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Human-Centered Command and Control of Future Autonomous Systems 
 
Abstract 
 
The DoD’s envisioned role shift for humans from operators to future autonomous systems supervisors 
presents significant challenges for developing effective decision support. What decision support will 
supervisors need to effectively oversee autonomous systems? What will their task needs be and how 
can we support them with usable and useful supervisory human-machine interfaces (HMIs) and tools? 
Here, we inform the requirements and design of future decision support through a systematic cognitive 
engineering and analysis process. Structured interviews with 27 unmanned systems experts were 
carefully sequenced across four groups, with results and artifacts from one group informing the next 
interviews. Interviews focused on supervisory monitoring and intervention tasks and were designed to 
feed a user- and task-centered, scientifically-principled HMI design process to develop the decision 
support. The interviews informed this design process by populating three key design artifacts: (1) a 
model of current and future tasks, (2) their allocation across humans and automation, and (3) the 
necessary supporting human-automation exchanges. A framework for system designers to allocate tasks 
across humans and automation was extended to provide an objective basis for subject matter experts to 
contribute their expectations for future automation. The interview results show how today’s task needs 
are not met by current HMIs and tools, and how persisting with them is unlikely to meet the future 
needs of more nuanced supervisory decision making. Our results inform the design of future supervisory 
HMIs that target and mitigate today’s capability gaps and shed light on how to begin to achieve the DoD 
vision. 
 
Keywords: supervisory control, autonomous systems, decision support, human-machine interface, user-
centered design  

Introduction 
 
The Evolving Role of the Human in Unmanned and Autonomous Systems 
 
The role of the human operator of autonomous systems is anticipated to undergo a significant 
transformation from today’s single-vehicle, single-mission operator into tomorrow’s multi-vehicle, multi-
mission manager (DoD, 2009). Dramatic improvements and increases in autonomy are expected to 
enable this transformation (DoD, 2012). The DoD is investing heavily in researching and developing the 
autonomy technologies required to support the future vision. Here, we focus on the equally important 
but often neglected issue of supporting the future human end-user of these technologies who must 
supervise the autonomous systems and manage multiple concurrent missions.  
 
Supporting the future human supervisor means anticipating and supporting their task needs as they 
change from monitoring vehicles and sensors today to monitoring mission-level goals, tasks, and status 
in the future (see Figure 1). Future users will supervise vehicle- and sensor-related automation for 
multiple vehicles and missions. Given that different tasks require different tools and displays (Larkin & 
Simon, 1987; St. John, Oonk, Smallman & Cowen, 2001), the shift to supervisory tasks will require 
careful selection and (re)design of tools and displays to support them. We have recently analyzed the 
tendency across work domains to inappropriately keep legacy displays and display “metaphors” even 
when they inadequately support users’ tasks. We relate this tendency, in part, to flawed intuitions about 
the effectiveness of certain display formats (Smallman & Cook, 2013; Smallman & St. John, 2005). These 
issues only heighten the need to carefully address the new task requirements for autonomous systems, 



18th ICCRTS: C2 in an Underdeveloped and/or Denied Environment 

 2   
 

and to ensure that the display metaphors and tools developed align with these new task needs. 
 
How can we understand and support these new task needs? Here, we report work on a task- and user-
centered design (UCD) approach to supervisory decision support and human-machine interface (HMI) 
design for future autonomous system supervision. Such an approach is critical to ensuring that the 
system and automation are engineered around the needs of the user (Diaper & Stanton, 2004; Norman, 
1986).  We focus specifically on monitoring and problem intervention tasks during mission execution.  
    

 
Figure 1. DoD’s envisioned role transformation from today’s multi-operator, single-vehicle control to a 

future supervisor of highly automated and autonomous systems.  

 
Tailored User-Centered Design (UCD) Approach 
 
UCD is an approach to human-computer interaction design that makes supporting the user and their 
needs the paramount goal of design (Norman, 1986). UCD approaches stem from Norman and Draper’s 
book User-Centered System Design (1986), with design principles (Norman, 1988), "rules” (Shneiderman, 
1987), and heuristics for usability engineering (Nielsen, 1993, 2000) all emerging and evolving over time. 
For example, the Ecological Interface Design approach borne from ecological psychology stresses 
engineering sophisticated domain understanding into tool design (Bennett & Flach, 2011; Vicente & 
Rasmussen, 1992). Other approaches stem from notions of situated cognition and focus on respecting 
the joint nature of engineered cognitive systems (Woods & Roth, 1988). Still others focus on applying a 
UCD philosophy within modern agile software development (e.g., Osga, 2006). In general, the UCD 
process begins with user requirements analysis and progresses through a series of iterative design 
prototyping and review spirals. Here, we were faced with several complex and unique domain 
challenges that shaped and tailored our specific UCD approach. 
 
First, we are designing for a situation and a user population that does not yet exist. User task needs are 
not yet defined, and cannot be specified using traditional methods of analyzing existing work on existing 
systems performed by existing users. Additionally, future automation capabilities are still being defined 
and can only be estimated.  
 
Second, the current team and role structure will need to be re-aligned to fit a single supervisor in the 
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future1. The work performed by two or three humans today will be performed in the future by a single 
user and a suite of automation jointly managing multiple vehicles and missions (DoD, 2009). The use of 
automation is often referred to as a “double-edged sword” to denote its potential to reduce user 
workload and improve efficiency, but also to introduce challenges with situation awareness, automation 
reliance, and accountability (Bainbridge, 1983). If not carefully designed and integrated into users’ tasks, 
automation’s costs can quickly outweigh its benefits. A tempting solution to compensate for inherent 
human cognitive limitations is to introduce even more automation (e.g., automated monitoring of 
automation); however, this approach introduces yet another system that a user needs to monitor 
(Parasuraman & Riley, 1997), further complicating the situation. Despite the general guidance and lists 
of issues to consider for designing automation and associated HMIs, there is currently no “universal 
formula for automating systems” (OSD, 2012). 
 
