



# Co-Design: Course of Action (COA) Integration Through Common Conceptual Model Building

Thomas I. Saltysiak Alexander H. Levis

19 June 2012

Taking more time to plan often results in greater synchronization; however, any delay in execution risks yielding the initiative—with more time to prepare and act—to the enemy.

The Operations Process, FM 5-0, Headquarters Department of the Army, 2010



## Agenda



- ☐ Introduction
- Organizational Knowledge /Information Sharing
- One Current Approach
- Conceptual Models and Co-Design
- Modeling Approach
- Modeling Results
- Time Compression
- **Summary**





- Problem Statement: Current Command and Control (C2) enterprise processes cannot produce integrated COAs within the desired timeframes for planning
  - Time-constrained crisis action planning results in COAs which are not fully integrated adding more risk to military operations
  - □ Lack of a method to discover and agree upon cross-domain effects makes mutual adjustment between domains very difficult
  - Commanders are often required to perform COA integration during decision making as a result of C2 process inadequacies



Integrated COA – A COA in which all participating entities act as one organization in pursuit of common goal(s); A COA in which no higher estimation of performance can be obtained by changing the actions taken and action timing in each involved domain



### Organizational Knowledge/Information Sharing





| Kinetic                                  | Cyber                             |
|------------------------------------------|-----------------------------------|
| "Power facilities                        | "Power facilities                 |
| in city 1 do not                         | in city 1 do affect               |
| affect network                           | network                           |
| infrastructure In                        | infrastructure In                 |
| city 2"                                  | city 2"                           |
| "Conducting                              | "Conducting                       |
| general strikes on                       | cyber                             |
| power facilities in                      | disinformation                    |
| city 1 with                              | campaign using                    |
| effects Z"                               | nodes C, D, and E"                |
| "Hit target<br>location X and<br>time Y" | "Conduct exploit<br>A and time B" |



Enable synergies as possible without major rework of COA; Exercise in satisficing not optimization

Joint Agreement

Domain 2



## **Conceptual Models**



Why conceptual models?

- A broad concept that captures an organization's emergent understanding of the operational environment
- Can encapsulate the complementary concepts of planning and design
- Conceptual model agreement is a key concept in related non-military fields
- Common conceptual models allow Joint Option Awareness<sup>1</sup>



<sup>1</sup>G. L. Klein, J. L. Drury, M. Pfaff, and L. More, "COA Action: Enabling Collaborative Option Awareness."





The Design to Planning Continuum

- Problem-setting
- Conceptual—blank sheet

Design

- Questions assumptions and methods
- Develops understanding
- Paradigm-setting
- Complements planning, preparation, execution, and assessment
- Commander-driven dialog

- Problem-solving
- Physical and detailed
- Procedural
- Develops products
- Paradigm-accepting
- Patterns and templates activity

Planning

Staff-centered process

Graphic From: United States Army War College, 2008. Campaign Planning Handbook Final Working Draft., Department of Military Strategy, Planning, and Operations U.S. Army War College



### **Design Coordinations:**

- 0. Coordination Approach
- 1. Objective(s) and metric(s)
- 2. Key Influencers of objective(s)
- 3. Adversary and environment potential actions
- 4. Organizations' (Domains') potential actions

5. System structure (interactions,

constraints, synergies)

- 6. Integrated COA
- 7. Integrated COA Timing





- Models must relate the planning approach to the performance of COAs produced in planning
- □ A two part approach is used:
  - A discrete event model is used to model the timed execution of domain planning and integration processes
  - An influence net model is used to model the domain planners' estimation of COA performance



### Relating Planning Process to Planning Results









- Loosely based on a Libyan type scenario of potential coalition military intervention to remove a brutal dictator
- Commander of the allied coalition gives subordinate commanders (kinetic, cyber, and space domains) the objective and 48 hours to develop an integrated COA
- An integrated conceptual model represents complete knowledge of the operational environment and the goal of integration
- Each domain has a conceptual model of the operational environment which is a subset of the integrated model



### **Process Modeling**



NCLSTRING



# Integrating Process Modeling





EORGE

### **Example Complete Conceptual Model**



"Strong Cross-domain Effects Cause the Integration Level Performance Difference"

### **Example Domain Conceptual Model**



- 1. Kinetic Actionable Events
- 2. Standard Enemy/Environment Effects
- 3. Key Influencers of the Objective Node
- 4. Objective Node



**Deterministic Results** 





### June 2012



**Stochastic Results** 





June 2012



## **Time Compression**



- Adaptation strategy use and results differ greatly by person/group<sup>1</sup>
- **Results are highly dependent** on situation and task
- Some studies have shown a linear relationship; others contradict this
- Modeling approach limited the amount of information (inference network elements) considered as time was compressed

