

- Evidence across multiple studies
- Evidence of other notions for C2 Agility model



The first template was designed to capture relevant source data in one location.

I: Executive Summary II: Identify the Focus of and the Boundaries for the Case Study III. Describe the Challenge or Opportunity that gave rise to the need for C2 Approach and C2 Manoeuver Agilities. IV: What would have been the consequences of a failure to act in a way that demonstrates C2 Approach Agility and C2 Manoeuver Agility? V: Was C2 Approach Agility and C2 Manoeuver Agility Manifested? If so, How? VI: Which Enablers and Inhibitors of C2 Approach Agility were observable? VII: What C2 Approaches were relevant (i.e., did different situation complexity levels require a corresponding different C2 Approach)? How can C2 Manoeuver Agility be inferred from what was reported or observed? VIII: What interesting and important vignettes are included or can be derived from the case study to help create illustrative stories? IX: Case Study Assumptions and Limitations:

XI: Bibliography



The second template was designed to summarize evidence for each notion, subconcept, and variable for each case study.



| Concept/Component                  |                                                                 |  |  |  |
|------------------------------------|-----------------------------------------------------------------|--|--|--|
| C2 Manoeuver Agility               | Transitioning from one approach to another                      |  |  |  |
| Endeavour Space Complexity         | Endeavour Space Complexity values: low, medium, and high        |  |  |  |
| Appropriate (Required) C2 Approach | Labels: De-conflicted, Coordinated, Collaborative, Edge         |  |  |  |
| C2 Approach Space                  | ADR, Dol, and Pol                                               |  |  |  |
| Allocation of Decision Rights      | Allocation of Decision Rights varies from None to Broad.        |  |  |  |
| Distribution of Information        | Distribution of Information varies from None to Broad.          |  |  |  |
| Patterns of Interaction            | Patterns of Interaction varies from Constraint to Unconstraint. |  |  |  |
| Actual C2 Approach                 | Labels: De-conflicted, Coordinated, Collaborative, Edge         |  |  |  |
| Self-Monitoring                    | Ability to know where entity is in the space and when to move   |  |  |  |
| C2 Approach Agility                | Enabler (or opposite) values: low, medium, and high.            |  |  |  |
| (Lack of) Flexibility              | Ability to exceed in multiple ways                              |  |  |  |
| (Lack of) Adaptiveness             | Ability to change work processes                                |  |  |  |
| (Lack of) Responsiveness           | Ability to react to changes in the environment                  |  |  |  |
| (Lack of) Versatility              | Ability to maintain effectiveness across many conditions        |  |  |  |
| (Lack of) Innovativeness           | Ability to do new things or old things in new ways              |  |  |  |
| (Lack of) Resilience               | Ability to adjust and recover from "self"-damage                |  |  |  |

## **Case Study Plan (fictitious input)**

| Concept/Component                  | Phase 1               | Phase 2             | Phase 3                 |  |
|------------------------------------|-----------------------|---------------------|-------------------------|--|
| C2 Manoeuver Agility               |                       |                     |                         |  |
| Endeavour Space Complexity         | High                  | Medium              | Low                     |  |
| Appropriate (Required) C2 Approach | Collaborative         | Coordinated         | De-conflicted           |  |
| C2 Approach Space                  |                       |                     |                         |  |
| Allocation of Decision Rights      | Somewhat broad        | Narrow              | Narrow                  |  |
| Distribution of Information        | Broad                 | Broad               | Not as Broad            |  |
| Patterns of Interaction            | Constrained           | Constrained         | Constrained             |  |
| Actual C2 Approach                 | Between Collaborative | Between Coordinated | Closer to De-conflicted |  |
|                                    | and De-conflicted     | and De-conflicted   |                         |  |
| Self-Monitoring                    | None                  | V                   | V                       |  |
| C2 Approach Agility                |                       |                     |                         |  |
| Flexibility                        | V                     | ?                   | ?                       |  |
| Adaptiveness                       | V                     | V                   | ?                       |  |
| (Lack of Responsiveness)           |                       | High                | ?                       |  |
| Versatility                        | V                     | V                   | ?                       |  |
| (Lack of Innovativeness)           | V                     | V                   | Low                     |  |
| Resilience                         | Medium                | ?                   | ?                       |  |



