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Abstract 
Amounts of data that need to be collected, examined and shared during Intelligence, Surveillance, and 

Reconnaissance (ISR) operations are growing fast due to increasing use of sensors. However, control of ISR 

operations and coordination between distributed sensors, and even existence of these sensors, can be disrupted in 

denied areas. To deal with these challenges, the U.S. military services are implementing new processes for planning, 

collection, processing, analysis, and dissemination (PCPAD). PCPAD is designed to improve information sharing 

and increase situation awareness over large-scale noisy data, and must be carried out regardless of the available 

bandwidth and even in most disconnected environments. This requires collection and processing of only the most 

critical information, and the ability to perform data analysis in a distributed manner with minimal coordination 

between sensor assets. 

In this paper, we present a model that allows a group of sensing and analysis agents to achieve near-optimal 

situation understanding in uncertain environments with limited communication and possible sensor failures. This 

model converts the dependencies in information space and intelligence requirements into constraints for design of 

sensor command and control (C2) structure, autonomous information seeking, and collaboration policy. We 

demonstrate out model using a synthetic dataset with known ground truth. 

1. Motivation 

One of the biggest hurdles for current and future Intelligence, Surveillance, and Reconnaissance (ISR) 

operations is the ability to assess the situation in degraded and denied environments. New processes are 

under development for planning, collection, processing, analysis, and dissemination (PCPAD). PCPAD is 

designed to improve information sharing and increase situation awareness, enabling multiple 

heterogeneous sensing assets to strategically gather, examine and share information in hostile 

environments where asset failures and restrictions on communications are the norm. To decrease the 

collection-to-analysis cycle, sensors must collect and process only the most critical information, while 

performing data analysis in a distributed manner with minimal coordination between sensor assets. 

Current military doctrine defines the intelligence collection process using priority information 

requirements (PIRs) identified by intelligence planners. PIRs are general statements of intelligence need, 

and are further decomposed into essential elements of information (EEIs), which represent specific 

information requirements. Planners use concepts of PIRs and EEIs (Figure 1) to formally connect sensor 

tasking and automated situation estimation processes with commander’s intent. The EEIs can be 

developed at different levels of granularity, reconfigured using semantic web models (Staskevich et al., 

2008), and converted into sensing/analysis plans using hierarchical task networks (Qasem, Heflin, and 

Munoz-Avila, 2004). New PCPAD process is redefining how to assign and execute these plans over large 

noisy data, assuring that collection and analysis can proceed even in most disconnected situations and 

under significant losses of sensor resources. 

Situation analysis in denied environments can be achieved using a set of heterogeneous sensing assets, or 

agents, each possessing diverse data analysis capabilities to collect and reason over distinct data features. 

In denied areas the centralized control of these agents is infeasible. Therefore, to increase efficiency of 

coordinating the tasks conducted by heterogeneous agents, new collaboration strategies must be 

developed. These technologies must identify how agents share their experiences and adapt their local 

information collection plans while achieving the global goals.  

2. Related research 

Recently, distributed sensing and data processing has received significant attention in the research and 

development (Bryant et al., 2008; Dahm, 2010) and acquisition programs. Most existing technologies 

were developed for raw data processing (e.g., detection of objects in imagery based on networks of 

cameras; Ding et al., 2012), sensor placement (Mathew, Surana, and Kannan, 2012), or coordinated 

planning and scheduling of homogeneous agents (Chen, Levy, and Decker, 2007), and are inadequate to 

solve general collaborative environment exploitation and analysis. Leading distributed query processing 

models for sensor networks (Madden et al., 2003; Yao and Gehrke, 2003) try to acquire as much data as 
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possible from the environment while most of that data provides little improvement to approximate answer 

quality, and hence result in query execution cost – in both time and resource utilization – orders of 

magnitude more than is appropriate for a reasonably reliable answer (Deshoande et al., 2005). 

 

Figure 1: Example of converting PIR into EEIs. A PIR is an abstract statement (a), while the corresponding 

EEIs could be explicitly stated as “find locations of weapons caches, material acquisition activities, and 

attacks conducted by hostile military groups in AOI?” EEIs can have supporting evidence from different 

data modalities (b). Dependencies between EEIs can be encoded as network of nodes, links, and attributes (c). 

3. Solution Summary 

To decrease the collection-analysis cycle in the presence of sensor and communication failures, we 

developed a model for Sense-making via Collaborative Agents and Attributed Networks (SCAAN) that 

integrates distributed situation understanding, autonomous knowledge seeking, dynamic collaboration, 

and adaptive heterogeneous command, control, and communication organization. SCAAN enables 

improved exploitation and analysis phases of PCPAD process, solving challenges of collaborative 

distributed large-scale information seeking by incorporating model of EEI dependencies based on real-

world processes into its distributed information sharing framework. These dependencies are used to 

construct agent organization, which assigns command and execution roles to sensor nodes and will reduce 

complexity of managing heterogeneous sensor team, and collaboration policy, which will be based on 

dependencies between tasks executed by different nodes. 

