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Multi-Objective Optimization for Trustworthy Tactical 

Networks: A Survey and Insights 
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approaches, trust-based applications, security, performance 

Abstract – Multi-objective optimization (MOO) is the process of optimizing multiple objective functions 
concurrently and systematically. Modern Army missions require a tactical network to achieve multiple 
objectives as multiple parties with different objectives are involved in collaborative mission execution. 
MOO problems have been studied extensively in the field of coalition formation based on evolutionary 
algorithms or game theoretic approaches. However, there has been no generic framework to consider 
MOO problems in tactical networks particularly when the goals must be achieved based on 
trustworthiness of participating entities. First, we provide a comprehensive survey of work on MOO 
formulation and solution techniques particularly in coalition formation. Second, we extensively discuss 
MOO techniques and methods that have been used for coalition formation. We specifically investigate 
the use of trust in the process of coalition formation. Third, we look into tactical applications in which 
trust plays a pivotal role for mission success. Finally, we discuss future research directions of MOO design 
for trustworthy tactical networks.  

1. Introduction 

Military tactical networks are often faced with the challenges of optimizing multiple objectives where a 

coalition network may have multiple partners with different objectives but under a common goal. For 
example, a coalition network can be formed based on cooperation or collaboration of multiple coalition 

partners of different nature such as military organizations, non-government organizations (NGOs) 

and/or on-site civilian organizations or entities from different nations. They may have different utilities 

(or payoffs) to maximize even if they aim to collaborate for achieving a common goal. In addition, 
military tactical network protocols are required to be operable under resource constraints (e.g., battery 
life, computational power, bandwidth, and/or unreliable wireless transmission medium), lack of 
infrastructure (e.g., no centralized trusted entity), and/or highly hostile environments (e.g. security 

vulnerability due to network or physical attacks). In order to design tactical network protocols that are 

resilient against attackers, scalable under resource restrictions, and reconfigurable without any 
centralized trusted entities, tactical protocol designers must consider how to set and optimally achieve 
the multiple goals. 

Multi-objective optimization (MOO) problems have been studied extensively in various multidisciplinary 

domains [19] because many real-world problems in economics and engineering are usually 
characterized by the presence of many objectives. A common technique is to represent multiple 

objectives by a single utility (or payoff) function which should be maximized. Since very often multiple 
objectives tend to be conflicting, the optimal solutions are not unique. As a result, MOO problems often 
have a set of Pareto optimal solutions referred to as the Pareto frontier. Navigation along the Pareto 
frontier allows designers to do trade-off analysis and select the best design for MOO [7].  



In the field of coalition formation, many researchers have investigated MOO problems as one of tactical 

operations based on evolutionary algorithms or game theoretic approaches. However, no generic 
framework exists to consider MOO problems in tactical networks particularly when the goals must be 
achieved based on trustworthiness of participating entities.  

The concept of trust has been studied extensively in many different disciplines such as philosophy, 
economics, psychology, sociology, autonomic computing, and organizational management [6]. Merriam 
and Webster dictionary defined trust as “assured reliance on the character, ability, strength, or truth of 
someone or something” [31]. Cho et al. [6] has summarized the definitions of trust derived from various 
domains. 

This work aims to comprehensively survey existing work on MOO problem formulation and solution 

techniques particularly in coalition formation and to give insights on how to approach MOO issues in 
tactical coalition networks. In addition, we survey the use of trust in the process of coalition formation.   

The rest of this paper is organized as follows. Section 2 explains the concepts of coalition formation, 
MOO, and MOO problems in coalition formation. Section 3 describes the key techniques/methods to 
solve MOO problems in coalition formation. Section 4 classifies the existing work on MOO for coalition 

formation with three categories based on the types of objectives. Section 5 discusses future research 

directions of MOO design for trustworthy tactical networks. Section 6 concludes the paper. 