- A. Helmand Province, Dr. William Mitchell, Royal Danish Defence College, Denmark
- **B.** Comprehensive Approach in NATO Operations, Cdr Marten MEIJER PhD, C2 CoE, NLD Peace-keeping and Personal Agility
- *C. Rwanda Genocide 1994,* Micheline Bélanger, Defence R&D Canada Valcartier, *Canada* <u>Cyber Warfare</u>
- D. Estonia Cyber Attack 2007, Prof. Michael Henshaw, Loughborough University, UK
- *E. Georgia,* Douglas J. Ball, M.D., UNC Chapel Hill Gillings School of Global Public Health, *USA* <u>Natural Disasters</u>
- F. Garda Earthquake 2004, Claudia Baisini, Swedish National Defence College, LTC Arne Norlander, Sweden
- G. Haiti Earthquake 2010, Dr. Richard Hayes, Evidence Based Research, USA

Major Events

H. Munich Olympics 1972, Dr. Philip S. E. Farrell, Defence R&D Canada – Toronto, Canada

I. Vancouver Olympics 2010, Dr. Philip S. E. Farrell, Defence R&D Canada – Toronto, Canada DRDC I RDDC

### **Case Study Evidence**

- Phister, P. W. (2012). *Humans and Their Impact on Cyber Agility*. Paper presented at the 17th International Command and Control Research and Technology Symposium: Operationalizing C2 Agility. Washington D.C., USA. (former SAS-085 member)
- Henshaw, M., Tetlay, A., & Siemieniuch, C. (2013). SAS-085 Case Study Estonia: Estonia Cyber Attack in Spring 2007. Engineering System of Systems Group, School of Electronic, Electrical and Systems Engineering Loughborough University (UK), Loughborough, UK.
- Meijer, M. (2012). *Consequences of the NATO Comprehensive Approach for Command and Control*. Paper presented at the 17th International Command and Control Research and Technology Symposium: Operationalizing C2 Agility. Washington D.C., USA.
- Mitchell, W. (draft). *Case Study Report Generated as an Official Danish Defence Contribution to NATO SAS-085*. Royal Danish Defence College.
- Basini, C. (draft). Italian Civil Protection's Operation after the Garda Earthquake, Province of Brescia, 2004 : A Case Study for NATO SAS085 on C2 Agility and Requisite Maturity. Swedish National Defence College.
- Banbury, S., Kelsey, S. R., & Kersten, C. (2011). Evaluating C2 Approach Agility in Major Events: Final Report (CONTRACT #: W7714-083663/001/SV No. DRDC CR 2011-004). Scientific Authority Dr. Philip S. E. Farrell. Centre for Operational Research and Analysis (CORA), Ottawa, Ontario, Canada: Defence R&D Canada.
- Jobidon, M.-E., Fraser, B., Smith, D., & Farrell, P. S. E. (2011). *Analysis of GM approach agility during the Vancouver 2010 Olympic Games* (Technical Memorandum). Toronto: DRDC Toronto TM 2011-124.
- Farrell, P. S. E., Jobidon, M.-E., & Banbury, S. (2012). *Organizational Agility Olympic Event Case Studies*. Paper presented at the 17th International Command and Control Research and Technology Symposium: Operationalizing C2 Agility. Washington D.C., USA.
- Bélanger, M. (in review). *The difficulty to document agility evidences from a C2 perspective.* Paper presented at the 18th International Command and Control Research and Technology Symposium: C2 in Underdeveloped, Degraded and Denied Operational Environments. Alexandria, VA., USA.
- Farrell, P. S. E., Baisini, C., Bélanger, M., Henshaw, M., William, M., Norlander, A. (in review). SAS-085 C2 Agility Model Validation Using Case Studies. Paper presented at the 18th International Command and Control Research and Technology Symposium: C2 in Underdeveloped, Degraded and Denied Operational Environments. Alexandria, VA., USA.