SCAAN system consists of three processing components (Figure 2). First, the Requirements Component 

converts a collection of EEIs into a hierarchical EEI network with nodes corresponding to EEIs and their 

subtasks, and links describing dependencies between individual EEIs. Multiple levels in EEI hierarchy 

will represent different levels of information and natural task breakdown. Links between nodes in this 

network may include various constraints, such as distance and time dependencies between occurrences of 

enemy tactical activities (Figure 1c), or the correlations, semantic and influence relationships between 

query features. Second, the Management Component will ensure the distributed data analysis is robust to 

asset failures by designing specific command, control, and communication (C3) organization for sensor 

resources. Command nodes will be given a responsibility for a subset of tasks in the EEI network while 

able to assign subtasks to their subordinate nodes. The role and task assignments will be based on a 

combination of search requirements (individual EEIs) and data properties. Finally, the Collaboration 

Component will ensure robustness to communication constraints, high accuracy of analysis results, and 

timely response generation by defining explicit and efficient collaboration policy. This policy defines 

how agents seek the data, analyze it, and share their experiences in efficient manner. The policy 

(b) EEIs can be defined to find specific enemy activities, which 
can be observed via different events and sensors

EEIs:  Find
locations of
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Material 
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further decomposed into Essential 
Elements of Information (EEIs)
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generation algorithms will use the knowledge of role assignments and task dependencies and inform 

individual sensors about the other sensors that are gathering and analyzing interdependent information. 

Agent’s C3 organization is constructed using models of optimal organization design that can generate 

hybrid C3 architectures for 

managing heterogeneous 

resources. Our models have been 

empirically validated in several 

domains, ranging from military 

task force C3I structures (Yu, Tu, 

and Pattipati, 2008; Levchuk et 

al., 2003, 2004) to distributed 

shape assemblies (Levchuk et al., 

2009). Optimal C3 organization 

reduces resource management 

complexity, minimizes 

communication requirements 

between distributed resources, 

and ensures robustness to 

resource failures and changing 

situations (Levchuk et al., 2007). 

A centralized control over large 

number of heterogeneous sensors 

is not feasible in denied areas and 

for large-scale data processing, as 

it creates high load on a central 

controller and introduces 

significant confusion about 

dependencies between sensor 

agents. Our design algorithms 

produced C3 organizations 

proven superior to expert-design 

structures in several empirical 

studies (Levchuk, and Pattipati, 

2010; Levchuk et al., 2004; 

Kleinman et al., 2004). 

SCAAN finds the situation estimates using a hypothesis-testing objective function that can be efficiently 

factorized for distributed optimization. Our dynamic collaboration policy is based on state-of-the-art 

synchronous (Levchuk, Roberts, and Freeman, 2012) and asynchronous (Gonzalez, et all., 2009; 

Gonzalez, Low, and Guestrin, 2009) belief propagation algorithms proven to converge to near-optimal 

solutions for factored objective functions. In our model, each sensor updates its local beliefs based on the 

data it collects and processes over time and belief messages received from other sensors. Only the 

messages encoding dependencies between tasks assigned to different sensors will be communicated, 

reducing communication requirements in sensor network. 

SCAAN system offer unique benefits for situation understanding in denied areas: 

 Manage heterogeneous sensor agents efficiently: designing a command, control, and 

communication (C3) organization over sensors will result in increased robustness to agent and 

communication failures. This will be achieved by balancing control load and reducing 

communication needs by abstracting up the analysis tasks. 

 

Figure 2: SCAAN’s architecture for model-based collaborative 

information sensing and understanding 

Specified EEIs:
• Weapons cache
• Materials
• Attacks

Requirements

EEI model network:

Collaboration

Sensor tasks:

Sensor Network

Beliefs:

Data

Matches:

Analysis results:

Management

C2 Organization & Roles:

• Aggregated Beliefs
• Lower-level samples
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-execution node
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 Maintain optimality of large-scale data analysis: efficiently partitioning a global search problem 

between multiple agents, and exploiting agent dependencies resulting from assigned analysis tasks, 

our models allow scalable distributed processing and are guaranteed to obtain near-optimal situation 

assessment.  

 Reduce time of data analysis: asynchronous belief propagation algorithm minimizes communication 

requirements between different agents and reduces the amount of irrelevant data search and 

processing. 

In this paper, we describe multi-agent collaboration processes of SCAAN model.  The algorithms for 

agent-to-task allocation and design of optimal agent organization will be reported in our future 

publications. 

4. Distributed Collaborative Data Analysis Model 

In this section, we describe details of SCAAN’s collaborative data analysis model, in which collaboration 

between agents is converted from implicit desire to share experiences between the agents to the explicit 

updates of their beliefs based on received messages from other sensors. We start by describing how the 

information requirements, specified by analysts and based on threat activities they want to find or 

hypotheses about state of the environment (e.g., patterns of life for specific areas of interest), are 

decomposed into the information collection and analysis plan (Section 4.1). Representing the 

requirements as networks of interdependent information variables that a set of sensor agents must find, 

instead of simply a list of those variables, enables us to define dependencies between sensors and specify 

the organization of these sensors to maximize the efficiency of their coordination, which is described in 

Section 4.2. Those sensor dependencies are then used to define a collaboration policy consisting of 

internal agent’s message generation and belief updates, and communication with other agents (Section 

4.3). The final query responses are obtained by aggregating local probabilistic inference outputs provided 

by each agent (Section 4.4).  

4.1. Requirements decomposition 

To distribute situation estimation in uncertain denied environments among multiple heterogeneous 

sensors, the descriptive analysis requirements must be decomposable into a set of explicit analysis needs. 

To ensure the distributed information collection and understanding is capable of achieving results with 

similar accuracy to centralized analysis, dependencies between analysis needs must be explicitly defined. 