2. Multi-Objective Optimization (MOO) in Coalition Formation 

2.1 Coalition Formation 

According to Kahan and Rapoport [14], a coalition can be formed when three or more parties get 
together with a common interest that gives mutual benefits. In military tactical networks, a coalition 
comprises different entities such as countries and/or organizations (e.g., militaries, non-government, 

non-profit, and civilian organizations) that are involved in a military operation to pursue a common goal 

under a single command [30]. Many disciplines including economics, political science, mathematics, and 
computer science have different concepts of coalition [14]. However, the common aspect of coalition is 

to benefit mutually based on trust relationships between two parties, players and a coalition party (e.g., 
a coalition leader).  

Military tactical networks often require forming a temporary coalition in order to execute a given 
mission where effective and efficient asset-task assignment is critical to successful mission completion. 

Under a common global objective of successful mission completion, the system may have multiple 
objectives to achieve while the involved parties may want to maximize their own utilities. In a typical 
scenario, the desirable outcome is successful mission completion while maximizing resource utilization 
for mission success and maintaining peaceful relationships among participating entities. This will enable 
the trust relationships among participating entities to be sustainable, which can positively affect future 

mission execution with the same coalition members.  

2.2 Multi-Objective Optimization 

Most engineering applications have multiple but conflicting objectives and simultaneous optimization of 
all objectives may not be possible [24]. For example, in a military tactical network, a commander may 
want to maximize mission performance while workloads should be equally distributed over all nodes 
and overall resource consumption should be minimized. Multi-objective optimization (MOO) is also 
known as multi-criteria optimization [24].  



 

Fig. 1 shows an example of the tradeoff observed in a MOO problem. The two conflicting goals are to 
maximize efficiency and to minimize resource consumption. MOO often yields a set of optimal solutions, 
called optimal Pareto frontiers [24].  

Traditionally single objective optimization (SOO) has one objective function that may have multiple 
constraints.  A SOO problem is often stated as follows: 

              

                         

(1)  

The function to be optimized is      where vector X indicates the set of independent input variables. 
Functions      and      describe the problem constraints [9], [11]. A MOO problem can be stated as 
follows: 

                                    

                         

(2)  

The functions to be optimized are                     in     , and X is the set of independent 
variables. Similar to the SOO problem formulation,      and      specify the problem constraints. 
Often, multiple objectives may conflict, and thus the objective solutions may be conflicting as well. A 
solution may optimize one objective while it may compromise other objectives [9], [11]. 

3. Techniques and Methods in MOO for Coalition Formation 

This section describes techniques and/or methods that are used to achieve MOO in coalition formation 
problems. We classify MOO techniques and methods into three categories: conventional approaches, 
evolutionary algorithms, and game theoretic approaches.  

3.1 Conventional Approaches  

Conventional approaches convert a MOO problem to a SOO problem. We discuss two main techniques: 
weighted sum and ε-constraints.  

3.1.1 Weighted Sum  

This technique creates a single objective function as a linear combination of the multiple objective 
functions  

 
 

Fig. 1: Example of Multi-Objective Optimization. 



                       

 

   

  

                          

                 

   

 

   

   

(3)  

Many works use this technique for multiple criteria decision making in which each weight represents the 
degree or priority level of that objective function [25], [26]. 

3.1.2 ε-Constraints  

This method constructs a single objective function where only one of the functions is optimized while 
the remaining functions are constraints. The objective function can be stated as [9]: 

               

            

                         

              

(4) 

      is the function selected for optimization and the other (n-1) functions are modeled as constraints 
[11]. Matsatsinis and Delias [20] used ε-constraints to solve task allocation problems in multi-agent 

decision making systems. 