Third, design must occur within the constraints of system development. Large-scale military and industry 
system development tends to be centered more on technology and less on user needs, and generally 
aims to minimize change. Although the reasons for these tendencies may be just, the effects on user and 
system performance tend to be negative. A technology-centric focus has resulted in inadequate or even 
failed systems (e.g., Tvaryanas, 2012). The tendency to maintain legacy systems and minimize change 
has been a barrier to improvement; several of the human factors-related issues identified in analyses 
from almost a decade ago (e.g., Tvaryanas, 2004; Williams, 2004) linger in many of today’s unmanned 
systems and HMIs. These issues impact several aspects of unmanned system operation and safety. 
Human causal factors have been implicated in the majority of unmanned aircraft system (UAS) mishaps 
from 1994-2003 (Tvaryanas, Thompson, & Constable, 2006). Although UAS accident rates have generally 
declined over the years, accident rates within the US Air Force are currently higher for the three largest 
UAS than for other aircraft categories2 (Bloomberg, 2012). The fact that today’s control systems and 
HMIs for unmanned vehicles are already straining to support effective single vehicle operation raises 
concerns for their ability to support multiple vehicle missions in the future. Causing further concern is 
the limited success of previous attempts to increase the number of vehicles per operator (e.g., Predator 
Multi-Aircraft Capability (MAC)).  
 
We developed and employed a UCD process tailored to address these challenges and constraints in the 
development of future decision support, see Figure 2. This modified UCD process is unique in its 
flexibility, domain-grounding, and scientifically-principled approach. It leverages the unique expertise 
and recognizes the limitations of each stakeholder (e.g., subject matter experts (SMEs), human factors 
scientists/designers), and assigns stakeholders roles accordingly. For example, SME feedback was 
focused on expectations for future automation based on extensive experience with unmanned vehicles, 
rather than subjective preferences for display designs, given the limits in SME intuition about displays 
revealed by our recent Naïve Realism research in metacognition and visual displays (Smallman & Cook, 
2011). The role of the human factors scientists and designers was to apply expertise in cognitive science, 
human-automation allocation, and relevant work domains to develop concepts to meet future 
supervisory work domain and task needs. Figure 2 shows the general steps of UCD (middle), and how we 
tailored it to apply cognitive science (top) and domain expertise (bottom) at key points throughout the 
process to support user abilities and future user task needs. 

                                                           
1
 The future vision will undoubtedly involve multiple human supervisors interacting and collaborating. Our specific 

focus in the current work is on the general transformation of the human role from operator to supervisor. 
2
 The combined accident rate of the Air Force’s three largest UAS (9.31 per 100,000 hours of flight for Global Hawk, 

Predator, and Reaper) is currently the highest rate for any aircraft category, and more than three times as high as 
the fleet-wide average of 3.03 per 100,000 hours of flight (Bloomberg, 2012). 
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In this paper, we focus on the first three UCD steps (shown in color in Figure 2) and how they provide a 
principled basis for the design of systems, automation, and HMIs for the future autonomous systems 
supervisor. These three steps were to (1) define the key tasks in unmanned system operation and 
supervision, (2) specify the allocation of those tasks to humans and automation currently and for the 
future, and (3) specify the necessary information exchanges between humans and automation for 
effective supervision.  
 

 Figure 2. Highlights of user-centered design (UCD) process tailored for this effort. 
This approach addressed each of the challenges mentioned above. First, by carefully specifying the core 
tasks involved in unmanned systems operation and supervision, we provide a basis for defining future 
user task needs. Given the same core work performed currently will still need to be completed in the 
future, what will change is how the work gets accomplished. Therefore, we harnessed expertise from 
current SMEs with experience in vehicle, sensor, and mission commander unmanned vehicle roles to 
help define the task needs of future users.  
 
Second, with a human-centered automation philosophy of humans and automation working 
cooperatively to achieve common objectives (Billings, 1996), we used a rational and principled method 
for task and function allocation to humans and automation, in support of the role re-alignment needed 
in the future. There are varied techniques and models of human-automation allocation with different 
strengths and weaknesses (e.g., automating as much as possible defines the role of the human by what 
is left over from the automation rather than the strengths of the human). We developed and employed 
novel techniques to enable SMEs to contribute their domain, task, and technology expertise to inform 
human-automation allocation. Additionally, we developed and used novel methods to define effective 
information exchanges between humans and automation (Klein, Woods, Bradshaw, Hoffman, & 
Feltovich, 2004). 
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Third, the user- and task-centered nature of our approach appropriately directs the focus onto 
immutable needs of the user, and not the technology or the idiosyncrasies of a particular platform. Since 
future systems will grow out of existing systems, it is crucial to understand which aspects of today’s 
systems and HMIs are viable for the future, and which should be re-evaluated. Here, today’s systems 
were assessed against users’ task needs to begin to assess which unmanned vehicle “display metaphors” 
and features remain viable and which should be abandoned. Although the capabilities of future 
autonomous vehicles will improve vastly, the same cannot be said for the capabilities of future human 
supervisors. Those supervisors will possess the same perceptual and cognitive processing faculties as 
today’s unmanned vehicle operators. They will have the same attentional limitations and bottlenecks 
(Simons & Rensink, 2005) and limited memory capacity that requires context and association in order to 
function (Anderson, 1983), and exhibit the same serial, slow goal-directed problem solving behaviors 
(Newell & Simon, 1972). A key element of our UCD process is matching the design of the tools and HMIs 
to the abilities of humans through the careful application of scientific concepts and lessons learned in 
other application domains. 
 