One such decomposition is based on task network models derived from EEIs specified by analysts. In this 

section, we describe how to extract structural representation of analysis needs and interdependencies from 

intelligence requirements. We assume that corresponding definitions can be made manually by the 

analysts who developed a list of EEIs. In the following, we present conceptual requirements 

decomposition, and outline formal specification model for decomposing analysis requirements, and 

representing analysis results. 

 

Figure 3: Examples of links between EEIs that will be used to enhance traditional HTN decomposition 

Conceptual requirements decomposition: To decompose PIRs and EEIs into analysis tasks for a network 

of agents, we extend the Hierarchical Task Networks (HTN; see Qasem, Heflin, and Munoz-Avila, 2004; 

Nau et al., 1999) from the notions of temporal, spatial, and resource preconditions, describing relations 

between tasks, to any semantic constraints between the tasks. Examples of semantic constraints can 

include (Figure 3): 

Explosive 
Traces @ 
facility X

Explosive 
Traces @ 
facility YSame material 

type

(a) Feature correlations

Crowd Police
Disperse

(b) Interactions

Water 
shortage

Increase in 
disease 

ratesCauses

(c) Influence
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 feature correlations (e.g., detecting the same explosive material traces at two locations may 

indicate that both facilities are part of coordinated weapons supply chain; Figure 3a),  

 specific interactions (e.g., crowd of protesters being dispersed by police), and 

 influencing factors (e.g., water shortage in the village causes the increase in various disease 

rates). 

Different levels of HTNs represent different levels of information according to EEI specifications. To 

create collection requirements for agent network, we use HTN planning methodology to decompose EEIs 

into smaller and smaller subtasks until primitive tasks are found that can be performed directly by 

individual sensor agents. Formally, HTNs consist of list of tasks (primitive and non-primitive) which 

correspond to EEIs, collection of methods (specifying options for decomposition of tasks into subtasks 

and corresponding preconditions), and operators (which are the leaf nodes of HTN decomposition tree 

and define the primitive tasks and logical atoms that are deleted or added to the world state when the 

operator is executed). Formal analyses of HTN planning have shown that this approach has strong 

expressive power (more expressive than STRIPS planning; see Erol et al., 1994), and has established 

properties such as soundness and completeness (Erol et al., 1994), complexity (Erol et al. 1996), and the 

efficiency of various control strategies (Tsuneto et al., 1996, 1997). 

In this paper we describe multi-agent distributed search using 2-level HTNs, where the PIR at the highest 

level is decomposed into a set of interdependent tasks at the next level that are then assigned to individual 

agents along with data analysis constraints. Figure 1c shows an example of a simple 2
nd

 level task 

network describing space-time dependencies of adversarial activities. Currently, we define analysis 

decomposition manually; however, HTNs can be learned from data using two approaches. First, attributed 

graph learning algorithms can be used to learn patterns of tasks, subtasks, and their dependencies from the 

data (Levchuk, Roberts, and Freeman, 2012). This model can be applied directly to learn decomposition 

options for individual HTN methods. Second, we can integrate this model with algorithms that learn 

preconditions for HTN methods (Ilghami et al., 2002) using successes and failures of task execution. 

Formal requirements model: Formally, we define a single layer of HTN-based requirement 

decomposition as follows. First, EEI are defined as a set of variables           . The features 

describing how sensor may “observe” (find an answer to) each EEI, as well as dependencies between 

EEIs, are defined using attributed graph             , where    are EEIs,    are dependencies 

between EEIs (distance, time, flow, similarity, etc.), and        
   define expected observation 

attributes of EEIs    
  and their relations    

 . Observations are also described using attributed graph 

             where            (where    ) are data variables (entities, locations, tracks, 

events, etc.),    are observed relations between these variables, and        
   define actually observed 

attributes of entities    
  and relations    

 . Link and node attributes          encode various types of 

known and unknown relations between model and data variables, where attributes    
  define what is 

actually observed by the sensor, and attributes    
  describe expected observations needed to answer 

EEIs. Sensor network must find the data supporting EEIs, - or, in other words, find a mapping from the 

EEIs to data nodes that provide the best match to (explanation of) EEI attributes        
  . For 

geospatial sensors, the mapping defines the geographic locations where hostile activities of interest may 

take place. This way, the EEI network              represents a search requirement, called model 

network, that analysts want sensor resources to find in the data by incrementally obtaining and relating 

this model with observed attributes             , called data network. 

Formal representation of analysis output: As an example, an ideal result of collection and situation 

understanding performed by a set of sensor resources based on the EEI specification in Figure 1c is 

finding the locations of material acquisition, weapons cache, and attacks on the map (Figure 4a). Due to 

uncertainty in the environment, at any given time the commander may only know the probabilistic 

estimate of the locations of activities (Figure 4b). The estimates of locations for each activity become the 
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subtasks for individual sensors, while dependencies between activities described in EEIs require 

synchronizing findings for these subtasks and thus become the policies for sensor collaboration. The 

sensors will coordinate during collection by providing influencing experiences to other sensors. 

Overlaying the situation estimates received from multiple agents in the form of activity-location 

probability distributions will allow the commander to select most plausible global situation estimates. 

Similarly to the case of finding locations of activities, we formally define the output of searching for the 

data supporting EEI      using mapping variable      . A single response to PIR is defined as a set 

of responses to all specified EEIs               .  

