
18th ICCRTS
“C2 in Underdeveloped, Degraded and Denied Operational Environments”

Title
Challenges in the Development and Evolution of Secure Open Architecture Command and

Control Systems

Paper-ID-098

Topics
Architectures, Technologies, and Tools (Primary)

Approaches and Organization (Alternate)

Authors
Walt Scacchi and Thomas A. Alspaugh

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

Point of Contact
Walt Scacchi

University of California, Irvine
Irvine, CA 92697-3455 USA

949-824-4130, 949-824-1715 (fax)
wscacchi@ics.uci.edu

Abstract: We identify challenges that arise during development and evolution of secure Open
Architecture (OA) command and control (C2) systems. OA systems are those whose software
system components and interconnection mechanisms are either proprietary closed source
software offerings with open interfaces (e.g., Application Program Interfaces), open source
software, or some architectural configuration of closed and open source elements. Secure OA
systems are those where the security of individual software elements may be uncertain, because
of the ongoing evolution, poorly understood system integration compromises, or obtrusive
software intellectual property licenses, yet where overall OA security must be continuously
assured. We present a framework that organizes OA system security elements and mechanisms in
forms aligned with stages of the life cycle of C2 for system design, building, and runtime
deployment, as well as system evolution. We provide a case study to show our scheme and how it
can be applied to C2 system architectures that rely on an OA. Finally, we show how our efforts
complement and extend the agile C2 framework that utilizes a new generation of software
components and security mechanisms that are engineered/adapted by multiple parties and
disseminated within a diverse marketplace ecosystem of software producers, integrators, and
consumers.

1

mailto:wscacchi@ics.uci.edu

Introduction
In this paper, we identify and investigate technical and acquisition challenges that arise during the
development and evolution of secure Open Architecture (OA) command and control (C2)
systems. OA systems are those whose software system components and interconnection
mechanisms are either proprietary closed source software offerings with open interfaces (e.g.,
Application Program Interfaces), open source software (including Government Open Source
Software or Defense Open Source Software (OSS) via Forge.mil), or some architectural
configuration of closed and open source elements. Secure OA systems are those where the
security of individual software elements may be uncertain, because of the ongoing evolution,
poorly understood system integration compromises, or obtrusive software intellectual property
licenses, yet where overall OA security must be continuously assured [ScA12a, ScA12b,
ScA12c].

It is now clear that future C2 systems must resist internal or external attacks on single/multiple
system components, interconnection interfaces, or data repositories. No longer can we rely on
“air-gap” system barriers, or security through proprietary obscurity, as individual security barriers
get compromised through intrusive cyberwarfare software attack vectors or social engineering.
Furthermore, current approaches to system security are most often piece-meal with little/no
support for guiding the what system security requirements must address across different software
system processing elements and data levels, and how those can be manifest during the design,
building, deployment, and evolution of OA software systems. Finally, agile C2 efforts seek to
transform overall system development and evolutionary adaptation time frames from years to
months (or less) [RBC12]. This means fundamentally new approaches to secure C2 system
development and evolution must be available.

We present a framework that organizes OA system security elements and mechanisms in forms
that can be aligned with different stages of the life cycle of C2 system design, building, and
runtime deployment, as well as system evolution. We provide a case study to show our scheme
and how it can be applied to centralized C2 system architectures like C2RPC [Gar11, Giz11] or to
next-generation decentralized C2 systems [SBN12] that rely on an OA. Finally, we show how our
efforts complement and extend the agile C2 framework that utilizes a new generation of software
components (apps, widgets, connectors, and encapsulation mechanisms) that are sourced from a
diverse marketplace ecosystem of software producers [RBC12].