The unmanned vehicle and systems domain is vast and complex. There are many research efforts 
currently underway tackling different aspects of achieving the future DoD vision for autonomy. We 
scoped our cognitive engineering efforts to focus on tasks related to monitoring and problem detection, 
given that those tasks are the most complex aspects of supervisory control (Sheridan, 2006), and that 
future users will become monitors of automation and situations, responsible for keeping automation in 
check and compensating for automation’s limitations.  
 
Interviews with unmanned vehicle experts were sequenced across multiple SME groups and sites, with 
interview stages designated for each SME group for efficiency. Given the time limitations of the SMEs, 
the interviews were carefully designed and prepared to maximize SME feedback and minimize intrusion. 
Novel approaches were developed and employed to provide an objective basis for SMEs to share their 
expectations for future automation and to facilitate translating the task analysis results to actual design.  
 
Prior work has described various aspects of current unmanned aerial vehicle (UAV) practice by user role 
(Cooke, Rivera, Shope, & Caukwell, 1999; Gugerty, 2004; Nehme, Crandall, & Cummings, 2007) and 
begun to analyze aspects of control of groups of vehicles (e.g., Cummings, Bruni, Mercier, & Mitchell, 
2007; Drury & Scott, 2008; Nehme, Scott, Cummings, & Furusho, 2006; Scott & Cummings, 2006). 
However, there have not been detailed prescriptive task models created that address the issue of how 
to aggregate and rationalize those roles for the future supervisor and how to incorporate SME 
expectations of future roles and automation. Our approach is unique in creating this prescriptive model 
through capturing current user expectations for future automation and its integration, through a novel 
staged and sequential UCD approach. The design artifacts resulting from this work inform initial 
prototype concepts reported elsewhere (see Smallman & Cook, 2013). 
 
Materials, Method, and Results 
 
Cognitive Engineering and Analysis Approach and Process 
 
Within our tailored UCD process, we conducted a staged task analysis to define the task needs for future 
autonomous system supervision through interviews with present-day unmanned vehicle domain 
experts. There are many approaches to conducting task analysis, a multitude of methods for conducting 
it, and a variety of outcomes, design artifacts, and products resulting from it (see Diaper & Stanton, 
2004, for a review). The selection of which approach and method to use depends on several factors, 
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including the goals of the analysis, the design artifacts needed, and the stakeholders involved in the 
process. The approach used in this effort synthesized elements from multiple methods to achieve the 
goals of the analysis and design.  
 
The task analysis was conducted using the following staged interview approach with a broad, 
representative sample of unmanned systems SMEs, sequenced over time and across different military 
and commercial industry sites, to produce specific design artifacts. It focused on the three steps shown 
in color in Figure 2. A key design artifact produced was a taxonomy of roles and tasks for unmanned 
system operation and supervision. Figure 3 shows a thumbnail sketch of which parts of the role-task 
taxonomy each stage focused on. 

 

 
Figure 3. Overview of staged interview process. 

Stage 1: Define core tasks involved in unmanned vehicle / system operation and supervision 

 Process: Generated role-task matrix for core unmanned system user roles and tasks performed 
during mission execution. Reviewed and revised role-task matrix with unmanned vehicle SMEs.  

 Rationale: Center interventions around users’ tasks. Scope design effort around core tasks 
performed during mission execution.  

 SMEs: One unmanned maritime domain SME and five SMEs from a military controlled testing 
venue for unmanned vehicles. 

 Design artifact: role-task matrix (Figure 5). 
 
Stage 2: Specify current (descriptive) allocation of tasks to humans and automation, and propose 
future (prescriptive) allocation 

 Process: Specified current and proposed future allocation of tasks in Stage 1 role-task matrix to 
humans and automation through SME involvement. Used innovative approach to involve SMEs 
in task allocation, expanding on approach developed for system designers (Parasuraman, 
Sheridan, & Wickens, 2000).  
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 Rationale: Define starting point to build from to achieve future vision. Understand extent of gap 
to bridge between today and future. Inform task allocation based on strengths/limits of humans 
and automation and user task needs. Inform algorithm development. 

 SMEs: 13 SMEs from a leading commercial provider of high-performance UAS. 

 Design artifact: role-task matrix with descriptive and prescriptive task allocation (Figure 5). 
 
Stage 3: Specify information exchange between humans and automation for subset of detection tasks  

 Process: Generated key information inputs and outputs for human-automation information 
exchanges for a subset of detection tasks from Stage 2 prescriptive role-task matrix. Reviewed 
and revised key information inputs and outputs with unmanned systems SMEs. Employed novel 
procedure to involve SMEs in design-critical decisions for information access and level of detail.  

 Rationale: Support user information exchanges with automation. Facilitate user trust and insight 
into automation. Facilitate mapping from results to design.  

 SMEs: Eight SMEs from a major US Air Force UAS training facility. 

 Design artifact: information inputs and outputs for human-automation exchanges.  
 

 
Figure 4. Summary of SME participant characteristics. 

Participants 
 
A total of 27 domain experts from four unmanned systems-related groups were interviewed over four 
months in 2012. Different types of unmanned vehicle SMEs were selected to yield a sampling of users 
with experience across vehicles, mission types, and team configurations, in both the military and 
industry. Details of participant characteristics are summarized in Figure 4. 
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Sites 
SMEs from four groups were recruited: 1) a Fleet Forces Command-sponsored annual Navy exercise, 2) a 
military controlled testing venue for unmanned vehicles, 3) a leading commercial UAS provider, and 4) a 
major US Air Force UAS training facility. Across sites, the SMEs were universally motivated and 
interested in improving the operation and safety of unmanned and future autonomous systems and 
having the opportunity to impact design and development. 
 
Platforms 
SMEs had experience with unmanned maritime craft and unmanned aerial systems, including an array of 
DoD Group 1 – 5 UAS; platforms included Sea Fox, Mako, TigerShark, Arrow, Aerosonde, ScanEagle, 
Predator (MQ-1), and Reaper (MQ-9). 
 