 

Figure 4: Example of the output of PCPAD. Figure (a) describes an ideal outcome of PCPAD where only a 

single location of each hostile activity is identified. Figure (b) presents an example of approximate answer, 

where multiple locations of enemy activities are possible and are expressed as a spatial probability 

distribution (or “heatmap”) 

In the next sections, we will describe algorithms that organize the sensor resources and enable their 

collaboration. We believe that the most distinguishing feature of our solution is the ability to decompose 

the original challenging problem into a set of subtasks with explicit definitions of their dependencies and 

specification of dependencies of the sensors assigned to execute them. 

4.2. Defining command, control, and communication (C3) organization to manage heterogeneous 

sensing agents  

When the data is of a limited size, such as a small geographic area that needs to be analyzed, a small 

collection of agents can be tasked to search over it to develop situation estimates and respond to analysts’ 

queries. Such small number of resources, typically much fewer than 10 units, are easy to be centrally 

controlled, or to be left completely autonomous while establishing their communication through a 

common shared space such as blackboard (Orkin, 2003) popular with AI games. However, this solution 

would not scale well to large areas of interest such as a village, city, or a region, where a large number of 

sensors must be employed, since it will overload the central controller or a blackboard. Besides, in the 

denied areas central command and control may not be feasible due to lack of consistent communication. 

In this situation, defining a C3 organization, where some of the agents are given responsibilities to make 

tasking decisions for other agents, and can aggregate information from controlled agents, will meet two 

main requirements: (a) it will allow the agent network to be more robust to sensor failures and changing 

intelligence needs, by assuring the agent re-tasking is done quickly; and (b) it will reduce communication 

requirements, as the middle-level agents would be able to aggregate the messages from their subordinates 

and produce smaller-size communication messages while still maintaining optimality achieved by agents’ 

information sharing. In the following, we describe the variables used to define C3 organization and task 

assignment for agents, and specify optimization algorithm we use to generate such organization based on 

defined EEI plan. Our solution will be based on the optimal hybrid organization design models which 

have been applied and empirically validated to produce superior performance in several domains, 

(a) Example of ideal output of PCPAD cycle (b) Example of actual output of PCPAD cycle

MA WC

A1

A2

A3

MA = Materials Acquisition
WC = Weapons Cache
A = Attack

WC

MA

A
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including military task force C3 structures (Yu, Tu, and Pattipati, 2008; Levchuk et al., 2003, 2004; 

Pattipati et al., 2002) and distributed shape assemblies (Levchuk et al., 2009). 

Variables for agent organization design and tasking: To define the sensor organization and task 

assignments, we need a formal prior segmentation of the data variables. For geospatial domain, this can 

be a uniform geographic area grid, or specific geospatial area list based on known area boundaries. For 

general attributed data, this can be based on predefined data indexing over multiple observed features. 

Without loss of generality, we assume that the data are separated into subsets         
 
   . Then, for a 

given set of sensors           , the design of their C3 organization, task assignment, and 

collaboration policy is defined using the following variables: 

 Data assignment is defined by    , which is    if sensor agent      is allocated to process data 

subset      

 EEI assignment is defined by    , which is    if sensor agent      is allocated to respond to EEI 

     

 C3 organization is defined by directed links    with link attributes        
  , where the attributes 

   
  on the link          specify command policy (i.e., the methods in HTN plan), control policy 

(allowing one agent to assign tasks to another agent), and communication policy (i.e., who 

communicates with whom, and uses what messages). 

 

Figure 5: Assigning EEI-based tasks and data segments to sensor resources 

 

Figure 6: To obtain the final task assignment and collaboration requirements, we aggregate the task-based 

coordination requirements with coordination needed when processing the same data segments, and then find 

an intersection with coordination possible when the distinct segments of data are processed by different 

agents. Command and communication networks are then defined to minimize coordination overhead. 

Figure 5 illustrates how the assignments of EEI-based tasks and data depend on the relationships between 

the tasks and data segments. To optimize this assignment, we need to solve an optimization problem that 

combines two objectives: (a) balancing data analysis required at sensor agent, and (b) minimize 

communication between the agents. We use our organization design algorithms (Levchuk, and Pattipati, 

2010; Levchuk et al., 2009) to obtain iterative solution to agent-task assignment and agent-data allocation, 

assuring that load balancing and communication minimization objectives are optimized. Final 

collaboration structure will be derived based on overlap of three layers of coordination (Figure 6): sensor-

task coordination (based on links in original EEI network), same-data coordination (when sensors are 

assigned the same data segments, they may inform each other about their experiences), and dependent 

data network & its 
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data coordination (which can occur when different subsets of data are analyzed by distinct sensor 

resources). A specific collaboration policy can now be defined from resulting task-to-sensor assignment, 

and is presented in next section. 

4.3. Designing collaboration policy based on belief propagation algorithm  

An optimal solution to the situation estimation problem can be found for small analysis environments 

using centralized control of sensing resources. In the following, we describe SCAAN’s solution for 

decomposing and distributing this challenging problem to a network of sensing and information seeking 

agents, essential for situation understanding in denied places.  

Global problem of situation understanding: As mentioned earlier, analysts need to find a joint response to 

all specified EEIs               . Given interdependent EEIs and complex environment represented 

as relational multi-modal data network, each response   is a subgraph in this data network with a partial 

match to the EEI (model) graph, with multiple similar responses possible (Figure 7a). We formalize this 

problem as one of optimizing a joint posterior probability of a response (mappings)   conditioned on 

the model and data:  

                                     .     (1) 

This conditional posterior function is a ranking on how relevant the returned data is to the RFI, assuring 

we can retrieve partially matching results. This is essential when: 

 Data is noisy due to missing values, ambiguity, behavior variability, or sensor or processing errors; 

and/or 

 Queries are imprecise due to open-ended high-level or erroneous EEI and relation definitions. 