Open Architectures for Command and Control Systems
Open architecture (OA) software is a customization technique that enables third parties to modify
a software system through its exposed architecture, evolving the system by replacing its
components, connectors, or configuration. The three military services within the U.S. Department
of Defense are pursuing initiatives that encourage the adoption of OA approaches, and OA
systems as way to reduce system development costs over the life of a system [ACC13].
Increasingly more software-intensive systems are developed using an OA strategy, not only with
proprietary, closed source software components with open application program interfaces (APIs).
But also OSS components. However, composing a system with components that are subject to
different intellectual property (IP) licenses, increases the likelihood of conflicts, liabilities, and
no-rights stemming from incompatible licenses. We call systems whose components are subject
to different licenses, heterogeneously-licensed systems [ASA10]. So in our work we define an
OA C2 system as a software system for command and control consisting of components that are

2

http://forge.mil/

either OSS or proprietary with open APIs, whose overall system license rights at a minimum
allow its use and redistribution, in full or in part. It may appear that using a system architecture
that incorporates OSS components and uses open APIs will result in an OA system. But not all
such architectures will produce an OA, since the (possibly empty) set of available license rights
for an OA system depends on: (a) how and why OSS and open APIs are located within the system
architecture, (b) how OSS and open APIs are implemented, embedded, or interconnected, and (c)
the degree to which the licenses of different OSS components encumber all or part of a software
system's architecture into which they are integrated [ASA10,AAS12, ScA12].

The following kinds of software elements appearing in common software architectures can affect
whether the resulting systems are open or closed [BCK03].

Software source code components – These can be either (a) standalone programs, (b)
libraries, frameworks, or middleware, (c) inter-application script code such as C shell scripts, or
(d) intra-application script code, as for creating Rich Internet Applications using domain-specific
languages such as XUL for the Firefox Web browser, “mashups", or their composition into
widgets [Fel07, OWl3, SWM11]. Their source code is available and they can be rebuilt. Each
may have its own distinct license.

Executable components – These components are in binary form, and the source code may
not be open for access, review, modification, or possible redistribution. If proprietary, they often
cannot be redistributed, and so such components will be present in the design- and run-time
architectures but not in the distribution-time architecture.

Software services – An appropriate network-accessible software service can replace a
source code or executable component.

Application programming interfaces/APIs – Availability of externally visible and
accessible APIs is the minimum requirement for an “open system" [MeO01]. Open APIs are not
and cannot
be licensed, and can limit the propagation of license obligations.

Software connectors – Software whose intended purpose is to provide a standard or
reusable
way of communication through common interfaces, e.g. Microsoft.NET, Enterprise Java Beans,
GNU Lesser General Public License (LGPL) libraries, and data communication protocols like the
HyperText Transfer Protocol (HTTP). Connectors generally limit the propagation of license
obligations.

Methods of connection – These include linking as part of a configured subsystem,
dynamic linking, client-server connections, and what we call, “interface shims” (abstract
interfaces or interface libraries). Methods of connection affect license obligation propagation,
with different methods affecting different licenses.

Configured system or subsystem architectures – These are software systems that are used
as atomic components of a larger system, or as a reusable or “functional capability,” such that its
internal architecture may comprise components with different licenses, affecting the overall

3

system license. To minimize license interaction, a configured system or sub-architecture may be
surrounded by what we term a license firewall, namely a layer of dynamic links, client-server
connections, license interface shims, or other connectors that block the propagation of reciprocal
obligation. Similarly, a configured system or subsystem can be encapsulated within a security
mechanism such as a virtual machine [Xen12].

Examples of such elements appear in descriptions and figures presented later in this paper. But
the diversity of kinds of elements that appear in an OA system enables the design, development,
and evolution of agile C2 systems within an agile and adaptive software ecosystem [RBC12], as
we well show.

Accommodating Agile C2 Development and Evolution
The MITRE Corporation and others in the Defense community seek to embrace the development
of agile C2 systems [RBC12]. Such systems are envisioned to arise from the assembly and
integration of system elements (application components, widgets, content servers, networking
elements, etc.) within a software ecosystem of multiple producers, integrators, and consumers
who may supply or share the results of their efforts. The assembly and integration of system
elements produces “C2 system capabilities” (C2SCs). C2SCs may be produced, acquired,
integrated, shared, or reused by different trusted parties. C2SCs may address a set of ISR
data/signal processing components, office productivity components supporting mission planning,
or the like. Our purpose is to identify how our approach to the design of secure OA systems can
be aligned with their vision for agile C2 systems. Along the way we focus on design of OA
system capability involving office productivity components that must be configured as a secure
C2SC.

