
Challenges in the Development and 
Evolution of Secure Open Architecture 

Command and Control Systems

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA



 2

Overview
● Challenges of securing open architecture 

(OA) systems
● Specifying security requirements for 

software systems
● Case study: Securing the development and 

evolution of an OA C2 system within an 
agile, adaptive software ecosystem

● Discussion and conclusions



 3

Challenges of securing open 
architecture (OA) C2 systems

Scacchi, W., Brown, C. and Nies, K. (2012). Understanding the Potential of 
Virtual Worlds for Decentralized Command and Control, Proc. 17th. Intern. 
Command and Control Research and Technology Symposium (ICCRTS), 

Paper-096, Fairfax, VA, June 2012. 

Scacchi, W., Brown, C. and Nies, K. (2012). Understanding the Potential of 
Computer Games for Decentralized Command and Control, Proc. 17th. Intern. 

Command and Control Research and Technology Symposium (ICCRTS), 
Paper-104, Fairfax, VA, June 2012.



 4

Virtual world for experimental studies in decentralized command 
and control centers using open source software components



 5

Security challenges
● Security threats to software systems are increasingly 

multi-modal and distributed across system 
components.

● Physically isolated systems are vulnerable to external 
security attacks.

● What makes an OA C2 system secure changes over 
time, as new threats emerge and systems evolve.

● Need an approach to continuously assure the security 
of evolving OA C2 systems that is practical, scalable, 
robust, tractable, and adaptable.



 6

Current security approaches
● Mandatory access control lists, firewalls;

● Multi-level security;

● Authentication (including certificate authority and passwords);

● Cryptographic support (including public key certificates);

● Encapsulation (including virtualization), hardware confinement (memory, 
storage, and external device isolation), and type enforcement capabilities;

● Secure programming practices;

● Data content or control signal flow logging/auditing;

● Honey-pots, traps, sink-holes;

● Security technical information guides for configuring the security parameters 
for applications and operating systems;

● Functionally equivalent but diverse multi-variant software executables.



 7

Software systems/components 
evolve: what to do about security?

● Individual components evolve via revisions (e.g., security patches)

● Individual components are updated with functionally enhanced 
versions;

● Individual components are replaced by alternative components;

● Component interfaces evolve;

● System architecture and configurations evolve;

● System functional and security requirements evolve;

● System security policies, mechanisms, security components, and 
system configuration parameter settings also change over time.



 8

Specifying the security 
requirements for OA software 

systems



 9

Carefully specifying security policy 
obligations and rights

● The obligation for a user to verify his/her authority to see compartment T, by 
password or other specified authentication process

● The obligation for all components connected to specified component C to 
grant it the capability to read and update data in compartment T

● The obligation to reconfigure a system in response to detected threats, 
when given the right to select and include different component versions, or 
executable component variants.

● The right to read and update data in compartment T using the licensed 
component

● The right to add, update, replace specified component D in a specified 
configuration

● The right to add, update, or remove a security mechanism

● The right to update security policy L.



 10

Case Study:
Securing the development and 

evolution of an OA C2 system within 
an agile, adaptive software 

ecosystem



 11

Software product lines?

● When functionally similar software components, 
connectors, or configurations exist, 

● Such that equivalent alternatives, versions, or variants 
may be substituted for one another, then

● We have a strong relationship among these OA system 
elements that is called a software product line.

● Software product lines for OA systems enable support 
from agile, adaptive software (component) ecosystems

● Reed, H., Benito, P., Collens, J. and Stein, F. (2012). Supporting Agile C2 with an Agile 
and Adaptive IT Ecosystem, Proc. 17Th Intern. Command and Control Research and 
Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.



 12

Software ecosystem of producers and the software components or 
application widgets for an enterprise system



 13

Software ecosystem of components or application 
widgets for an OA system



 14

Software product line that provides functionally similar components 
or applications compatible with an OA system design



 15

A design-time specification of an OA system that accommodates 
multiple alternative system configurations



 16

A build-time deployment selection among alternative components that 
produce an integrated enterprise system within the product line



 17

A security capability specification encapsulating the run-time 
deployment configuration via multiple virtual machines 



 18

An end-user run-time deployment version of selected components 
within enterprise system product line utilizing security library, 

SELinux, for enforcing mandatory obligations and rights.



 19

 Adapting the post-deployment system configuration, using alternative 
but functionally similar components within the product line



 20

An end-user view of the adapted alternative run-time system 
configuration



 21

Discussion and conclusions



 22

Discussion

● Our goal is to demonstrate a new approach to address 
challenges in the development and evolution of secure 
component-based OA C2 software systems. 

● Future C2 systems require review and approval of 
security measures employed during the design, 
implementation, deployment, and evolution of OA 
systems. 

● We seek to make this a simpler, more transparent, and 
more tractable process.



 23

Conclusions (1)
● Our research demonstrates how complex OA systems can be 

designed, built, deployed, and evolved with alternative 
components within functionally similar system versions, to 
realize for overall system security. 

● We described a scheme to specify and realize OA system 
configurations that are compatible with existing security 
mechanisms.

● Our scheme does not assume that individual system elements must be 
secure before inclusion into the secured OA system’s configuration.

● Central to our OA scheme is agile, adaptive software 
ecosystems and product lines integrated with security 
mechanisms. 



 24

Conclusions (2)

Next steps:

● Articulate the process how to simply and transparently specify 
and assess the security of OA C2 systems using streamlined 
security policy mechanisms. 

● Develop and demonstrate a prototype automated environment 
that can support the modeling and analysis of OA system 
security policies and alternative version OA system 
configurations, in ways that address the diverse needs of 
software producers, system integrators and end-users.



 25

Acknowledgements

Research described in this presentation was 
supported by grant #N00244-12-1-0067 from the 

Acquisition Research Program at the Naval 
Postgraduate School, and from grant #1256593 

from the National Science Foundation. 

No review, approval, or endorsement implied.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