 
Figure 7: Formalizing RFI response as inexact subgraph matching 

We have shown that a posterior formulated above can be decomposed into node and link factor 

components (Levchuk, Shabarekh, and Furjanic, 2010): 

                  
 

 
        

     
      

        
     

            

 
 

 
           

                          (2) 

where              
     

   is a measure of mismatch between attributes of EEI      and data 

variable     , and                 
     

   is a measure of mismatch between EEI relation       

   and data relation          (Figure 7b). For Gaussian noise modeling, these mismatch measures are 

computed as L2 norm:         
     

  ,            
     

  . Many other mismatch functions could 

be used, including radial basis functions, weighted/covariance vector product, logistic function, L1 norm, 

etc. The objective function in (2) represents a pair-wise Markov Random field. Taking a negative log, we 

obtain a quadratic assignment problem: 

EEI network

Data network

matches

(a) Generating responses to PIRs by finding subgraphs in data matching EEI network (b) Variables of network matching

model data

m

Node mismatch:

Link mismatch:

Cknij

Cki

ik

mapping

j
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                     (3) 

Due to the factoring of objective function, its maximization can be achieved using Loopy Belief 

Propagation (LBP) algorithm, – a distributed iterative stochastic optimization based on passing belief 

messages in factor graphs. The LBP algorithm finds marginal probabilities                   for 

which joint posterior probability is maximized. Marginal probability vector                 
represents a belief, or a distribution, about location of EEI      in the observed data (e.g., location of 

hostile activity at a particular geographic location). We developed an extension of LBP – a smoothed 

loopy belief propagation (SLBP; Levchuk, Roberts, and Freeman, 2012); the SLBP incrementally updates 

beliefs based on previous values and new information, instead of completely recomputing belief values as 

in LBP. Incrementally updating the estimates of probability of model-to-data mapping (activity-to-

location) allows SCAAN to generate useful and meaningful output results at any time during distributed 

collection and processing, while a search for better solution(s) is still ongoing.  

The SLBP algorithm proceeds by (i) constructing a factor graph, and (ii) passing messages in this graph. 

The factor graph is generated from the structure of EEI dependencies (model network) and the factors in 

decomposition of posterior objective function. This graph includes the variable nodes and factor nodes 

(Figure 8). Variable nodes correspond to EEIs     ; those nodes maintain and update messages 

                corresponding to logarithm of marginal beliefs    (              ), and send 

these messages to factor nodes. The factor nodes are defined for each link          corresponding to 

relation between EEIs; these nodes maintain and update two factor messages, representing the marginal 

log-probabilities of matching model link       to the data link that ends in node  ,        

                , or starts in node  ,                        , and send them to variable nodes. 

Figure 8 depicts a pattern (a) corresponding to EEI graph in Figure 1c, corresponding factor graph (b), 

and a subset of messages passed in factor graph (c) based on original formulation of approximate 

distributed pattern matching solution. Hence, approximate distributed solution includes two phases: 

 Communication (message passing) phase: factor nodes          send messages               to 

variable nodes       , while variable nodes      send messages    to factor nodes 

               

 Inference (belief update) phase: factor nodes          and variable nodes      update their 

beliefs    and               based on received messages.  

(b) Factor graph(a) Pattern (query) network

1

(c) Subset of messages for original 
message passing formulation

    

2

3

4

5

1 2

3

4

5

(1,2)

(2,3)

(2,4)

(2,5)

1 2(1,2)

variable messages

factor messages
            

Variable nodes

Factor nodes

 

Figure 8: Message passing policy is derived from the structure of the pattern. For the example of pattern (a), 

the factor graph (b) contains five variable nodes and four factor nodes. During message passing, variable 

nodes send their messages to factor nodes, and vice versa. In original formulation, both messages all messages 

are passed between factor and variable nodes.  

Using a simplified belief propagation algorithm based on min-sum model (Levchuk, Roberts, and 

Freeman, 2012), the beliefs/messages are updated as follows: 

 Updates at variable nodes: 

                                                         (4) 

 Updates at factor nodes: 

                                                 ,    (5) 
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                         .    (6) 

In SLBP model, we perform the “smoothing” of the belief updates using reinforcement learning, where 

the messages                                computed as in (4-6) at time   are used to incrementally 

update the smoothed message estimates    based on message estimates calculated at time    : 

                         (7) 

This results in using a weighted history of estimates: 

                           
       (8) 

The messages update in (8) attempts to avoid the errors introduced by cycles in the factor graph, and also 

provides the effective instrumentation for accounting for message passing delays. In synchronous SLBP, 

the belief updates are computed in parallel and messages communicated iteratively between factor and 

variable nodes. In asynchronous SLBP, one message is propagated at a time, decreasing communication 

requirements. 