The design and development of agile C2 systems follows from two sets of principals: one set
addressing guidelines/tenets for multi-party engineering (MPE) of C2 system components; the
other set addressing attributes of agile and adaptive ecosystems (AAE) for producing C2SCs or
C2 system elements. For brevity, we simply identify these principals for MPE and AAE, as they
are more fully explained elsewhere [RBC12], but we do so in ways that foreshadow and more
clearly align with our approach that follows in a later section.

MPE Tenets:
1. Provide small system components that can be rapidly developed, and accommodate different
functionally equivalent variants, or functionally similar versions
2. Certify components are consistent with “shared agreements” regarding security
requirements, system architecture, data semantics, production and integration processes or
process constraints, and other aspects of mission-specific or mission-common domain models
3. Supply diverse C2 system components via a market of component producers or integrators
4. Assemble and integrate C2SCs from components available in the market that are consistent
with relevant shared agreements
5. Provide feedback from C2 system users to component producers or capability integrators to
improve market efficiency and effectiveness.

AAE Attributes:
1. Encourage and sustain a software ecosystem that is agile (supports assembly and integration
C2SC) from components in market, and adaptive (supports substitution of functionally similar

4

component versions or functionally equivalent component variants), in line with user feedback.
2. Component markets are federated so as to accommodate sharing, reuse, or trading of
components across different system integrators or consumer organizations.
3. Shared agreements serve as a basis for enabling multi-party collaboration in system
development, integration, and evolution/sustainability.
4. Production, integration, or post-deployment support for components or C2SCs must be
viable for small businesses or large, as well as promoting market diversity and effectiveness.
5. Consumer/user organizations seek to manage portfolios of components or C2SCs that
collectively improve mission effectiveness, agility and adaptiveness, while reducing costs.

Finally, to help understand what we mean by a software ecosystem, we use Figure 1 to represent
where different parties are located across a generic software ecosystem, and the supply networks
or multi-party relationships that emerge to enable the software producers to develop and release
products that are assembled and integrated by system integrators for delivery to consumer/end-
user organizations.

Figure 1. A generic software ecosystem supply network (upper part), along with a sample
elaboration of producers, software components, and licenses for an OA system components they

employ (lower part) [ScA12].

5

The lower part of Figure 1 also identifies where elements of shared agreements like IP licenses
enter into the ecosystem, and how the assembly of components into a configured system or
subsystem architecture by system integrators effectively (and perhaps unintentionally) determines
which IP license obligations and rights get propagated to consumer/end-user organizations.
Agreement terms and conditions acceptable to consumer/end-user organizations flow back to the
integrators. This helps reveal where and how shared agreements will mix, match, mashup, or not
at the system architecture level, which is another reason for why we use (and advocate) explicit
OA system models.

A Framework for Securing Agile OA C2 Systems
Over the past five or so years, we have been researching, prototyping, and refining an approach to
the acquisition, development, and evolution of OA software systems [ASA10, AAS12, ScA12].
Central to our approach is our reliance on explicit models of software system architectures
described in an architectural description language [TMD09]. Use of explicit architectural models
is key to making OA systems tractable and observable, since we want to be able to make visible
where and how a system's architecture is open, and where it is not, during different system
development and evolution activities. Explicit architectural representations are also key to
coordinating the development, integration, deployment, and evolution of complex OA software
systems among a dispersed community of development and user organizations [OPM03]. Our
models also draw attention to the identification of a system's elements and their configuration into
a system capability or complete system. In addition, our models allow for the system elements to
be specified by type or instance (e.g., web browser, Microsoft Internet Explorer), as well as
optionally specifying functionally similar versions or functionally equivalent variants thereof
(e.g., Internet Explorer 8 and Internet Explorer 9 are similar, while 32-bit and 64-bit variants of
IE9 are equivalent)1. Finally, we annotate our models with formal expressions that allow us to
specify details like IP license or security policy obligations and user rights in ways that are
amenable for acquisition contracting and auditing, and compliance practices [ASA10]. Thus, our
annotated OA system models form a core of the shared agreements identified as a key element to
the development of agile C2 systems within an agile and adaptive ecosystem [RBC12]. The
remainder of this section identifies other aspects of our approach that align with the MPE/AAE
framework.

