C2VE: A Software Platform for Evaluating the Use of 3D Vision Technology for C2 Operations

Beomjin Kim, Britton Wolfe, Robert Sedlmeyer
Indiana University-Purdue University Fort Wayne (IPFW)

Supported by a grant from Raytheon

June 2012
Motivation

- Command and control (C2) environments are complex
 - High volume of data
 - Different sources
 - Complex relationships

- C2 systems should support effective decision making

- Important factor: how the data is displayed
Project Goals

- **Overall**: Study visualization options for C2

- **Phase 1**: Develop a *software platform* for analyzing information visualization options for C2

- **Phase 2** (upcoming): Study which options help the users complete their tasks most effectively
 - 3D or 2.5D
 - Symbol rendering methods
 - Use of annotations
2.5D vs. 3D

- 3D virtual environment projected into 2D
- Standard computer monitor or projector

User perceives depth
- Our software supports several devices
 - Head-mounted displays
 - Several screen sizes
3D in Many Sizes

Desktop with 3D monitor

Rear projection
13 by 7.5 feet

3D laptop

Front projection

small, inexpensive, portable

large, multi-user
2.5D or 3D: Which is Better for C2?

- 3D: user perceives depth
 - Not available in 2.5D
 - Depth perception is not always accurate

- Existing studies with other applications: mixed results about which is better

- Software lets us systematically study this question for C2
 - Supports both 2.5D and 3D devices
 - Next phase of our project
Potential 3D Benefits

- Determine steepness of terrain
 - Is it passable or not?
- Line of sight information
 - Check visibility from candidate observation posts
 - Determine if enemy posts can observe route
 - Technically possible in 2.5D, but lack of depth perception is expected to be an issue
- Pinpointing aircraft location
 - Depth of airborne objects is difficult to determine in 2.5D
- ...

...
Symbol Rendering Options

Phase 2: Which option is best?
Symbol Rendering Options

- Billboards and cubes always face the camera
 - Rotate when the camera moves
- Draped symbols have fixed orientation

- Supports different types at once
- Can use rendering method to indicate features of units
 - Draped symbols for geographically fixed
 - Billboards for others
Optional Annotations
Optional Annotations

- Advantage: more information
- Disadvantage: risk of information overload with many symbols

- Current software: user can toggle on/off
 - Phase 2: Study when users toggle the annotations
- Possible future research: selective annotations based on context
Outline

- Goal: study visualization techniques for C2
- Our software: test bed for visualization techniques
 - 3D and 2.5D
 - Symbol rendering methods
 - Toggling annotations
- Additional software features
 - Rendering the landscape
 - Interacting with the system
Rendering the Landscape
Rendering the Landscape

- Uses open-source 3D graphics engine
 - Object-oriented Graphics Rendering Engine (OGRE)
 - Supports terrain and texturing
 - Supports 3D models (buildings, vehicles, etc.)

- Visible landscape combines two data sources
 - Elevation data
 - From NASA's Shuttle Radar Topography Mission (SRTM) via USGS databases
 - Digital Terrain Elevation Data (DTED) format processed using MICRODEM mapping software
 - Generates height map image file for OGRE
 - Aerial images
 - From USGS Seamless Data Warehouse
 - Resolution: approximately 1 pixel per square meter
 - Can handle 7km by 7km area at this resolution

- OGRE applies image as a texture on the terrain
Interacting with the System

- Three modes of interaction
 - Move camera
 - Place symbols
 - Move/delete symbols

- Supports different input devices
 - Keyboard and mouse
 - 3D SpaceNavigator
 - 3D wand
Cursor Features

- Crosshairs for easy location
- Projected on skybox
 - Helps user with accurate perception of cursor depth
Symbol Manipulation

- Symbols from MIL-STD-2525C

- Toggle between modes via the keyboard
 - Delete symbol
 - Move symbol
 - Place a new symbol
 - Click at desired location
 - Graphical menu organizes symbols by category
 - User selects rendering mode (e.g., billboard)
 - User clicks on desired symbol

- Current symbol locations can be saved to file and reloaded later
Areas of Interest

- Drawn with the cursor
- Arbitrary polygons
- Domes
Summary

- Built a software platform for evaluating C2 visualization options
- 2.5D and 3D displays
- 3 types of symbol rendering
- Annotations can be toggled
Next Steps

- Conduct user studies to determine which visualization options are best

- Measuring "best"
 - Performance on tasks
 - Time to complete
 - Quality of decisions
 - User surveys
Acknowledgments

- Supported by a grant from Raytheon
 - Via NSF's Security and Software Engineering Research Center (S^2ERC)
- Students and staff
 - Dmytro Podgorniy, CS graduate student
 - Tristan Hartzell, CS graduate student
 - Benjamin Aeschliman, research staff
- USGS for images and elevation data
Questions or Comments?