Towards operational agility using service oriented integration of prototype and legacy systems

Authors:

Frank T. Johnsen, Trude H. Bloebaum, Ketil Lund, and Espen Skjervold
Norwegian Defence Research Establishment (FFI)
Outline

• Motivation / SOA – Web services
• Experiment
 – Components
 – Information infrastructure
 – Lessons learned
• Conclusion / future work
Motivation

• The NATO Network Enabled Capability (NNEC) Feasibility Study
 – Presents a discussion of technology, focusing on the needs of future interoperable military communications.
 – Identifies the Service Oriented Architecture (SOA) concept and Web services technology as the key enablers for NNEC.

• Our focus
 – Interconnecting prototype solutions and legacy systems.
 – Using a combination of established standards and bespoke solutions.

• Our goal
 – To give a practical demonstration of the benefits of service oriented system integration.
Building services

A service is a mechanism to enable access to resources, using a prescribed interface and is exercised as specified by the service description.

(OASIS: Reference Model for Service Oriented Architecture 1.0).

Service Consumer

New Service

Wrapped Service

Composite Service

Service interface
Service implementation
Non-SOA applications

Gartner Research “Service-Oriented Architecture Under the Magnifying Glass” by Yefim Natis, Application Integration & Web Service, Summit 2005, April 18-20, 2005
Web services: Implementing a SOA

• The W3C definition of a Web service:
 – “A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.”

• Thus, we see that there are three central standards:
 – WSDL (service interface)
 – SOAP (messaging)
 – XML (encoding)

• Web services support
 – Synchronous request/response communication.
 – Asynchronous publish/subscribe communication.
Communication paradigms

Request/response

"Anything new?"
"No"

"Anything new?"
"No"

"Anything new?"
"Yes:"

Publish/subscribe

"Tell me when there’s news"
"OK"

"New data: ...

FFI Forsvarets forskningsinstitutt
Experiment components

• Two main types of services involved:

 – Core services (infrastructure components)
 • Service discovery, publish/subscribe, mediation, collaboration, etc.

 – Functional services (information services)
 • The functional services were
 – NFFI
 – incident reporting
Experiment components

• We leverage existing standards: WS-Notification and WS-Discovery.
Experiment component: WS-Notification

• WS-Notification
 – OASIS standard.
 – There are three parts in the specification:
 • WS-BaseNotification, WS-BrokeredNotification, and WS-Topics.
 • The specifications standardize the syntax and semantics of the
 message exchanges that establish and manage subscriptions.

• We used a freely available implementation of WS-Notification
 – http://www.extreme.indiana.edu/xgws/messenger/
Experiment component: WS-Discovery

• WS-Discovery
 – OASIS standard.
 – Builds on the SOAP-over-UDP standard to provide decentralized service discovery.
 – Better suited to dynamic networks than the registries, but requires IP multicast support.

• WS-Discovery generates a lot of network traffic, but the overhead can be reduced by using compression.
 – The implementation is available from
 • http://code.google.com/p/java-ws-discovery/
 – In the experiment we used WS-Discovery with EXI compression
Experiment component: SOA viewer

Viewer application

- Local Map Store
- GIS Toolkit
- XMPP Client lib
- Incident store

GUI
- Map/track plots
- List of available services
- Chat (XMPP)
- Event log (JCCWatch++)

WS-N Subscriber

- "Incident" (proprietary)
- Subscriptions to incident services
- Subscriptions to NFFI services

WS-Discovery
- "COP" service
- Track store

Advertisements from services
Advertisement of "COP" service
NFFI

WMS
XMPP
Maps and MetOc data
Chat
Experiment component: Bespoke solutions

- Delay and Disruption tolerant SOAP Proxy (DSProxy)
 - Developed in-house, provides Web services support across disadvantaged grids.
 - In the experiment we used the DSProxy to run Web services across the MRR VHF radio.

- JBridge
 - Developed in-house for publish/subscribe-enabling request/response services.

[Diagram showing Operational system, Web services wrapper, JBridge, and WSMG with Notify and WS request/response.]
Experiment component: Systems

- Experimental
 - Wireless sensor network
 - Norwegian Modular Network Soldier (NORMANS)

- Operational
 - CRIADS
 - NORCCIS II
 - NIRIS
 - TDL
 - MCCIS
 - CSD
 - FACNAV
SOA viewer screenshot
Lessons learned: WS-Notification

- WSMG
 - Academic project, support and further development is uncertain.
 - WSMG displayed shortcomings
 - Added proprietary tags in the notification messages, requires adaption in the receivers.
 - No support for XML in the payload.
 - Unable to deliver any notifications if one subscriber is unavailable.
 - We advise against using it even in a test environment if you need to disseminate XML payloads.
 - Workaround – Base64 encode the payload, but that requires adaption in the receivers.
Lessons learned: Wrappers, JBridge and DSProxy

• Wrappers
 – The principle of wrapping existing software with a Web service front-end works very well.
 – The complexity of the wrapper is dependent on the type of connection it has to the actual operational system.

• JBridge
 – A viable approach to publish/subscribe-enable request/response services.
 – This component can be eliminated by integrated publishing functionality directly into the Web services wrapper.

• DSProxy
 – MRR represents a challenge when using Web services due to low bandwidth and high delays.
 – The DSProxy successfully disseminated information from the sensor network across the MRR link.
Lessons learned: Service discovery

- WS-Discovery
 - WS-Discovery works fine over medium bandwidth radios like the Kongsberg WM600, while it is not advisable, even with compression, on radios with very low bandwidth, such as the MRR.
 - Provides run-time service discovery and requires IP multicast support.
 - A general problem is that seen from a WS-Discovery point of view, all publish/subscribe (WS-Notification) services are equal.
 - Consequently, the information about which topics each service published on had to be distributed beforehand.
- It is clear that when using publish/subscribe for information dissemination, it is necessary to focus on how to search for and discover available topics.
 - Not covered by the standards, requires further research.
Lessons learned: Format translation

• In the experiment we had to handle a number of different formats coming from the different operational systems.

• A challenge when integrating information from different formats is loss of information.
 – For instance, when translating from NVG to NFFI information is lost.

• Another challenge is lack of information.
 – When translating from OTH gold to NFFI, it is necessary to add information, since OTH gold is a much simpler format.
Conclusion

• The experiment was executed at FFI in June 2011 in cooperation with the NC3A.
 – As a demonstration of the benefits of SOA we consider the effort a success.

• Recent work
 – NATO RTO/IST-090 experiment in autumn 2011
 • Subset of this experiment, substituting WSMG for Apache ServiceMix

• Ongoing work
 – CoNSIS June 2012
 • Experiments with Web services over IPv6.