Let us consider what needs to be specified during the acquisition of an OA C2 system that allows
for a system suggested by use within the command and control rapid prototyping continuum,
C2RPC [Gar11, Giz11]. Such a system incorporates both mission-specific components
(applications or widgets for processing ISR data, e.g., [GeW12]), and also common office
productivity applications that run on a personal computer networked to remote servers. Such a
system can include a web browser, word processor, email and calendaring applications that are
configured to operate on a personal computer, where the PC’s operating system, Web browser and
other applications need to be configured to access remote data/Web content servers. Figure 1
shows part of the system ecosystem of software producers and the components they can provide
for our enterprise system. A web browser like Mozilla Firefox, Microsoft Internet Explorer,

1 Many software producers utilize multi-level numerical identifiers or other nomenclature (e.g., Internet Explorer 10
Release Preview) to distinguish major version releases from minor revision variants (e.g., Internet Explorer 9 versus
Internet Explorer 9.1.3) which we also accommodate. Such specificity is required to support system integration and
deployment requirements.

6

Opera, or Google Chrome can further be tailored and invoked through internal scripts to support
small, mission-specific widgets, as might be developed using the Ozone Widget Framework
[OWF2013].

Figure 2 shows the reference design of an OA system architecture of the office productivity
capability associated with a C2 system [cf. Gar11]. This OA system design also accommodates
the integration of browser-based remote networked services or scripted widgets. What might a
secure software product line for a system like this involve, and how might it provide benefits and
security qualities to be specified for design time, build time, and run time? How can its OA and
product-line characteristics contribute to security throughout the acquisition system life-cycle?

Figure 2. A design-time reference model of an OA system that accommodates multiple
alternative software component selections and configurations.

Within our approach, we address non-functional C2 system requirements, such as security,
configurability into C2SC, and post-deployment adaptation, These requirements are elaborated at
design and integration times by specific functional requirements that explain how and to what
degree the non-functional requirements are going to be satisfied at deployment time for
consumer/end-user organizations [AAS09, ASA10, ScA12].

7

Figure 3. A view of an OA software ecosystem that provides alternative, functionally similar
components compatible with the reference design-time architecture.

Figure 3 illustrates a possible software product line that follows from the OA software ecosystem
shown in Figure 2. Here a number of possible producers and the components they produce and
license come into play, within four specific instance C2SC architectures. With appropriate
architectural topologies, and appropriate shim components and connectors inserted between the
major components, each of these four instances support the same general functionality of the
office productivity C2SC that can support mission planning. This means that it becomes possible
to offer support for rapidly switching from one OA system configuration to another by
substituting compatible (functionally similar) components. This gives us the ability to adapt the
C2SC in ways that sustain its overall operational requirements, while allowing multiple parties to
independently maintain or evolve the component configuration they choose.

Last, it is also possible to achieve different nonfunctional requirements addressing support for
security policies through the four architectural choices; for example, by requiring that computer
operating systems on which such a capability be hosted must support an appropriate mandatory
access control and type enforcement mechanism, such as is provided in the Security-Enhanced
Linux protection service library (e.g., for computers running the RedHat Enterprise Linux or
Fedora operating systems), or by requiring the use of secure network protocol connectors like
HTTPS which provide basic network data encryption functionality.