According to equations (4-6), in-memory single-machine belief propagation requires a total number of 

message updates and memory storage on the order of                                  
operations/variables per iteration, while the number of iterations to convergence is on the order of the 

length of longest path in model network. For complex queries and large amounts of data nodes and links, 

global solution is not feasible. To solve this problem, we notice that message passing phase is essentially 

equivalent to collaboration needed for updating individual EEI beliefs. Such collaboration does not 

require agents to engage in conflict resolution or negotiation – such process is substituted by explicit 

probabilistic updates that the agents need to perform. Hence, passing messages and belief updates can be 

distributed between multiple sensors with explicit probabilistic collaboration rules, enabling reasoning 

over large scale data and complex EEI networks. In the following subsection, we describe derivations of 

such distribution and corresponding agent collaboration policy. 

(a) Subset of messages for baseline 
distributed SLBP

1 2f(1,2)

factor messages
      

r(1,2)

Sensor 1 Sensor 2

      

(b) Subset of “forward” messages for extending 
distributed SLBP employing data decomposition

1

2

f(1,2)

Sensor 1

Sensor 3

1 f(1,2)

Sensor 2

              

 
   

  

              

 
   

  

  
 

  
 

  
 

r(1,2)

 
Figure 9: Adapting SLBP to distributed sensing. Figure (a) shows an example of sensor-EEI allocation and 

passed messages from the problem in Figure 8. Only factor messages, corresponding to beliefs about 

coordination dependencies, are passed between sensors. Figure (b) shows our extension using data 

segmentation, were a subset of messages is passed from each of two sensors searching over the same EEI in 

two different subsets of data.  

Distributing situation analysis to a network of sensing agents: Each EEI can be assigned to a different 

sensor; accordingly, a sensor is then responsible for maintaining and updating beliefs of the activity-to-

location inferences corresponding to variable node(s) in factor graph. In this case, original SLBP 

described above required passing marginal log-probability    to factor nodes from variable nodes. To 

deal with these messages, we decompose the factor nodes into two factors – one computing the messages 

       and another computing messages       . Then, the variable node for EEI   and new factors 

computing messages                      and messages                      can be combined 

and assigned to a single agent (see Figure 9a). The sensors then coordinate using the messages 

             , which can be interpreted as the beliefs of dependency of experiences of one sensor on the 
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experiences of other sensors that are executing interdependent tasks. The benefit of this formulation is in 

the explicit definition of collaboration activity rather than communication activity: instead of 

communicating all the beliefs or experiences a sensing agent had obtained, it only communicates explicit 

interdependencies of its beliefs with other’s problems, and needs to do so only when these 

interdependencies have changed significantly.  

When every EEI is assigned to a single sensing agent, each agent will in the worst case need to analyze 

the whole data (number of operations equal to               ). While the patterns (EEI networks) 

defined by analysts are typically small (at most tens-to-hundreds of nodes and links), the size of the data 

could be massive, with number of nodes and links potentially reaching 10
7
-10

9
 variables. In this case, 

even accounting for possible data filtering to match EEI characteristics, the length of the messages passed 

between sensors, as well as the information collection and computation time for local updates at the 

agents, may become prohibitively large. This issue can be addressed by assigning agents only subsets of 

data to analyze, as defined by assignment variables    , so that the agent      is allocated to process 

subset of data                   (such as a subset of the geography). In this case, the same EEI may 

be assigned to multiple sensors; also, agents can be assigned multiple EEIs to benefit from processing the 

same data. Then, internal agent’s data analysis and collaboration is defined using the following three 

processes (Figure 9a-b): 

 Message generation process: agent      computes the messages 

                                           (9) 

                                           (10) 

 Communication process: agent      communicates with agent      by passing messages  

                                                   (11) 

                                                  (12) 

 Belief update process: based on its internally computed messages and messages received from other 

agents, agent      updates beliefs 

                           .    (13) 

In the above, the symbol        indicates a subset of nodes in    that are predecessors of nodes in     : 

                                   . Similarly,        is a set of successor nodes:        
                           . 

This collaboration policy will be further optimized by reducing redundant communications. The main 

idea is to communicate the messages to other sensors only when the significant changes to those messages 

have occurred. More specifically, convergence of beliefs of individual sensors is not uniform and depends 

heavily on the strength of a local neighborhood, i.e. information collected by the sensor and its 

neighboring (dependent) sensors. Sending small-impact updates wastes communication bandwidth and 

computational resources at the sensors. We use asynchronous belief propagation, such as Residual Splash 

(Gonzalez, Low, and Guestrin, 2009; Gonzalez, Low, Guestrin, and Hallaron, 2009) to evaluate the 

benefits of potential updates and scheduling agent communication based on message importance. This 

model uses belief residuals to filter which messages to send, and is currently a most promising technology 

for running graphical algorithms over massive amounts of data. This model has significantly 

outperformed synchronous belief propagation and other schedule-based asynchronous approaches.  

SCAAN’s collaboration policy is based on strong theoretical bases of relational data inference and inexact 

query processing. While the formulation described above only depicted dyadic sensor dependencies (due 

to only node or link factors in conditional posterior objective function), we can incorporate higher-order 

factors and dependencies (e.g., coordinating >2 measurements about the same data entity, such as 

location, to infer its activity/behavior).  
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4.4. Generating RFI responses by the multi-agent system 

While the agents compute their relative beliefs, the search terminates when residual beliefs are below 

threshold for all agents. Then, the set of query-to-data matches          is generated, where    

   
 
   

 
     

 
    

 
    is an instance of joint response to EEIs. These matches can either be generated 

piece-wise by the agents responsible for subset of EEIs and then centrally assembled, or generated 

centrally using the EEI-to-data beliefs       communicated by the agents to a central control node. In 

both cases, we use a combination of depth-first search for a subset of feasible data points (determined by 

the values of belief values), multivariate sampling using       probabilities, and mismatch computation 

for selecting K-best resulting query matches. 