Experience 
Twenty-six of the SMEs were experienced in one or more of the roles of vehicle operator, sensor 
operator, and mission commander. In total, 22 had experience as vehicle operator, 19 as sensor 
operator, and 11 as mission commander. One additional SME with expertise in unmanned maritime 
vehicles, CONOPS, and Navy fleet exercise-based testing also participated. All SMEs reported their 
experience level as intermediate or expert, with a range of 1-14 years of experience across platforms. 
 
Materials and Method – General  
 
The interviews and site visits were designed and scoped to support the three task analysis stages 
described earlier and shown in Figure 3. With the exception of some minor variations due to scheduling 
and availability, the same general interview procedure was used across all sites. We approached and 
made formal requests to several unmanned vehicle sites and groups with potential SMEs with a range of 
experience. Since all SME participation was voluntary and un-paid, several measures were taken to 
minimize the time burden to the SMEs and their daily routines while maximizing the feedback gained 
from the SMEs during the interviews.  
 
Each interview session consisted of two scientist interviewers and one or two SMEs. The SMEs were 
informed of the institutional review board (IRB) approval of the study and the voluntary nature of their 
participation at the start of the session. Care was taken to explain the purpose of the effort, the 
criticality of SME involvement in the design process, and the potential benefits and payoffs for users. 
The goal of designing automation as a peer or assistant to, rather than a replacement of, human 
performance was stressed. After obtaining informed consent, general information about each SME’s 
background and experience with unmanned vehicles was collected.  Each set of materials was tailored 
to each task analysis stage. The interview materials served to structure and direct the interview 
discussions and provide the context necessary for soliciting the SME knowledge and expertise needed 
(Cooke, 1999). The interviews were highly interactive, with SMEs reviewing, commenting on, and 
helping to refine the interview materials, providing elaborating examples when necessary.   
 
Site visits also included tours of the facilities and ground control stations (GCS), observations of live 
training exercises, hands-on access to UAS simulators and HMIs, and viewing the unmanned vehicles on 
the flight line and parked in hangars. SMEs and key personnel were thanked for their participation at the 
end of the interview sessions and site visits. Some SMEs who offered to provide additional feedback and 
clarification were contacted with follow-up questions.  
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Materials, Method, and Results – Stage 1 
Defining Core Tasks in Unmanned Vehicle Operation and Supervision during Mission Execution 
 
The goal of the first task analysis stage was to codify and analyze the core tasks of unmanned vehicle 
operation, capturing the general cognitive and perceptual challenges in monitoring and assessing 
information during mission execution (vs. system-specific control tasks). The scope of the task analysis 
was on monitoring and assessment tasks. Planning, takeoff, platform-specific control, landing, and 
recovery-related tasks were outside the scope of interest.  
 
Stage 1 materials were drafted prior to the interviews to maximize the efficiency, focus, and value of the 
time-limited interviews with SMEs. These materials consisted of a set of draft tasks, organized by roles in 
a “role-task matrix” (Spillers, 2004). The draft role-task matrix was informed by a review of previous task 
analyses in the unmanned systems and related domains, and relevant operational doctrine and concepts 
of operations (e.g., Cook & Smallman, 2010; Fleet Forces Command, 2008; Gugerty, 2004; Nehme, 
Crandall, & Cummings, 2007; OSD, 2012; Sibley & Coyne, 2012). Generally, roles are collections of tasks 
to perform a specific function. Decomposition into roles and tasks is a standard technique with useful 
application to both software development and HMI design within a UCD approach (e.g., Osga, 2006). 
Organizing tasks by roles has several advantages: Roles allow tasks to be clustered into meaningful 
chunks as a basis for assignment, provide a means to map work onto any team configuration (current or 
future, human and automation), and suggest ways to organize HMIs that support users taking distinct 
roles (Smallman, Cook, Beer, & Lacson, 2009).  
 
A single individual can perform one or more roles. Each role for current unmanned vehicle operation—
vehicle operator, sensor/payload operator, and mission commander—is often assumed by a single 
individual, though one person takes on more than one role in some team configurations (e.g., one 
person serving as vehicle and sensor operator). The future supervisor and supporting automation will be 
expected to take on the multiple roles currently assumed today by multiple individuals. 
 
Figure 5 shows the content of the core role-task matrix. Current (and future) roles are specified in rows. 
Task groups of monitor, detect, assess, and decide are shown in columns. Specific tasks are listed in each 
cell created by the intersection of role rows and task group columns. Task group columns are ordered 
roughly in the sequence they are performed; for example, monitor the vehicle to detect anomalies or 
problems, and assess the ability or need to fix the problem, to help decide which course of action to 
pursue. Within a role row, similar tasks are grouped together (e.g., the vehicle operator tasks include 
monitoring the vehicle, and the environment). Each task phrase is constructed by combining the column 
header with the bulleted task beneath (e.g., Detect ongoing or anticipated anomalies or problems with 
vehicle health and status…”). These task groups align roughly with a classic four-stage view of 
information processing (Parasuraman et al., 2000) and this decomposition allows us to develop targeted 
support for these tasks, and anticipate where weaknesses will arise.  
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Figure 5. Stage 1 role-task matrix, with Stage 2 descriptive (current) and prescriptive (future) task allocation.
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To reflect the core goals of unmanned systems operation and the satisficing rather than optimizing goal 
that often currently prevails, tasks were focused on detecting and responding to problems or changes 
(“detect ongoing or anticipated problems with collection quality”) rather than just generally monitoring 
situations (“monitor collection quality”). This focus on detecting and responding to problems or changes 
has been validated throughout the SME interviews: although operators do monitor (collection) quality, 
their goal is to ensure it stays above a particular level, and any deviations from this are indicators that 
(collection) quality is or will become sub-standard. Additionally, this focus on detecting ongoing or 
anticipated problems reflects the goals of operators to both monitor proactively and to respond to 
changes that arise. 
 
