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Continuing the development in (Scheidt & Schultz, 2011),
C2 Process x(t)

Discrete state space X = {z;}

Uncertainty (Shannon entropy)

H(x(t)) = — 32 P(wi,t)logy P(;,t)

Observations, S = {(&,t)}, and sequences of observations
Suk = {(&5,15)}

Entropic drag I'(S1.x, tg, ') = %)t'f”)

Can “close the loop” using analogous constructions for the
uncertainty removed by control events (actuations)
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Consider the following scenario to illustrate entropic drag:

@ Single target tracking scenario, discrete time and space
@ State transitions define motion models
o x; — x; with known probability P, (z;)
e Given P(z;, k) have P(z;,k+1) = ijeX P(xj, k) Py, (z;)
o Can repeatedly reply this relationship to calculate probability
distribution at future times

@ Several motion models considered

@ Calculating the information loss of an initial observation due
to entropic drag




@ Motion models that
introduce more uncertainty
at each time step have
greater entropic drag and

more information loss

Different models represent
different levels of target

agility

Time can elapse due to slow
sensor sampling rate, or
relatively faster adversarial

agility

Information content of single observation, in bits
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Entropic drag vs velocity for a 51 by 51 world
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Relevance

@ Demonstrates that entropic drag is a real phenomenon that
can be numerically calculated
@ This example is a hidden Markov model, which is well studied
in state estimation and control
@ Kalman , particle, and PHD filtering; multi-hypothesis
tracking, etc.
@ Hidden Markov models commonly employed to estimate both
state and uncertainty
@ This provides insight on how to estimate the entropic drag
from the system from the existing state estimation scheme
o Use this estimation of entropic drag to configure the state of
an agile control system




@ Want to consider the effects of summarizing multiple elements
of interest into a more abstract entity in a C2 scenario

@ e.g., soldiers into squads, squads into platoons,.. .

@ Hypothesis: information-theoretic characteristics of the C2
system determine the optimal level of abstratction




To model abstraction, consider the following:

Have N elements of interest

Described using messages of length L bits with channel rate r
Want to summarize using M < N elements

Approximate information loss due to abstraction by

I(M) = N- L~ |N/M| - logy(M?/N?)

Also want to consider effects of entropic drag during the
communication and computation time

s Assume geometric decay rate y € [0, 1]
@ f(M,L,r) determines the total communication and
computation time

o I(M,~) =I(M)-(1—~)f L)
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Information after communication vs abstraction
128 entities at 64 bits with y=0.0039544
7400 i ; . ! :

@ Optimal level of abstraction
(in terms of total
information after
communication) depends on
information decay rate

o Complexity (f(M,L,r))
also affects the optimal level
of abstraction
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Optimal abstraction vs. decay rate
for linear (f(M)=b[M) processing model
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SEND, SENSE, COMPUTE, and
CHECK states

Computational time
(complexity) linearly
proportional to new
information received ()

No new info

Delay finished COMPUTE

Information decays via a

geometric decay rate (I") o~
clay new

Investigating peak processed
information volume to a
single observation
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Initial Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Bad

Dominance plot showing
which topology
accumulated the most
information as the
information-theoretic
characteristics changed.
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Initial Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Fully-connected
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Initial Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Bad .
Various scale-free
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Initial Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Binary tree
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Initial Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Small-world

f I unprocessed info |

{3, computation delay:
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Additional Complexity

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64
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Additional Complexity

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64

Scale-free trees
co-dominant in bands
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Genetic Algorithm Optimization

@ In (Scheidt & Schultz, 2011) 30 different topologies were
compared over the information-theoretic parameter space

o Certain topologies were dominant in different regions
@ Certain categories of topologies were dominant near each other

@ Here, investigate the possibility of optimizing topology directly
at a given point in the parameter space

@ Using a genetic algorithm, the topology of the graph was
optimized at seven specific points

@ Also considered multi-point optimizations
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Results

Dominance Plot for Communication Topologies
#Nodes=127 #Sensors=64
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The seven optimized
topologies perform well in
nearly the same regions as
the topologies they
improved upon
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Results

Dominance Plot for Communication Topologies L
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@ It is possible to optimize for specific information theoretic
parameters
o This optimization is robust, in that it performs well in a
neighborhood

@ It is also possible to find a few optimized topologies that
outperform original set of 30
e So a look-up table approach may be feasible when direct
optimization is not

@ Analysis of multi-point optimizations provides insight into
behavior of simulation




@ Information-theoretic characterization of real systems

e UxV control
o Ship auxiliary systems

@ Information-theoretic characterization of human performance
@ Understanding mixed human/machine performance

@ Design of agile systems
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