 

Figure 10: Design of the agent module will include 4 dynamic components, agent configuration initiated by 

SCAAN’s design framework, and data access API 

5. System Architecture 

To develop SCAAN’s functional prototype, we first combined C3 organization, collaboration policy, and 

collection planning solution into a common distributed data analysis framework providing agents’ 

autonomy and complying with existing agent communication framework. We implemented the agent 

framework and five functional components (Figure 10): 

 Agent configuration component stores information about agent’s assignments and interdependencies 

with other agents. 

 Belief manager stores and updates local beliefs and messages using belief update and message 

generation processes described in Section 4.3.  

 Coordination controller is responsible for receiving and communicating messages from/to other 

agents. To decide which messages to communicate while decreasing unnecessary communication, 

this component computes belief residuals as a score of impact of messages on other agents.  

 Information analysis planner (not described in this paper) decides the agent’s “path in the data space” 

– i.e., a sequence of the variables or subsets of the data that agent will examine and process 

incrementally. This component computes the value of information (e.g., expected information gain) 

for uncollected data in terms of disambiguating current situation hypotheses.  

Belief manager:
• belief update process: 
• message generation process: 

Agent configuration:
• Data subsets assigned 
• EEIs assigned 
• EEI dependencies 
• Org. structure 

Coordination controller:
• belief residuals for messages 

Information analysis planner:
• value of information for 

Data:
• Subsets 

State calculator:
• compute hypotheses 

Other 
agents

SCAAN Framework

Requirements CollaborationManagement
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 State calculator computes partial EEI responses    based on beliefs received from other agents. 

 

Figure 11: Query is defined as a graph of EEIs and their relations, with attributes corresponding to 

observable information about them (a). Collected data includes the facilities and events detected at them (b). 

The messages communicated from one agent to another are based on the analysis tasks assigned to these 

agents and the data the agents have access to (c). The subsets of messages are based on the data dependency 

between agents, computed using the overlap of accessible data in an aggregated data graph (d). Agent 

knowledge mining and collaboration proceeds by computing log belief messages and communicating them 

over time; the message passing process terminates after two iterations with a single communication cycle (e). 

While having ambiguous feasible EEI-to-data assignments based on local information (see node mismatch 

values in agent tables (e)), the agents converge to discriminative EEI-to-data beliefs consistent with global 

objective, and generate the final inferences (EEI-to-data mapping) that are optimal (f). 

6. Illustration Example of Multi-Agent Collaborative Data Analysis 

A concept of belief propagation, which is at the core of our distributed data processing framework, allows 

agents to influence each other even without ever directly communicating. This is achieved by propagating 

belief messages through multiple intermediate agents, incrementally changing their beliefs, and 

eventually indirectly influencing the target agent. The following example (Figure 11) illustrates how the 

collaboration process is executed in practice, via the following size steps. 

 Step 1: Assignment. This step initializes the agent organization and specifies what part of the query 

each agent is responsible for. In this example, two agents     are assigned to execute a subset of the 
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query from Figure 4, with each agent assigned one of two EEIs: (1) “Finding facilities where material 

acquisition took place” (Materials for short), and (2) “Finding facilities were weapon storage was 

conducted” (Cache). The EEIs and their link are defined using a set of observable events.  

 Step 2: Observation. In this step, the agents obtain access to (or collect) the data which they need to 

search over to respond to the query. For our illustrative example, the overall data accessible to agents 

is depicted in Figure 11b and represents event detections at the facilities and the road between them, 

with distinct subsets of data accessible to individual agents illustrated in Figure 11c. 

 Step 3: Mismatch calculations. In this step, the agents compute the metric of mismatch between 

assigned EEIs and their links, and data node and links. These computations include pair-wise 

comparisons of feature vectors of nodes and links in query and data, respectively. In our example, 

node and mismatch parameters are shown in Figure 11e.  

 Step 4: Local inference. In this step, the agents compute inferences in the form of marginal posterior 

probability of association between query (EEI) nodes and data nodes. Based on the correspondences 

between attributes of facilities and EEIs’ activity nodes and corresponding node mismatch values, the 

agents would have ambiguous understanding where the activities might have taken place, with both 

Checkpoint and Parking Lot fitting a profile of “Materials” activity, and Store and Warehouse 

facilities matching the “Cache” activity.  

 Step 5: Collaboration. In this step, the agents compute the collaboration messages to be sent to other 

agents. This is accomplished to ensure joint optimality of the inferences, which will gradually correct 

and/or disambiguate local inferences made by the agents. In our example, collaboration message flow 

is shown in Figure 11d: by exploiting the dependencies between “Materials” and “Cache” in terms of 

traffic events, security, and distance between facilities, the agents are able to inform each other so that 

both end up with discriminative inferences and optimal facility retrievals for “Materials” and “Cache” 

activities.  

 Step 6: Joint inferences. In this step, final results (shown in Figure 11f) are generated based on 

posterior probabilities provided by the agents to their supervisor. The agents report that “Materials” 

and “Cache” are located respectively at “Parking lot” and “store”. 