### mmunications () X's Social Network Country X Recognizes Regional Space AssetChange and Hardens Own Space 33,0,66,-0,33,0 (0.48) Disrupt Country Assets (0.14) X's Satellite 5.0.66.0) Civilian Transportation (0.9 Television (1) Capability Become Se Degraded (0.77) Country of solgternet rupt Country X Ineffective (0.4) Military Satellite Assets (1) (0 66 0 66 0 (0.66,-0.3) Coalition Space Actions Cause Collatera Degradation of Space Capabilities to Supp ountry X's Space Contro Kinetic Ops (0.74) (-0.66)Center becomes Increased (0.13 Country X Switches to Ineffective (0.27) Secondary Air Defense (0 66 -0 66/0) System (0.84) Country X Internal Internet Infrastructure Becomes Severel Orders to Move to Human Disrupted (0.01) ShieldLocations Become Confused (0013) Cyber Attack Causes counting to Switch Air Defense Assets to Backup Fiber Optic Network (0.92) (0.96,-0.96,0) (0.9,-0.9,0) -0.9.0) Country X's Cyber Contr Center Becomes oalition Cyber Attacks Ability to Ineffective (0.13) Reach Country X Severely Degraded (0.02) Attack Causes Major Regional Internet Degradation (0.1) (0.0.-0.33.0) fective Cyber Attack A 9 10 Air Defense Assets (0.9.-0.33.0) (0.99) 0.66.-0.33.0) Conduct Cyber (0.9, -0.9, 0)Attack on Air efense Assets (1) (0.9,-0,66,0 138 Hactive Cyber Attack on Power and Water Supplies Become Severely Tabgeted Communications Conduct Cyber Attack on (0.9,-0.9,0) Degraded (0.33) 0.98)

<sup>1</sup>L. Adelman, S. L. Miller, D. Henderson, and M. Schoelles, "Using Brunswikian theory and a longitudinal design to study how hierarchical teams adapt to increasing levels of time pressure," 2003.

### Example Inference Network Element

Encosted Co



## **Time Compression Results**



| Approach and<br>Compression Level | Mean Time<br>(Hrs) | Std DEV<br>(Hrs) |
|-----------------------------------|--------------------|------------------|
| Co-Design                         | 49.8               | 2.2              |
| 20% Time Reduction                | 48.1               | 2.1              |
| 40% Time Reduction                | 47.1               | 1.9              |
| De-conflicted Level 2             | 52.7               | 1.9              |
| 20% Time Reduction                | 51.2               | 2.1              |
| 40% Time Reduction                | 49.9               | 2.2              |
| De-conflicted Level 1             | 50.6               | 1.8              |
| 20% Time Reduction                | 49.9               | 2.0              |
| 40% Time Reduction                | 48.8               | 2.2              |





## **Results Summary**



- Co-design offers the potential for significant performance improvement with minimal increase in process time
- Co-design coordination time has less overall impact on total planning time because the process is largely concurrent with existing activities
- Results were not unusually sensitive to any particular parameter values
- Modeling indicates that the COA performance is sensitive to relatively small amounts of time compression

| Approach           | Mean<br>ir<br>Coordi | Time<br>n<br>nation | Standard<br>Deviation in<br>Coordination<br>Time |       |  |  |
|--------------------|----------------------|---------------------|--------------------------------------------------|-------|--|--|
|                    | Minutes              | Hours               | Minutes                                          | Hours |  |  |
| Co-design          | 694                  | 11.6                | 68                                               | 1.1   |  |  |
| Current<br>Level 1 | 280                  | 4.7                 | 8                                                | 0.1   |  |  |
| Current<br>Level 2 | 412                  | 6.9                 | 44                                               | 0.7   |  |  |





- □ C2 laboratory feasibility studies of the Co-design approach
- □ Conditions for existence and strength of cross-domain effects
  - The importance of integration is based on assumption of their existence
  - What domain capability, operational environment, and objective/goal attributes affect the existence and strength of these effects?
- □ Alternative domain divisions and vertical integration
- □ Effects of "supported" or lead domain(s)
  - □ One integration method currently in use
  - Does selecting a lead domain prior to COA development bias considered COA options?





### Questions

June 2012





### **Back-up Slides**

June 2012



### **Deterministic Results**



| Approach<br>Used | Combined<br>COA Type | Process Time<br>(CPN Model) | S     | COA Performance<br>(Pythia Model) |           |          |  |
|------------------|----------------------|-----------------------------|-------|-----------------------------------|-----------|----------|--|
|                  |                      | Minutes                     | Hours | <b>Coalition OBJs</b>             | Coalition | Leader   |  |
|                  |                      |                             |       | Met                               | Loss      | Agrees   |  |
|                  |                      |                             |       |                                   | Avoidance | to Leave |  |
|                  |                      |                             |       |                                   |           | Power    |  |
| New              | Integrated COA       | 2847                        | 47.5  | 0.802                             | 0.9       | 0.85     |  |
| Approach         |                      |                             |       |                                   |           |          |  |
| Current          | De-conflicted        | 3018                        | 50.3  | 0.56                              | 0.67      | 0.59     |  |
| Approach         | Level 2              |                             |       |                                   |           |          |  |
| Level 2          |                      |                             |       |                                   |           |          |  |
| Current          | De-conflicted        | 2910                        | 48.5  | 0.394                             | 0.45      | 0.43     |  |
| Approach         |                      |                             |       |                                   |           |          |  |
| No               | Combined             | 2660                        | 44.3  | 0.28                              | 0.32      | 0.295    |  |
| Coordination     | Domain COAs          |                             |       |                                   |           |          |  |