A Case Study for Securing OA C2 Systems
We utilize a case study to describe and analyze our approach to design secure OA C2 systems or
C2SCs. Such a study serves to help identify issues that arise pertaining to our support of
MPE/AAE elements, which in turn drive the development or evolution of such systems, whether
they are deployed in a fully developed environment, or whether they are envisioned to address
challenges that arise in underdeveloped, degraded or resource limited operational environments.

8

Our study is divided into two parts, the first addressing design of a simple centralized C2 system
with an OA for use in a fully developed environment, and the second addressing a similar but
decentralized C2 system with an OA, which may be appropriate for experimental studies.

Centralized C2 system architecture
Traditional C2 systems are designed to support a centralized system deployment. In such a
situation, all core system elements or capabilities are located in a single facility, though such a
facility may be mobile (e.g., airborne or shipboard).

Within the overall ecosystem of Figure 3, Figure 4 shows one possible instance ecosystem
involving specific producers (Mozilla--Firefox, abisource.org--AbiWord, gnome.org--Evolution,
Red Hat--Fedora) and specific component alternatives selected (i.e., Firefox, AbiWord, Evolution,
Fedora).

Figure 4. A selection among alternative components that can be included at build-time to produce
an integrated system compatible with the design-time reference.

Figure 5 then shows what a deployed run-time instantiation of this OA C2SC might look like
from the perspective of the system's end-users. Here we see the Firefox web browser (upper left
corner), AbiWord word processor (upper right corner), Gnome Evolution email+calendaring
application (lower left corner), and the Fedora operating system (lower right corner). Though the
visual detail in this example is limited, the Red Hat Fedora Linux operating system (lower right
corner) is shown utilizing the SELinux security protection library, for coding and enforcing
mandatory access control on programs/data, and other security enforcement functions.

9

Figure 5. An end-user run-time version of the selected alternative components that fulfills the OA
C2SC system design.

Figure 6 outlines an alternative system configuration and the instance ecosystem that produces it.
This instance architecture substitutes services for components in the case of Google Docs for the
word processing functionality and Google Calendar for the calendar functionality. With
appropriate shims and changes to the architectural topology this combination of major
components could also support the system’s functional requirements, and because the services are
accessed through client-server connections, which block the propagation of most license
obligations, there are a number of ways to satisfy the IP constraints imposed by the component
and service licenses.

This alternative configuration also highlights possible acquisition-time concerns and the
nonfunctional requirements and security license issues that follow from them. For example, a
remote service such as Google Docs provides benefits and imposes costs with respect to a
compiled component such as AbiWord. On the one hand, the remote service makes some
qualities easier to achieve (data sharing, backup, etc.) but on the other may make some qualities
harder to achieve (data security over a network connection and in the “cloud”, up-time of the
service, little or no control over when new versions of the service are used compared to complete
control over when new versions of a component are integrated).

10

Figure 6. A second configuration of the OA C2SC example, using alternative but functionally
similar components.

This ability to rapidly and conveniently substitute components (agility) to adapt to different end-
user needs or required components aligns with the MPE/AAE elements. However, we still need to
address how other elements in the shared agreements, like IP licenses, enable/constrain whether
such an alternative configuration, though technical possible, meets other organizational
requirements. This concerns raises the following kinds of questions:

● Who in the ecosystem of human actors (the multiple parties) for this system has the right
to make the decisions to use a remote/networked computational service in place of a
locally hosted software system component, or one component version in place of another?
What obligations are they required to satisfy first? These questions are of concern at
acquisition time and, we claim, are addressable through explicit acquisition policies that
stipulate desired rights and acceptable obligations by the acquiring organization, where
such policies are important to system acquisition officers, just as IP licenses do for IP
rights and obligations important to software producers. Our shared agreements need to
provide guidance for what to do here.

● When can these decisions be made? In traditional development processes these would
occur at design time, but in the larger view we examine here such decisions, or rather the
shared agreements that control them, are perhaps more properly considered at component,
C2SC, or system acquisition time. As we will see below, it is also possible that in order to
achieve specific security qualities they might be made at system integration time or at
deployment time, in response to specific end-user organization needs.