#### DRDCIRDDC

#### **Case Study Evidence**

| Concept / Component                | Evidence Found                                  | I.D.           | Case Study       |
|------------------------------------|-------------------------------------------------|----------------|------------------|
| C2 Maneouvre Agility               | A, F                                            |                |                  |
| Endeavour Space Complexity         | A – I                                           | А              | Helmand Province |
| Appropriate (Required) C2 Approach | A, D, H, I                                      | В              | NATO Operations  |
| C2 Approach Space                  |                                                 | $C_1$          | Rwanda - DPKO    |
| Allocation of Decision Rights      | A – I                                           | C <sub>2</sub> | Rwanda - media   |
| Distribution of Information        | A – I                                           | D              | Estonia          |
| Patterns of Interaction            | A – I                                           | Е              | Georgia          |
| Actual C2 Approach                 | A – I                                           | F              | Garda            |
| Self-Monitoring                    | A, C <sub>1</sub> , C <sub>2</sub> , D, I       | G              | Haiti            |
| C2 Approach Agility                | A, C1, C2,                                      | Н              | Munich           |
| Flexibility                        | A, C <sub>1</sub> , C <sub>2</sub> , D, E, G, H | 1              | Vancouver        |
| Adaptiveness                       | A, C <sub>1</sub> , D, E, F, G                  |                |                  |
| Responsiveness                     | A, C <sub>1</sub> , D, E, F, G, H, I            |                |                  |
| Versatility                        | A, D, F, G, H, I                                |                |                  |
| Innovativeness                     | A, C <sub>2</sub> , D, E, F, G                  |                |                  |
| Resilience                         | A, D, F, H                                      |                |                  |

#### **Case Study Evidence**

#### **Other C2 Agility Model Concepts**

| Concept / Component                                  | Evidence Found                 | I.D.           | Case Study       |
|------------------------------------------------------|--------------------------------|----------------|------------------|
| Anticipation, Learning, Training, Exercises          | F, I                           |                |                  |
| Role of Leadership                                   | A, C, F, G, <mark>H</mark> , I | А              | Helmand Province |
| Collective size changes over time                    | C, F, G, H                     | В              | NATO Operations  |
| Entities with different C2 approaches                | C, D, G, I                     | $C_1$          | Rwanda - DPKO    |
| 'Comfortable' C2 Approach                            | G, I                           | C <sub>2</sub> | Rwanda - media   |
| Risk Assessment                                      | С                              | D              | Estonia          |
| Importance of Competency                             | D, E, F                        | Е              | Georgia          |
| Requisite Variety in Skills and Resources            | D, E, F                        | F              | Garda            |
| Trust and interpersonal relationships                | C, F, <mark>H</mark>           | G              | Haiti            |
| Role of Compromise                                   | G                              | Н              | Munich           |
| Understanding Conflicted C2                          | Н                              | I              | Vancouver        |
| Politically Driven C2 Approach                       | I                              |                |                  |
| Off diagonal approaches                              | C, G, I                        |                |                  |
| Agility as an emergent phenomenon (not pre-designed) | A                              |                |                  |

### **Hypotheses Findings**

- 1. Each NATO NEC C2 Maturity Model Approach is located in a distinct region of the C2 Approach Space
  - By definition
- 2. No one approach is always the most appropriate
  - Evidence Found
- 3. More network-enabled approaches are more appropriate for Complex Endeavors; while less network-enabled approaches are more appropriate for less complex missions/circumstances
  - By definition
- 4. More network-enabled approaches are more agile (have greater C2 Approach Agility)
  - Unclear. However, Munich (conflicted or worse) does show lack of C2 Approach Agility
- 5. The dimensions of the C2 approach Space are positively correlated with agility
  - Unclear. This is likely related to the agility metric
- 6. More network-enabled approaches are better able to maintain their intended positions in the C2 Approach Space
  - Evidence found to support the notion of maintaining the appropriate approach whether they were more networked or not.



### **Hypotheses Findings**

- 7. On-diagonal (balanced) approaches are more agile
  - No evidence
- 8. Increasing C2 Maneuver Agility increases agility
  - Unclear. should read the ability to transition from one approach to the appropriate approach increases the ability to successfully cope
- 9. More mature c2 capability is more agile than the C2 Approach Agility of the most network-enabled approach available
  - No evidence
- 10. Self monitoring is required for C2 Maneuver Agility
  - Evidence Found
- 11. : The six components (enablers) of agility are collectively exhaustive and thus all instances of observed agility can be traced to one or more of these components (enablers)
  - By definition. Evidence was found between C2 Approach Agility and enablers. However, other enablers were found (e.g., leadership, trust)
- 12. Each of these components (enablers) is positively correlated with agility
  - Evidence Found



#### **Conclusions**

- Evidence was found for the C2 Agility Conceptual Model, thus providing face validity for the model
- Other concepts and components were identified that may be under consideration for insertion into the C2 Agility Conceptual Model
- The Case Study results (face validity) will be compared to experimental results (empirical validity)



#### **Questions?**



# DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