### Iterative Coordination Process Time Efficiency Assumed

June 2012



### **Stochastic Results**



| Approach<br>Used | Combined<br>COA Type | Process Time<br>(CPN Model) | S         | COA Performance<br>(Pythia Model) |           |          |  |
|------------------|----------------------|-----------------------------|-----------|-----------------------------------|-----------|----------|--|
|                  |                      | Hours                       | Hours     | <b>Coalition OBJs</b>             | Coalition | Leader   |  |
|                  |                      | (Mean)                      | (Std Dev) | Met                               | Loss      | Agrees   |  |
|                  |                      |                             |           |                                   | Avoidance | to Leave |  |
|                  |                      |                             |           |                                   |           | Power    |  |
| New              | Integrated COA       | 49.8                        | 2.2       | 0.802                             | 0.9       | 0.85     |  |
| Approach         |                      |                             |           |                                   |           |          |  |
| Current          | De-conflicted        | 52.7                        | 1.9       | 0.56                              | 0.67      | 0.59     |  |
| Approach         | Level 2              |                             |           |                                   |           |          |  |
| Level 2          |                      |                             |           |                                   |           |          |  |
| Current          | De-conflicted        | 50.6                        | 1.9       | 0.394                             | 0.45      | 0.43     |  |
| Approach         |                      |                             |           |                                   |           |          |  |
| No               | Combined             | 46                          | 1.9       | 0.28                              | 0.32      | 0.295    |  |
| Coordination     | Domain COAs          |                             |           |                                   |           |          |  |

### Iterative Coordination Process Time Efficiency Assumed

June 2012

### **Process Time Compression Results**

| Integration and                    | Process Time            |      |                       |     |                             |      |      | COA Performance    |                         |                           |
|------------------------------------|-------------------------|------|-----------------------|-----|-----------------------------|------|------|--------------------|-------------------------|---------------------------|
| <b>Compression Level</b>           | Mean Total Process Time |      | Standard<br>Deviation |     | High End of 95%<br>Conf Inv |      | BJS  | oss<br>e           | ees<br>wer              |                           |
|                                    | Min                     | Hrs  | %<br>Reduction        | Min | Hrs                         | Min  | Hrs  | Coalition O<br>Met | Coalition L<br>Avoidanc | Leader Agr<br>to Leave Po |
| Fully Integrated COA               | 2989                    | 49.8 | NA                    | 133 | 2.2                         | 3015 | 50.3 | 0.802              | 0.903                   | 0.85                      |
| 20% Process Time<br>Reduct.        | 2887                    | 48.1 | 3%                    | 130 | 2.1                         | 2912 | 48.5 | 0.686              | 0.825                   | 0.694                     |
| 40% Process Time<br>Reduct.        | 2827                    | 47.1 | 5%                    | 120 | 1.9                         | 2850 | 47.5 | 0.392              | 0.43                    | 0.45                      |
| Fully De-conflicted Level<br>2 COA | 3160                    | 52.7 | NA                    | 115 | 1.9                         | 3182 | 53.0 | 0.56               | 0.67                    | 0.59                      |
| 20% Process Time<br>Reduct.        | 3075                    | 51.2 | 3%                    | 130 | 2.1                         | 3100 | 51.7 | 0.394              | 0.45                    | 0.43                      |
| 40% Process Time<br>Reduct.        | 2995                    | 49.9 | 5%                    | 135 | 2.2                         | 3021 | 50.4 | 0.365              | 0.45                    | 0.37                      |
| 60% Process Time<br>Reduct.        | 2928                    | 48.8 | 7%                    | 124 | 2.0                         | 2952 | 49.2 | NA                 | NA                      | NA                        |
| Fully De-conflicted Level<br>1 COA | 3038                    | 50.6 | NA                    | 113 | 1.8                         | 3060 | 51.0 | 0.394              | 0.45                    | 0.43                      |
| 20% Process Time<br>Reduct.        | 2998                    | 49.9 | 1%                    | 125 | 2.0                         | 3023 | 50.4 | 0.365              | 0.45                    | 0.37                      |
| 40% Process Time<br>Reduct.        | 2932                    | 48.8 | 4%                    | 133 | 2.2                         | 2958 | 49.3 | NA                 | NA                      | NA                        |
| 60% Process Time<br>Reduct.        | 2867                    | 47.8 | 6%                    | 131 | 2.1                         | 2893 | 48.2 | NA                 | NA                      | <b>NA</b> 26              |