11

Figure 7. An end-user view of the alternative run-time system configuration

Figure 7 shows a run-time view of this alternative configuration. To the end user this system
appears quite similar to the one in Figure 5, and the differences might scarcely be noticed, which
raises the next set of possibilities.

Both these instance architectures displayed in Figure 5 and Figure 7 specify specific alternatives
for the major components, for example, Mozilla Firefox for the web browser component. But
which version of Firefox? For example, it is quite possible that both the instance architectures
discussed above could be implemented using either Firefox 18 or Firefox 19, satisfying all the
functional requirements with no change to the instance architecture and no revision of software
shims. Who has the power to decide to use version 18 rather than version 19? How late in the
software process can this decision be made -- for example, could it be made as late as system
startup time by a system user? or in response to a particular security attack on the previous
configuration?

Finally, an orthogonal consideration is the use of software-based access control containment
vessels to encapsulate components or subsystems within a virtual machine, to monitor and control
interactions among components and subsystems in order to block attacks and protect vulnerable
parts of a system. Figure 8 shows a screenshot in ArchStudio of a design-time architecture
utilizing eight containment vessels, seven for individual components and connectors and the
eighth for the group of components and connectors associated with the computer's operating
system.

For security, the Fedora operating system can employ the SELinux capabilities to restrict all

12

shell/operating systems commands through mandatory access control and type enforcement,
while other components can all be contained within one (for minimal security confinement) or
more (for increased security confinement on a per component basis) Xen-based virtual machines
(See Figure 8). The interoperability of SELinux and Xen is now a common feature of many large
Linux system installations (e.g., Amazon.com now has more than 500K Linux systems running
Xen) [Xen12]. So it is possible for shared agreements to call for the use of multiple software-
based security mechanisms to protect a OA system or C2SC, while still accommodating the
MPE/AAE elements. This is an important accomplishment.

Figure 8. A secure OA system configuration alternative that encapsulates multiple system
capabilities within different virtual machines (e.g., using [Xen12]), where each system capability

may be under the purview of a different organizational authority.

Decentralized C2 system architecture
Decentralized C2 systems can employ OA that accommodate their deployment and usage in
degraded and limited operation environments. Decentralized C2 systems can have a very small
physical footprint, and mission planners/commanders may be located potentially anywhere in the
world. So decentralized OA C2 systems can serve as appropriate candidates for experimentation
or training in underdeveloped, degraded, or denied operational environments.

13

In our previous work, we have investigated and prototyped a C2 system called DECENT
[SBN12] that provides an immersive 3D virtual world for experimenting with decentralized C2
activities. DECENT is designed to run in a wide-area network environment that supports 3D
browsers (or conventional Web browsers with 3D world viewer plug-ins) as clients, and remote
servers to provide content and other services accessible through the browsers. DECENT operates
on the Internet, but not on the Web, relying instead on a separate decentralized network grid
architecture called the HyperGrid [Lop11]. The HyperGrid infrastructure in turn allows for the
establishment and operation of distinct or interconnected hypergrids as separate administrative
authorities for research, experimentation, or training applications. The MOSES hypergrid is such
an example [Max12, Mos13].

The Ozone Widget Framework [OWF13] supports a different form of decentralized OA. OWF
provides support for the development of Web-compatible widgets as lightweight applications that
access pre-specified kinds of content from remote servers. This allows the creation of virtual
private networks offering Web-like applications and services through network-managed security
capabilities. However, in an underdeveloped operational environment, such networking
capabilities may not be available or reliable, so other means must be utilized to realize secure
communications. Alternatively, applications or widgets that rely on signals from known types of
sensors may also not be available or reliable, so other widget versions may be need to be
provided.