3.2 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are categorized as metaheuristics, high-level algorithmic strategies that 

direct other heuristics or algorithms while searching through the feasible solution space in order to find 
an optimal solution in a SOO or MOO problem [11]. This technique has been used to solve NP-complete 
problems such as scheduling and the traveling salesman problem. Many works have used this technique 

to solve coalition formation (or task assignment or resource allocation) problems [2], [8], [9], [13], [23], 
[29]. This technique often finds close-to-optimal solutions in a polynomial time. Here we briefly discuss 

the general structure of evolutionary algorithms. 

 
Fig. 2: The Structure of General EAs. 
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EAs have been used to solve combinatorial optimization problems whose optimal solutions can be 

obtained only with a very high computational overhead. As shown in Darwin’s theory of evolution, the 
three fundamental components of evolution are: replication, variation, and natural selection. 
Replication forms a new entity from a previous one. Variations may occur during the replication. When 

the fittest entities win a competition, they are selected as survivors while the weakest ones die out. 
Mimicking the biological evolutionary process, EAs use the generic EA structure in Fig. 2. 

An individual represents a solution to the problem. A population is the set of individuals that can be 
used to find an optimal value. The population can be improved by genetic operators that iteratively 
modify individuals of the population. An aptitude function estimates the fitness value of an individual 

solution. The objective function plays the role of the aptitude function. Genetic operators contribute to 

improving the individuals of the population. They include selection, crossover (recombination), and 
mutation. Selection is the step to select the best or fittest individuals. Crossover (i.e., recombination) is 
the process that can combine two elements of the current population to produce one or more offspring. 

Mutation transforms an individual into a new individual (i.e., a solution) [9], [11], [24].  

Various types of evolutionary algorithms have been devised to solve  resource assignment, such as 

quantum-based evolutionary algorithms [2], hierarchical evolutionary algorithms [8], genetic algorithms 

[9], [13], [23], simulated annealing [9], and hybrid particle swarm optimization algorithms [29].  

3.3 Game Theoretic Approaches 

Many coalition formation problems have been formulated using game theoretic approaches. We discuss 
two major approaches that have been popularly used: auction theory and coalition game theory. 

3.3.1 Auction Theory 

An auction can be performed when a seller (auctioneer) wants to sell any goods and there are buyers 

(bidders) who are willing to pay the price [17]. Similarly, in the coalition formation problem, a coalition 

leader wants to recruit its members to maximize its payoff and a potential bidder wants to join the 
coalition if the coalition gives the best gain by doing so. In this case, how to define a coalition payoff 
(i.e., the auctioneer’s criteria to determine winners) significantly affects the member selection process 

and finally team composition. From a bidder’s perspective, it will bid an item and commit itself to buy 
the item based on whether buying the item gives it the best individual payoff.  

 

Fig 3. Example of Auction Process in Hierarchical C2 Structure. 

Various types of auction-based algorithms have been proposed to solve coalition formation problems in 
the literature such as a single-item auction with multiple preferences [5], auction-based mechanism 



design for efficient bandwidth allocation [15], a reverse auction [10], and an auction with different 

bidding strategies (e.g., pessimistic or optimistic) [28].  

In military tactical networks where an hierarchical structure is common with a commander and several 
task leaders, a two-layer  auction process may be modeled from a commander to task leaders and then 

from task leaders to regular members. An example auction process that describes the hierarchical 
Command and Control (C2) structure is shown in Fig. 3. Note that decisions for bidding and winner 
determination (the winner selection process) are based on payoff maximization to individual bidders 
and task leaders.   

3.3.2 Cooperative Game Theory 

A cooperative game is a game in which groups of players, called coalitions, cooperate to obtain benefits 

by joining a grand coalition, the set including all coalitions. The game is a competition between 
coalitions of players. A cooperative game is also called a “coalitional game” [22]. Often strategic games 

assume that individual players are selfish and maximize their utility with no cooperation. The goal of the 
cooperative game is to model the situations in which the players work together or share some cost to 
benefit each other. However, players are selfish in that they are cooperative only if such behavior 

maximizes their utility [22].    

