

Using Autonomics to Exercise Command and Control of Networks in Degraded Environments

Presented to: 18th ICCRTS
June 2013

Phillip Verbancsics

phillip.verbancsics@navy.mil

Doug Lange

doug.lange@navy.mil

Space and Naval Warfare Systems Center - Pacific

Introduction: Architectural Complexity

- ▼ Increasingly Complex Infrastructure
 - Satellite, Wireless, Wired
 - Manned, Unmanned
 - Mobile, Immobile
 - Sea Surface, Underwater, Land, Air
 - High heterogeneity
 - Cloud Computing, Virtual Machines, SoA

▼ Timely delivery of data and decision support essential

Teams ⇔ Networks → **C2** ⇔ **Network Control**

▼ Decision Support System for Infrastructure Management

- Collect data from the infrastructure
- Analyze performance metrics and system requirements
- Effect changes to meet requirements/improve performance
- Decrease system failure/inefficiency and human labor

▼ Functional areas:

- Self-configuration
- Self-healing
- Self-optimization
- Self-protection

Autonomics (2)

Move from open-loop to closed-loop systems

- ▼ Software Architectures for dynamic self-adaptation
 - Rainbow: a framework in which architectural models can be used to adapt systems
 - Stitch: a language to define self-adaptation strategies
 - Analysis: Using model checkers to analyze properties of architecture-based adaptation

Rainbow Framework (Garlan, 2010)

Investigate: Autonomics in Degraded Environments

- ▼ Autonomics for C2 will encounter DIL connectivity
 - Elements moving in and out of network
 - Environmental/Situational changes in available communication
- ▼ DIL environments present challenges
 - Limited information
 - Limited ability to exert control
- ▼ Also opportunities
 - Autonomics can react faster
 - Autonomics meant to respond to changing environments

Experimental Setup: Cloud-like System

Experimental Setup: Environment Optimal

Experimental Setup: Environment Overloaded

Experimental Setup: Example of Autonomic Response

Results: DIL Effects on Autonomics (Baseline – 5 minute update intervals)

DIL (10 minute intervals)

DIL (15 minute intervals)

DIL (30 minute intervals)

DIL (60 minute intervals)

DIL – Average Power Usage and Response Time

Discussion & Future Work

- ▼ DIL negatively impacts autonomic performance
 - Begins with degraded ability to manage (up to 15 min intervals)
 - Ends with destabilization
- ▼ Challenge is in timing events
 - Too late in responding to events
 - Responding to events that have already passed
- ▼ Ways forward
 - Machine learning for prediction of future states
 - Distributed autonomics

End and Thank you!

- ▼ Phillip Verbancsics
 <u>phillip.verbancsics@navy.mil</u>
 SSC Pacific
- ▼ Doug Lange doug.lange@navy.mil SSC Pacific