The tasks were deliberately general, high level, and phrased in terms of achieving a particular goal 
(avoiding limitations due to platform specificity). For example, “Detect ongoing or anticipated anomalies 
or problems in vehicle health and status” is general enough to pertain to detecting out-of-range 
indicator values caused by malfunctions or environmental conditions for any number of different 
unmanned platforms. Operators today are responsible for detecting these anomalies or problems by 
directly monitoring the vehicle indicator values (engine oil level, temperature, pressure, RPMs, etc). 
Future users are likely to off-load some of that data monitoring to automation, and instead focus their 
efforts on ensuring the automated monitors themselves are in check. 
 
The draft role-task matrix was initially created with sticky notes on butcher paper to keep it agile and 
flexible as we reviewed and refined it with SMEs, and to deliberately convey to the SMEs how open it 
was to their feedback and rearrangement. Information used or needed for the tasks was listed at the 
bottom in the draft version. The draft role-task matrix went through two reviews and revisions, first with 
the unmanned maritime vehicle SME by telecon, and second with five SMEs from the military controlled 
testing venue. Feedback consisted of additions, deletions, modifications, and clarifications in content, 
wording, and task placement. Following these sessions, the role-task matrix was revised and translated 
into a digital format (Figure 5). This revised role-task matrix was used as the basis for the descriptive and 
prescriptive task models, described next. Figure 5 shows both the role-task matrix and the color-coded 
results of the SME allocation of tasks to humans and automation from Stage 2. 
 
Materials and Method – Stage 2 
Descriptive (Current) and Prescriptive (Future) Allocation of Tasks to Humans and Automation 
 
The goals of Stage 2 were to (1) specify the allocation of tasks to humans and automation in current 
practice (descriptive) and (2) propose a task allocation scheme for future practice (prescriptive). The 
role-task matrix developed in Stage 1 was used as the basis for the descriptive and prescriptive 
assignments. A group of 13 SMEs from a leading commercial UAS provider contributed input for the 
descriptive and prescriptive task assignments. 
  
A vocabulary and systematic yet simple method was needed for SMEs to communicate and classify the 
descriptive and prescriptive allocation of tasks to automation and humans. For this, a simple rating scale 
was developed, leveraging from existing automation scales from the supervisory control literature and 
operational documentation (e.g., DoD, 2011; Parasuraman et al., 2000; Sheridan & Verplank, 1978).  
 
For simplicity, this scale consisted of five task allocation categories ranging from fully human to fully 
autonomous. Each category specified the roles of both the human and the automation, describing their 
relative functions, authority, and relationship. This conveyed the importance of the joint human-
automation relationship in creating a joint cognitive system (Woods & Hollnagel, 2006). This approach 
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was intended to avoid the shortfalls of other methods that have focused disproportionally on the 
automation and technology, conceptualized of autonomy as simple delegation of a complete task to a 
computer, or treated automation as operating at discrete and rigid levels (DoD, 2012).  
 

 
Figure 6. Task allocation scale and categories for Stage 2. 

 
The task allocation procedure was introduced incrementally to SMEs by covering the concepts in Figure 
6 from top to bottom. First, some basic examples of the relative strengths of humans and automation 
were described, inspired by Fitts’ classic list (1951). Next, the task allocation scale and the description of 
each category were reviewed. To make the categories meaningful to all SMEs, they were grounded in 
the increasingly popular automated grocery store checkout systems. Associated examples of futuristic 
automation assisting with scanning and tallying groceries were mapped to the categories. Generic 
tradeoffs in speed, accuracy, and customer service listed beneath the grocery store example in Figure 6 
were discussed. The everyday example was used to encourage the SMEs to learn the task allocation 
concept rather than focus on specific details of unmanned vehicle technologies and capabilities. 
 
Next, to help the SMEs begin to think about the task allocation concept in terms of unmanned vehicle 
tasks, a vehicle operator task was mapped to the task allocation categories. The example task was 
“detect ongoing or anticipated anomalies or problems with vehicle health and status” and the specific 
example mapping was as follows:  
 

 User monitors vehicle health and status and is responsible for detecting all out of range values or 
problems (1 – Fully human) 

For 2 – 5, “detection” automation helps to monitor the health and status of the vehicle and: 

 alerts the user to all out of range values; user must review all alerts and decide which ones warrant 
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attention and which to dismiss (2 – Human delegated) 

 alerts the user to a subset of out of range values, for the user to review and approve or dismiss 
(similar to “management by consent”) (3 – Human supervised) 

 decides on the subset of out of range values of concern; the user can dismiss alerts within a given 
time period (similar to “management by exception”) (4 – Nearly autonomous) 

 decides on the subset of out of range values of concern; the user has no ability to review or dismiss 
(5 – Fully autonomous)  

 
The essence of this allocation activity was indicating how a task could be performed by users and 
automation to varying degrees. For example, detecting anomalies can be done completely by a user or 
can be assisted to varying degrees by some detection automation that the user reviews, approves, 
rejects, or takes no part in. Similarly, assessing whether an anomaly can and should be fixed can be done 
completely by a user, or can be assisted by some assessment automation that the user reviews, 
approves, rejects, or takes no part in. 
 
To perform the descriptive and prescriptive task allocation, SMEs were provided with large printouts of 
the core role-task matrix from Stage 1 (the text only in Figure 5), and used colored highlighters matching 
the colors of the allocation categories in Figure 6 to simply allocate tasks to the categories.  
 