In a cooperative game, two key elements must be specified: (1) a set of players; and (2) a characteristic 

function that estimates the value derived from different subsets of the players in the game. Let 
            be the set of players and let i, where i runs from 1 to n, index each player differently. 
The characteristic function, denoted by  , computes the value of a subset S of N, denoted by     .      

is the value expected when the members of S form a coalition. That is, a cooperative game can be 
defined as a pair       where N is a finite set and   is a function that maps a subset of N to a value [22]. 

Function   can reflect the objective(s) of the system that should be attained in the coalition payoff. Each 
player computes its individual payoff based on its objective while a coalition estimates the expected 

payoff when a subset of members is chosen. Reward (or incentive) or penalty is used to enforce an 
individual player’s behavior (or decision) to maximize the coalition payoff. Various versions of 

cooperative games have been used to solve coalition formation problems: using repeated cooperative 
games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted 

that trust is considered in the payoff functions that impact the decisions of entities (i.e., players and 
coalition parties) [12].  

While the MOO function is a linear combination of individual objective functions, it should be noted that 

the individual objective functions are typically non-linear functions of the variables of interest. One 
could consider a non-linear combination of the individual objective functions, reflecting prior knowledge 
about the interactions of the different objectives of interest. 

4. MOO Classification 

We classify existing work in MOO into three classes based on the concept of global welfare (system 

objectives) vs. individual welfare (individual objectives). The class 1 applies when there are no individual 
welfare functions. The class 2 is the case when all agents have identical individual welfare. The class 3 
can be found when each agent may have its own individual welfare function.  

4.1 Class 1 (C1): Global Welfare Only 

MOO problems in this class deal with only multiple system/network objectives for global welfare. There 

are many works dealing with multiple criteria in engineering problems [2], [8], [9], [13], [29].  



Balicki [2] examined a task assignment problem in a distributed system using a quantum-based multi-

objective algorithm which adopts a new probabilistic representation called Q-bit. This work aimed to 
minimize workload and communication cost while maximizing system reliability. Dieber et al. [8] 
investigated an optimal set of configurations for a visual sensor network consisting of a large number of 

camera nodes based on an evolutionary algorithm. Here the objectives are to minimize overall energy 
consumption and data volume while maximizing quality-of-service in terms of the camera frame rate 
and resolution. 

Donoso and Fabregat [9] studied a team formation problem in social networks seeking the best tradeoff 
between skill coverage and team connectivity. Member skill coverage should meet a required skill level 

while their trust relationships with other members should be close enough for active interactions. They 

applied genetic algorithm and simulated annealing to identify an efficient team composition satisfying 
both goals. Jin et al. [13] proposed an adaptive intelligent task allocation scheme based on genetic 
algorithm with the goals of maximizing network lifetime based on the balance of energy consumption 

among collaborative nodes while minimizing latency incurred in executing a task by providing sufficient 
processing power.  

Yin et al. [29] examined an optimal task allocation problem in a distributed computing system where 

program modules need to be allocated to different processors to maximize the system reliability under 

resource constraints. This work formulated the MOO problem as a hybrid particle swam optimization 
problem to identify a near-optimal task allocation within a reasonable time. 

4.2 Class 2 (C2) : Global Welfare and Individual Welfare 

In this class of MOO problems, all agents have identical individual welfare functions. Game theoretic and 
market-based approaches have been proposed to solving this class of problems [3], [5], [6], [11], [16], 

[17], [28].  

Breban and Vassileva [3] proposed a multi-objective security game mechanism to solve a security MOO 

problem. This work makes one of multiple security objectives as the main objective and uses other 
objectives as constraints. It investigates how Pareto frontiers may be generated for the main objective 

as the other constraints vary. The system, as a defender, maintains multiple objectives based on the 
attacker type while an attacker takes the role of a player to maximize its payoff by achieving its goal. 