7. Experimental Results 

Primary objectives of our experimental validation was to compare the accuracy of data analysis results 

produced by distributed agent system versus centralized implementation, and assess potential 

improvements that could be achieved by executing the distributed data analysis over Cloud multi-

processor system. Accordingly, we used a synthesized data to manipulate input characteristics (noise, 

ambiguity, and size of relevant and irrelevant data) and have access to ground truth to compute 

performance metrics.  

6.1. Experimental setup 

We conducted 100 Monte-Carlo runs for three configuration of data node and relation ambiguity: (a) 

nodes are ambiguous (nodes have the same attribute values) while links have uniformly generated 

attributes, (b) links are ambiguous (links have the same attribute values) while nodes have uniformly 

generated attributes, and (c) both nodes and links have uniformly generated attributes. In each run, we 

defined a set of queries as random attributed graphs, generated noisy multiple instances of each of these 

graphs, added irrelevant uniformly generated nodes and links, and performed search in attempt to recover 

these graphs. This process is illustrated in Figure 12. We used 10-node queries without loss of generality. 

Varying the noise levels (as a percent range of the change between attribute value in query and data) we 

obtained multiple data graphs. Higher levels of noise meant larger difference between the query and its 

true match and potentially confused the analysis algorithms. 
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Figure 12: Experimental validation process 

6.2. Assessment metrics 

We used two classes of metrics to assess SCAAN: effectiveness and performance. Effectiveness measures 

included total processing time for execution (updates of internal beliefs), message generation, 

communication, and inference generation. The performance of joint situation assessment and EEI 

responses have been evaluated against the ground truth using three standard evaluation metrics: Precision, 

Recall (true positive rate), and Accuracy. These metrics can all be derived from the following counts: 

True Positives (TP, the number of correct EEI location inferences made), False Positives (FP, the number 

of incorrect EEI location inferences made), True Negatives (TN, the number of environment locations not 

corresponding to EEIs and no matched to any EEI by the agent network), and False Negatives (FN, the 

true EEI locations missed by agent network). Precision measures the exactness of the situation state 

inferences – i.e., how often the EEI-to-location inferences are correct. Recall measures the completeness 

of the predictions – i.e., how many true EEI-to-location associations are retrieved. False positive rate is 

degree of specificity, - i.e., the percentage of irrelevant observations which agents inferred as relevant to 

some EEIs. Accuracy is the aggregate metric of the algorithm’s performance. Since our solution can 

generate analysis results at any time during the analysis, above metrics will be calculated as time-varying 

functions, allowing understanding the trade-offs between accuracy of retrievals and time spent searching 

over the data.  

6.3. Experimental findings 

Figure 13 shows the recall, precision, and accuracy measures computed for three data configuration 

setups. We can see that distributed solution achieved similar high levels of performance to centralized 

implementation. The solution is in general more sensitive to the attributes of nodes in the data: at some 

level of attribute noise, there exist data subgraphs with smaller mismatch with the query graph than the 

true subgraphs. The topological link connectivity properties of the true graphs allows to correct for link 

attribute errors, as evidenced in the first data confirmation with same attributes for nodes and uniformly 

selected link attributes.  

Figure 14 shows the total run time for centralized and distributed processing, which includes execution 

and communication processes at the agents. The distributed solution produces higher total time using a 

single agent, but when distributed between 10 agents we achieve almost magnitude improvement in 

processing time. This is feasible due to the ability to efficiently decompose the joint optimization and 

conduct computations and communications in distributed manner.  

During our experiments, we also observed that distributed implementation resulted in decreased execution 

time. This effect was due to the more efficient filtering of irrelevant data points which can be obtained in 

distributed mode. This filtering is performed by analyzing the mismatch values between the EEI nodes 

and data nodes, and selecting only data nodes that are close to the best matches. In the distributed 

implementation, the comparison was done only for a single EEI assigned to the agent, while in centralized 

implementation the evaluation is based on all EEIs. Consequently, distributed agents are allocated only a 

subset of the data points to match against their EEIs. Removing thigh-mismatch data nodes from analysis 
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set in distributed implementation avoided redundant message update computations, at the expense of 

requiring the agents to collaborate. However, agent collaboration can also be done in decentralized 

manner, resulting in overall positive effect of distributed implementation on multiple cores. 

 

Figure 13: Comparison of performance of centralized and distributed data analysis versus data noise 

 

Figure 14: Comparison of runtime of distributed and centralized solutions 

8. Conclusions 

Many data analysis models, ranging from complex database queries to knowledge retrieval, employ 

graphical algorithms to perform joint inference and reasoning. Yet, such solutions are challenging when 

sizes of the datasets available for analysis are growing to billions of records, which cannot be processed 

on a single machine. Oftentimes, collection of new data happens at the same time as the previous data is 

analyzed. To achieve optimal scalability and accuracy, distributed data analysis solutions must 

incorporate collaborative data processing by a set of intelligent agents. 

In this paper, we presented a model for distributed collaborative data analysis that can be applied in a 

range of settings. Our distributed implementation shows the same levels of accuracy as centralized 

solution, and achieved orders of magnitude improvement in the computation time compared to centralized 

implementation.  

To achieve even greater computational speed-ups, our current and future research is focused on 

asynchronous collaboration strategies between the agents, and methods to control and share tasks between 

the agents. The collaboration process described in this paper can be optimized further by incrementally 

searching over one subset of data at a time. Such model represents a local information collection planning 
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behavior at the sensor node, and can be based on the principles of RFI response disambiguation to 

optimize expected information gain from incremental data analysis. 
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