For the descriptive allocation, SMEs approximated the current allocation of tasks to humans and 
automation. For the prescriptive allocation, SMEs were asked to indicate the ideal allocation of tasks to 
the future autonomous system supervisor and future automation. SMEs were asked to assume a future 
vision (approximately 20 years in the future) in which a single person will manage multiple unmanned 
vehicles across multiple missions, with dramatically improved and expanded automation enabling this 
multi-vehicle and multi-mission capability. The user’s job will be to manage this improved automation 
that will take on aspects of the functions that are currently handled primarily by humans. Concrete 
examples of tasks for which some automation is available or under development today were provided to 
help SMEs envision the types of tasks that automation might be available to support in the future. 
Examples included route re-planning, change detection, anomaly detection, collision and terrain 
avoidance, target tracking, and vehicle coordination.  
 
It was further explained that SMEs should think of the prescriptive task allocation as being flexible and 
adaptive as opposed to rigid (Rouse, 1988; Scerbo, 1996), which will be especially important in the 
dynamic and unpredictable environments of the future. We explained that even with this improved 
automation, a human supervisor will always be critical: events will unfold and issues will arise that will 
be beyond the scope of what even the best automation will be able to handle, and will require the 
monitoring, intervention, and judgment that only a human can provide. We reminded SMEs of the 
human-centered approach of this research, advocating that future automation assists rather than 
replaces human performance (Wickens & Hollands, 2000). We acknowledged the challenges of 
imagining this future vision with all of the assumed advancements in automation.  
   
To aid in assigning the prescriptive task allocation categories, we provided SMEs with a set of criteria to 
use as an objective basis and a rationale for future automation allocation. The criteria (summarized at 
the bottom of Figure 6) were: 

 Knowledge / experience: Task does/does not require application of long term knowledge 

 Context sensitivity: Task entails a procedure with context-dependent/independent rules 
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 Workload / processing capacity: Task allows focus on single issue at a time vs. requires parallel 
processing of large data sets and multiple issues 

 Consequences: Consequences of failing are serious (death, injury) vs. minor 
 
These criteria are related to the evaluative criteria for automation design developed by Parasuraman et 
al., (2000). Our methodology provided a novel way of adapting these criteria, intended for use by system 
designers, to harness domain expertise and input from unmanned vehicle SMEs to inform future task 
allocation tailored to the unique requirements and nuances of the autonomous systems domain. SMEs 
assigned prescriptive task allocation categories using the colored highlighters, and used the assignment 
criteria above as a basis for their categorizations. The criteria were not strictly tied to the allocation 
categories, but helped guide the direction of the SME assignments to categories. 
 
For both the descriptive and prescriptive allocation activities, responses were discussed as a group. 
Results color-coded by SME responses are presented in Figure 5.  
 
Stage 2: Results 
 
The color coding of the descriptive and prescriptive role-task matrix reveals key patterns and differences 
across the two models. For the descriptive role-task matrix, SMEs classified the vast majority of current-
day tasks as fully human (predominance of red color coding in the “current” columns of Figure 5). For 
the vehicle operator and sensor operator, some tasks were classified as human delegated (e.g., binning 
data into alert categories), and a small subset as autonomous (e.g., sensor stabilization functions, scan 
mode). All current mission commander tasks were classified as fully human. SMEs attempted to assign 
categories based on the current state of automation in unmanned aerial systems generally (as the 
current state of automation varies somewhat across platforms).  
 
These SME classifications of relatively low automation support are echoed by recent findings by the 
Defense Science Board (DoD, 2012) that existing and proven autonomous capabilities are being 
generally underutilized in today’s unmanned systems. Proven technologies are underutilized in vehicle 
fault detection and management, communications management, mission planning and decision support, 
and contingency planning.  
 
How well are today’s HMIs, systems, and available automation supporting the task needs of today’s 
users specified in Figure 5? Figure 7 provides a summary level assessment of the current state of task 
support, highlighting specific issues with monitor, detect, assess, and decide to tie back to the role-task 
matrix. Many of the HMI and human factors-related issues in unmanned systems identified in reports 
from almost 10 years ago (e.g., Tvaryanas, 2004; Williams, 2004) are still seen in the systems and HMIs 
of today. A common theme that emerged throughout the interviews was the burden and challenge for 
users to manage and compensate for these shortfalls (e.g., “It feels like 90% of our training involves 
developing and teaching work-arounds to get the system to do what we need…”). Work-arounds that 
current operators devise, teach, and employ include using dry-erase marker annotations (marked 
directly on HMI screens) to flag and draw attention to key indicators and to record starting values as 
comparisons for real-time values to help monitor. These work-arounds are strikingly similar to strategies 
used by nuclear plant operators when monitoring (Mumaw, Roth, Vicente, & Burns, 2000). The 
development and use of these strategies is indicative of the shortfalls of systems in both domains.   
 
Compared to the descriptive model with fully human and human delegated indicated for most tasks, the 
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prescriptive model assumes more allocation to automation, and specifies allocation across the full range 
of categories (see “future” columns in Figure 5). SMEs envision automation helping significantly with 
detection and assessment tasks for vehicle and sensor operators. The variations in task allocation 
categories across the “detect” tasks mainly reflect differences in management authority for handling the 
detections (consent vs. exception vs. independent) before being passed on to a human or other 
automation at the next step. SMEs anticipated needing more human involvement for tasks related to 
deciding on courses of action, as well as many of the mission commander tasks which tend to be more 
complex (e.g., detect events impacting or likely to impact customer satisfaction). SMEs also envisioned 
needing more human involvement or approval as the criticality of mission events increases. 
 

 
Figure 7. Overview of shortfalls of current unmanned system HMIs and automation. 