Chang et al. [5] proposed a trust-based task assignment protocol that uses composite trust to select best 
team members to maximize the mission completion ratio while meeting an acceptable risk level where 
an individual entity aims to maximize its utilization. Cho et al. [6] proposed a combinatorial auction-

based solution for multiple mission assignment in MANETs where the network has two goals in terms of 
minimizing communication overhead caused by mission assignment and maximizing mission completion 
ratio while each node aims to maximize its utilization. Goel and Stander [11] proposed a trust and 
motivation based clan formation method where self-interested agents want to maximize their payoff by 

joining, maintaining, or dissolving a clan. In this work, a coalition’s goal is to maximize its payoff by not 

missing cooperative opportunities but to minimize communication cost for forming a clan.  

Koloniari and Pitoura [16] formulated the problem of clustered overlay network formation as a strategic 

game where nodes join a cluster based on their interest or content. The clustered overlay network has 
been used to efficiently exchange data relevant to the queries with less effort. An individual node has 
two conflicting goals: minimizing the cost for the recall of the queries with a sufficient number of cluster 

memberships (as fetching information from a node in the same cluster costs less) and minimizing the 
cost to maintain multiple memberships. The system has multiple objectives: speed of convergence to 
Pareto optimality, cost optimality (minimum cost for both recall and membership), load balance 



(minimum number of memberships and associated cost), and overhead minimization (movement of 

nodes, social cost, etc.). Lin and Huai [18] integrated trust into market-driven resource management 
decision making in Grid environments to achieve resource sharing, while accurately detecting malicious 
entities. In this work, a consumer tries to minimize the price of resource usage for its task completion 

under constraints of budget and deadline. A provider, forming a club for customers, aims to maximize 
the total revenue of its club and resource utilization while sharing resource only with trustworthy 
entities for effective resource usage. A club in this work mimics a coalition in game environments where 
a provider pursues global welfare. 

Whitten et al. [28] presented a decentralized task assignment algorithm where each agent can make 

autonomous decisions but is restricted by constraints. This work used a consensus-based bundle 

algorithm for modeling different types of behavioral strategies. Both a task planner and an agent have 
the same goal to optimize task assignment in this work. 

The commonality of MOO research in class C2 is that payoffs earned by individual entities often directly 
or indirectly contribute to global welfare. Therefore, in C2 MOO research, we observe that the goal of an 
individual entity and that of a coalition are well aligned and mutually beneficial to maximize their 

payoffs. 

4.3 Class 3 (C3): Global Welfare and Individual Welfare with Different Individual Payoff Functions 

In this class of MOO problems, the individual payoff functions are all different. This scenario is rare 
because most works deal with two-party objectives such as an individual entity vs. a coalition or system. 
Breban and Vassileva [3] studied a long-term coalition formation problem of both vendors and 

customers where each agent evaluates other agents based on trust. Each individual agent, either a 
vendor or a customer, joins a coalition based on its trust assessment to maximize the payoff, while the 

system aims at reducing the convergence time to reaching an equilibrium state for coalition formation. 
This work measured trust based on positive experience in transactions and similarity in preferences. This 

work is unique in that three-party objectives are being considered to solve a coalition formation 
problem. Meng et al. [21] presented a generic mathematical method for transforming the multi-

objective problem into a multi-player game theoretic problem. 

5. Future Research Directions and Insights 

In this section, we envisage an example of coalition formation for trustworthy tactical network 

environments where multiple objectives may exist. A tactical network should be sustainable, that is, the 
system should meet the key characteristics of current/future warfare in military tactical networks. 
Leveraging the concept of sustainability in ecology and biology [1], a sustainable system should be 

bearable (or resilient) against hostile entities, equitable towards resource utilization, and viable (or 
survivable) under failure or lack of resources. Reflecting those key factors, we exemplify the system 
goals as (1) maximizing mission completion ratio and resource utilization in the presence of hostile or 
faulty entities (i.e., high resilience against hostility/failure); (2) maximizing load balance among nodes in 

the network (i.e., high equitability in resource usage); and (3) minimizing the delay to complete time-
sensitive tasks (i.e., viability under time constraints).  