Subsequently, one strategy for developing a decentralized C2 system would combine the OA for a
centralized C2 system, but allow for the system components (applications, widgets, content
servers, operating systems, etc.) or C2SCs to be interconnected to local/remote servers through
encrypted network connectors (e.g., secure data communication protocols like HTTPS or TLS, or
robust dynamic capability connectors, like those used in the COAST [GST12]) that enable data,
control, or signals to flow across (or tunnel beneath) virtual software defined networks. In other
words, the user interface would still rely on a Web browser modality, yet in a simple
implementation, be able to securely access hypergrid worlds in one window, with other widget-
based content services located in other browser window or user sessions, depending on overall
security policy. So we have a basis for developing a secure decentralized C2 system that allows a
consistent OA system model whose components or connectors may be centralized or
decentralized by design choice or security policy. However, compiling and deploying such a
decentralized C2 system are the system development activities when the security components will
be integrated.

Overall, a decentralized C2 system can be developed using system elements (components,
connectors, or embedded C2SCs) that may reside on local computer or remote networked
computers that are accessed through software client applications that may reside within a C2
virtual world. Such choices may be most appropriate for OA C2 systems that are intended to
support experimentation in C2 mission planning activities. Such activities may be most relevant
where underdeveloped or degraded system elements are employed, in order to help train mission
commanders to learn how to articulate their requirements for new system components that can be
rapidly developed, integrated and deployed. It also can serve to reveal other practical advantages
and constraints that arise when end-user organizations follow the MPE/AAE guidelines for
adapting and evolving their OA C2 systems.

14

Conclusions
In this paper, we identified and investigated technical and acquisition challenges that arise during
the development and evolution of secure Open Architecture (OA) command and control (C2)
systems. OA systems are identified as those whose software system components and
interconnection mechanisms are either proprietary closed source software offerings with open
application program interfaces, open source software, or some architectural configuration of
closed and open source elements. Secure OA systems are identified as those where the security of
individual software elements may be uncertain, because of the ongoing evolution, poorly
understood system integration compromises, or obtrusive software intellectual property licenses,
yet where overall OA security must be continuously assured.

We presented a framework that organizes OA system security elements and mechanisms in forms
that can be aligned with different stages of the life cycle of C2 system development. We focused
attention to the design of OA C2 systems or C2 system capabilities using commonly available
software components that provide office productivity capabilities that support C2 operations.. We
provided a case study to show our scheme and how it can be applied to C2 system architectures
that rely on an OA. Finally, we showed how our efforts complement and extend the agile C2
framework that utilizes a new generation of software components and security mechanisms that
are engineered/adapted by multiple parties and disseminated within a diverse marketplace
ecosystem of software producers, integrators, and consumers.

Acknowledgements
The research described in this report was supported by grant #N00244-12-1-0004 from the
Acquisition Research Program at the Naval Postgraduate School, Monterey, CA, and by grant
#1256593 from the National Science Foundation. No endorsement, review, or approval implied.
This paper reflects the views and opinions of the authors, and not necessarily the views or
positions of any other group, enterprise, or government agency.

References
[ACC13] Acquisition Community Connection, Naval Open Architecture and DoD Open Systems
Architecture. https://acc.dau.mil/oa , accessed 1 February 2013.

[ASA10] Alspaugh, T.A., Scacchi, W., and Asuncion, (2010. H. Software licenses in context: The
challenge of heterogeneously-licensed systems. Jour. Assoc. Information Systems, 11(11), 730-
755.

[BCK03] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd
Edition, Addison-Wesley Professional, New York.

[Fel07] K. Feldt, K. (2007). Programming Firefox: Building Rich Internet Applications with
XUL. O'Reilly Media, Inc., Sebastopol, CA.

[Gar11] Garcia, P. (2011). Command and Control Rapid Prototyping Continuum (C2RPC): The
Framework for Achieving a New C2 Strategy, 16th. Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-033, Fairfax, VA, June 2011.