This role-task matrix covers a wide range of tasks for which future decision support can be developed. 
How can the matrix and the SME assessments be used to guide the design of decision support for future 
autonomous systems supervisors? We envision the prescriptive role-task matrix as a helpful tool for 
scoping the type of task support needed for a wide range of future supervision tasks, as an initial step in 
the design of joint human-autonomous system decision support. The prescriptive allocations suggest a 
general human-automation interaction scheme for core tasks as a guide and useful starting point to 
enable designers to achieve robust designs. 
 
Following Stage 2, we used the role-task matrix to inform the development of decision support for a 
subset of tasks related to problem detection for vehicles, environments, and sensors (see orange focus 
region in Figure 3). We chose to focus on the problem detection tasks because SMEs saw significant 
potential for assistance from automation for these kinds of detection tasks (see Figure 5), and several 
efforts are underway to develop and mature anomaly and problem detection automation. As outlined in 
Figure 2, we began by defining the workflow for these detection tasks, and specifying the necessary 
supporting information exchanges needed for users and automation to jointly perform these detection 
tasks. The workflow is shown below in Figure 8, followed by a brief description of the method we used 
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to define information exchanges with SMEs.  
 
Stage 3: Approach to Defining Workflow and Information Exchanges  
 
Anomaly detection tasks lend themselves to assistance from automation, assuming normal performance 
and deviations from normal can be defined. Detection technologies are currently used to detect 
changes, problems, and anomalies in several work domains, including industrial process control and 
medicine. There is significant potential for these technologies to assist within unmanned systems, as 
highlighted by SMEs in their Stage 2 assessments. In this section, we provide an overview of how the 
Stage 2 assessments are being harnessed to concretely define HMI concepts for anomaly detection. 
 
We began by specifying how tasks in the role-task matrix related to problem detection are currently 
performed by humans and automation, and how they should be performed in the future. We 
characterized monitoring and detection by sequencing their associated tasks into the workflows shown 
in Figure 8. We contrasted future practice (Figure 8, right), based on the prescriptive role-task matrix 
and ideal task support, with current practice (Figure 8, left), based on the descriptive role-task matrix 
and task support and deficiencies of current systems (see Figure 7). These workflows are also informed 
in part by interviews with industrial process control operators who monitor and supervise complex 
automation through information displays (Smallman & Cook, 2013). The relative strengths and 
weaknesses of the two approaches in Figure 8 are discussed in detail in Smallman and Cook (2013). 
 
Current problem detection is characterized by its reactivity, due to the practice of responding to system 
alerts, and diagnosing and addressing problems after they have surfaced. Anomaly detection does exist 
in today’s unmanned systems but only in rudimentary form, manifesting as alerts for a limited set of 
vehicle and sensor health and status indicators. These alerts tend to be uninformative, un-prioritized, 
insensitive to and lacking in context, and based on a limited set of data. Paradoxically, the relevant 
information needed to interpret and prioritize the alerts is available within the system, but is not 
integrated or harnessed for effective alerting management. Users are left to initiate investigation of 
underlying causes, urgency, impact, and likely resolution (i.e., will they self-correct or not?). 
 
For example, current-day MQ-9 Reaper pilots receive “aircraft not close to assigned altitude” alerts that 
can be triggered by different causes and require different responses. Pilots must investigate several 
other pieces of information (on separate HMIs) to understand, differentiate, prioritize, and resolve these 
altitude alerts. An aircraft in “speed preference mode” temporarily disregards altitude and will self-
correct on its own, but an alert is triggered nonetheless; however, the same alert could be triggered for 
an aircraft whose speed lever in the ground control station is not fully forward (for fuel conservation) 
and will not self-correct. It is up to the operator to investigate and differentiate these alerts.  
 
Proactive monitoring (shown in Figure 8, right), in contrast, stresses spotting deviations, problems, and 
anomalies before they become serious problems to allow time for diagnosis and intervention, which is 
critical in several domains including industrial process control (e.g., Burns, 2006), nuclear plant 
monitoring (e.g., Mumaw et al., 2000), and unmanned systems. Today’s unmanned vehicle operators 
strive to monitor proactively, but are hindered by the shortfalls of current anomaly detection and HMIs 
(Smallman & Cook, 2013). Further, the information-dense, multi-window, real-time status displays 
typical of today’s operational systems intensify these problems, further overwhelming users when they 
are stressed (e.g., Bransby, 2001). For example, alarm banners show status and anomalies, but lack 
context for anomaly interpretation, prioritization, and management. 
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Figure 8. Elaborated workflows contrasting reactive and proactive monitoring and detection, informed 

by descriptive and prescriptive role-task matrix (from Smallman & Cook, 2013).  
 
Anomaly detection is even more challenging in the multi-vehicle, multi-mission situation envisioned for 
the future. The number of detected anomalies is likely to increase, with the increase in vehicles and 
missions, potentially flooding the future supervisor with an unmanageable number of alerts and leading 
to slow, reactive responding (DoD, 2012; Errington, Reising, & Burns, 2009). Human cognitive abilities 
are relatively fixed, and cannot grow to accommodate such an increase in loading in the future. If not 
appropriately designed and tailored for this future scenario, anomaly detection technologies have the 
potential to increase rather than decrease workload, worsen rather than improve performance, and 
make monitoring and detection even more reactive vs. proactive. The results of the future anomaly 
detection automation must be presented to users in ways that help them quickly review and understand 
the results and prioritize them. 
 
We must carefully tailor the design of anomaly detection to support proactive monitoring in the future, 
and avoid these potential pitfalls. To begin to address this, we focused a third set of interviews on 
identifying (1) what information such anomaly detectors would need to detect anomalies, and (2) what 
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information users would need to know about the results of the anomaly detection to effectively 
supervise and manage it. With eight SME UAS trainers from a major US Air Force training facility, we 
reviewed and refined a set of information inputs that need to be considered by anomaly detection 
automation, to help inform automation and algorithm development, and the necessary information 
outputs to enable a user to understand results of the automation, to ensure the automation is 
functioning correctly, and be able to intervene when necessary. (Example information outputs include 
anomaly type, severity, impact, priority, etc).  
 