We illustrate coalition formation in tactical networks with an example scenario in Fig. 4. In tactical 

networks, trustworthiness of participating entities is critical to successful mission completion. A coalition 
consisting of qualified members tends to achieve successful mission completion when the selected 
members behave as expected. If members of a coalition do not behave as expected, then the mission 

execution cannot continue and a new set of members should be selected for mission execution. This 



process will continue until the mission deadline. If the mission cannot be completed by the deadline due 

to untrustworthiness of the current members, the mission will fail. Otherwise, the mission is considered 
to have been executed successfully albeit with extra delay.  

 

 

Fig. 4: Example Scenario of Coalition Formation in a Tactical Network. 

Node trustworthiness can be evaluated from trust perspectives. Among the works surveyed in Section 4, 
[5], [9], [11] used trust to solve a coalition (or team, clan, alliance) formation or task assignment MOO 

problem.  However, except for [5], they assumed that trust is already in place and can be used as a 
metric to help achieve MOO. Different from the existing work, Chang et al. [5] proposes a trust-based 

task assignment protocol to solve a MOO problem in a tactical coalition network. It captures trust based 

on multiple dimensions of an entity’s trust under dynamically changing network environments (e.g., 

hostility, node failure or mobility), given task characteristics for tactical operations as input to the MOO 
problem. Trust is known to be related to risk. Hence, using trust/risk for node trustworthiness 
assessment for member selection and coalition formation can minimize mission abort and help satisfy 

multiple system goals in mission completion ratio, minimum delay, and efficient/effective resource 
utilization. 

We suggest some future research directions for developing coalition formation MOO algorithms for 

trustworthy tactical networks as follows: 

 Provide a mechanistic yet repeatable method to define critical multiple objectives, given targeted 
tactical operations and/or mission characteristics as input; 

 Prioritize objectives according to mission characteristics or based on critical tradeoffs; 

 Develop node behavior models reflecting the behaviors of entities in the targeted network 

environment; 

 Develop attacker models reflecting the behaviors of malicious nodes (inside attackers); 

 Develop trust-based MOO solution techniques allowing each entity to make decisions based on its 
trust assessment towards other entities, where trust assessment should take into account the 
unique properties of trust [6]; 

 Model as well define payoffs (or utilities) of all involved parties that would meet multiple objectives; 

 Consider critical tradeoffs (e.g., minimum delay vs. fair resource sharing) in distributed and 
resource-constrained environments; 

 Devise effective reward/penalty mechanisms to entice cooperative behaviors of individual entities 
to increase coalition and individual payoffs; and 

 Devise effective and efficient optimization techniques to identify optimal solutions in resource 
constrained tactical network environments. 
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6. Summary 

We performed a comprehensive survey on coalition formation problems with multiple objectives and 
techniques and methods to solve multi-objective optimization (MOO) problems in coalition formation. 
We discussed three main approaches used to model and solve MOO problems in coalition formation: 
conventional techniques, evolutionary algorithms, and game theoretic approaches. In addition, we 

classified MOO problems based on the design concept of global welfare vs. individual welfare. Trust has 
been used in solving coalition formation MOO problems where trust of entities may significantly affect 

the performance of attaining objectives in the system. Trust has been used in solving MOO problems 
arising in coalition formation where trust of entities may significantly affect the attainment of system 
objectives. Trust can play a significant role by suggesting heuristics leading to low complexity solutions 

that are not too far from the optimal solution.  
However, in the literature, trust has been assumed to be in place and static, which is not realistic in 
practice. We suggested future research directions including trust-based MOO solution techniques to 

better solve coalition formation problems in tactical networks, taking into consideration the unique 
nature of trust and characteristics of tactical network environments.  
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