[GeW12] Gerschefske, K. and Witmer, J. (2012). Wired Widgets: Agile Visualization of Space

15

https://acc.dau.mil/oa

Situational Awareness, Advanced Maui Optial and Space Surveillance Technologies Conf.
(AMOS'12), http://www.amostech.com/TechnicalPapers/2012/POSTER/GERSCHEFSKE.pdf

[Giz11] Gizzi, N. (2011). Command and Control Rapid Prototyping Continuum (C2RPC)
Transition: Bridging the Valley of Death, Proceedings 8th. Annual Acquisition Research
Symposium, Vol. 1, Naval Postgraduate School, Monterey, CA.

[GST12] Gorlick, M.M., Strasser, K. and Taylor, R.N. (2012). COAST: An architectural style for
decentralized on-demand tailored services. In Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture (WICSA-ECSA ’12) , 71–80.

[Lop11] Lopes, C.V., (2011). Hypergrid: Architecture and Protocol for Virtual World
Interoperability, IEEE Internet Computing, 15(5), 22-29, Sept-Oct 2011.

[Max12] Maxwell, D. (2012). Military Grid Hits Performance Goals, Hypergrid Business, 26
November 2012. http://www.hypergridbusiness.com/2012/11/military-grid-hits-performance-
goals/ , accessed 3 February 2013.

[MeO01] Meyers, B.C. and Oberndorf, P. (2001). Managing Software Acquisition: Open Systems
and COTS Products. Addison-Wesley Professional, 2001.

[Mos13] MOSES, (2013), Military Open Simulator Enterprise Strategy,
http://brokentablet.arl.army.mil/ accessed 4 February 2013.

[RBC12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2 with an
Agile and Adaptive IT Ecosystem, 17th. Intern. Command and Control Research and Technology
Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

[OPM03] Ovaska, P., Rossi, M., and Marttiin, P. (2003). Architecture as a Coordination Tool in
Multi-Site Software Development. Software Process—Improvement and Practice, 8(4), 233-247.

[OWF13] Ozone Widget Framework (2013). Ozone Widget Framework Readme,
https://github.com/ozoneplatform/owf/blob/master/README.md , accessed 4 February 2013.

[ScA12a] Scacchi, W. and Alspaugh, T. (2012a). Addressing the Challenges in the Acquisition of
Secure Systems with Open Architectures, Proc. 9th. Annual Acquisition Research Symposium,
Naval Postgraduate School, Monterey, CA, Volume 1, May 2012.

[ScA12b] Scacchi, W. and Alspaugh, T. (2012b). Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software, 85(7),
1479-1494, July 2012.

[ScA12c] Scacchi, W. and Alspaugh, T. (2012c). Developing Secure Systems using Open
Architectures with Open Source and Closed Source Components, Proc. 8th. IFIP International
Conf. Open Source Systems, IFIP Advances in Information and Communications Technology, Vol.
378, 144-159, Hammamet, Tunisia, September 2012.

16

https://github.com/ozoneplatform/owf/blob/master/README.md
http://brokentablet.arl.army.mil/
http://www.hypergridbusiness.com/2012/11/military-grid-hits-performance-goals/
http://www.hypergridbusiness.com/2012/11/military-grid-hits-performance-goals/
http://www.amostech.com/TechnicalPapers/2012/POSTER/GERSCHEFSKE.pdf

[SBN12] Scacchi, W., Brown, C. and Nies, K. (2012). Exploring the Potential of Virtual Worlds
for Decentralized Command and Control, 17th. Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-096, Fairfax, VA, June 2012.

[SWM11] Soylum A., Wild, F., Modritscher, et al. (2011). Mashups and Widget Orchestration,
Proc. Intern. Conf. on Management of Emergent Digital EcoSystems (MEDES'11), 226-234.

[TMD09] Taylor, R.N., Medvidovich, N. and Dashofy, E. (2009). Software Architecture:
Foundations, Theory, and Practice, Wiley, New York.
[Xen12] Xen.org, What is the Xen Hypervisor? http://xen.org/products/xenhyp.html , accessed 1
November 2012.

17

http://xen.org/products/xenhyp.html