We involved SMEs in a principled and systematic design process that leveraged their strengths in 
domain knowledge and avoided discussions of intuitions about specific HMI formats and designs for 
future tasks (e.g., Andre & Wickens, 1995; Smallman & Cook, 2011). We developed a novel procedure in 
which SMEs made design-impactful decisions based on their expertise and anticipated information 
needs for future anomaly detection supervision. Specifically, SMEs commented on their anticipated 
needs for information availability and information detail required to effectively supervise future 
anomaly detection automation. This process helped to identify the information access costs that SMEs 
envision accepting for accessing information in a future supervisory HMI (Wickens & Hollands, 2000). 
SMEs consistently anticipated needing immediate access to certain aspects of anomaly detection 
results, such as general categories of anomaly types and severity, and were willing to access other 
information on-demand only as needed, such as precise values for ongoing and expected problem 
duration. We have successfully employed a similar process with other SMEs in the support of HMI 
designs that are being implemented in submarine command and control systems and industrial process 
control software. The results from these interviews directly informed the design of low-fidelity initial 
prototype visualizations reported in Smallman and Cook (2013). The prototype visualizations support a 
trend-based approach to monitoring, to enable users to monitor and supervise proactively, with context 
incorporated to aid in understanding and interpretation of anomalies.  
 
Conclusions 

The DoD vision for the future of autonomy (DoD, 2011) is extremely ambitious. It envisions a massive 
increase in the number of autonomous systems, all functioning with an entirely different business 
process than today’s teams of humans and unmanned vehicles. The role of the human will change from 
operators of single vehicles and systems to supervisors of swarms of autonomous and highly automated 
systems performing multiple simultaneous missions.  

The DoD vision is multi-faceted, thus requiring a multi-faceted approach to achieve it. Currently, most 
effort is directed towards developing the technology and the supporting infrastructure for the 
autonomous capabilities. Although this is essential, alone it is not sufficient to achieve the vision. The 
notion of engineering humans out of the system is a science fiction (e.g., Skynet) that is neither viable 
nor helpful. Future autonomous systems and swarms, no matter how automated, will still be part of a 
complex system that ultimately includes and reports to human decision makers and arbiters. Our focus 
in the current effort has been on the work paradigm shift towards supervisory control and supporting 
the needs and increasing work demands on this future human decision maker. 

Although the sophistication of future automation will undoubtedly increase in 20 years, the cognitive 
abilities of future human supervisors will not. Effectively supporting the future autonomous system 
supervisor requires careful definition of their future tasking, tools and HMIs that support it, and viable 
supervisory control mechanisms, all presented in a way that respects users’ perceptual and information 
processing characteristics. Supporting the future supervisor also requires careful consideration of the 
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display metaphors proposed to enable users to do their tasks. Current displays tend to promote a 
reactive monitoring stance, which is at odds with the needs of operators to monitor proactively. The 
importance of proactivity will grow as future supervisors monitor automation; they will need to 
understand what parts of the situation are beginning to trend away from normal, so that efforts can be 
focused on intervening and correcting before the situation deteriorates and cannot be remediated. New 
display metaphors to support the shift towards supervision are needed (Smallman & Cook, 2013). 
Through our UCD approach paired with expertise in perceptual and cognitive science and the 
supervisory control of automation, we have begun to make inroads into this complex problem.  

The ambition and complexity of the DoD vision has required us to tailor classic UCD processes to the 
problem. Classically, UCD entails interviewing domain experts and building task models for the design of 
capabilities firmly grounded in today’s realities (e.g., Norman, 1986). For the futuristic DoD vision, 
however, current users cannot definitively envision the future supervisor’s job. They do not know what 
future mission types and requirements will be. They cannot foresee the vehicles and systems that will be 
employed, and they have little experience employing, trusting, and valuing automation (Lee & See, 
2004). However, across the different roles that current users take, the different platforms and vehicles 
they operate, the different missions they conduct, and the experiences with different HMIs and 
automation that they accumulate, current users can usefully ground an understanding of future tasking.  

We therefore approached and solicited input from a large sample of 27 SMEs selected to cover the 
requisite experiences in roles, mission types, vehicle types, and automation. Our constraints were 
significant. Individual SMEs had limited time to devote to a limited set of issues. We therefore employed 
a carefully scoped, staged, sequential, interactive UCD approach where the products resulting from one 
site visit with one SME group were progressively built upon in subsequent site visits with different SME 
groups. We scoped our analysis to the monitoring aspect of supervisory control, which is widely 
considered to be the most challenging (Sheridan, 2006). We staged the UCD sessions across four military 
and commercial industry sites in the US specializing in training, development, testing, and operation of 
unmanned vehicles.  
 
The design artifacts resulting from these interviews include a descriptive model of today’s monitoring 
and intervention tasks for unmanned vehicles, and a prescriptive model for tomorrow’s vision of how 
those same tasks should be allocated to humans and automation working cooperatively, as well as the 
information exchanges needed for future supervisors to manage future automation. We used an existing 
framework for automation design (Parasuraman et al., 2000) and applied it in a novel way to task 
analysis with domain experts, providing an objective basis for SMEs to offer their expectations about the 
future role of automation. We balanced the roles of the different stakeholders in the UCD process, 
harnessing the strengths of the different stakeholders in a synergistic way, with the SMEs providing 
domain, task, and technology expertise, and the human factors scientists / designers applying expertise 
in perceptual and cognitive science and the supervisory control of automation.  
 
By tackling these issues now, we can stay ahead of the autonomy revolution with solutions that guide 
the technology to support the users, rather than making the users “slaves to the technology.”  
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