Adopting Botnet Herders’ Techniques in Military C2 Systems

Netherlands Defence Academy
Tim Grant
tj.grant@nldefence.nl

ICCRTS 19 Jun 12
Overview

Goal:
- To identify botnet herders’ C&C techniques that could be adopted in military C2 systems

Outline:
- Introduction
- Military C2
- Botnet C&C
- Comparison
- Conclusions
Introduction (1)

My qualifications:
- BSc Aeronautical Engineering, Bristol, UK
- Defence Fellowship (Masters), Brunel, UK
- PhD Artificial Intelligence, Maastricht, NL

My experience:
- 1966-87: Royal Air Force officer, UK & SG
- 1987-2004: Consultant, Atos Origin, NL
- 2001-09: Professor, U. Pretoria, ZA (20%)
- 2004-12: Professor, NLDA, Breda, NL (50%):
 - Teaching: Communication, Information & C2 Systems
 - Research: operational ICT & communications
 - Management: team of 7,5 lecturers
Introduction (2)

My C4I systems team’s research:

- Focused on:
 - Information & Communication Technology (ICT)
 - Network Enabled C2 Systems (NECS)
 - Offensive cyber operations

- Active research into:
 - Actor-network analysis of C2 simulator (PhD)
 - Tools & technologies for offensive cyber ops
 - Social media in C2
 - Information sharing with coalition partners:
 - Cultural influences (PhD)
 - Service-oriented computing (PhD)
 - Dynamic workflows for synchronizing C2 (PhD)
Introduction (3)

My research approach:

Operational needs impose requirements on technology (eg cyber)

New ICTs make possible new types of operation (eg social media)

My time horizon:
Introduction (4)

Research Question:

Are there operational advantages to be gained by adopting techniques from botnet C&C in military C2 systems?

and in particular:

What would we have to do to operate C2 systems over the “dirty” Internet?
Military C2 (1): operational environment

Four domains:
- Physical
- Information
- Cognitive
- Socio-organizational

Interactions between actors:
- Mostly in physical domain

Key determinants of action:
- Terrain
- Technical capabilities
Military C2 (2): threats & responses

Threats:
- Opposing forces
- To C2 systems:
 - Destruction or disruption of C2 system
 - Denial of access to or disclosure of information

Responses:
- Information security principles:
 - Confidentiality, Integrity, Availability (CIA)
 - Authenticity & Non-Repudiation
- Primarily defensive:
 - “Air-gapping”
Military C2 (3): industrial-age C2

Organizational structure:
• Traditionally hierarchical ("Machine Bureaucracy")

Decision making:
• Centralized

Information flow:
• Formal
• Up & down hierarchy

Mintzberg, 1980

Galbraith, 1974; 1977; 2008
Military C2 (4): information-age C2

Organizational structure:
• Edge (“Professional Ad-hocracy”)

Decision making:
• Centralized goal selection
• Decentralized execution
• Mutual adjustment; self-synchronization

Information flow:
• Formal & informal
• Up & down, across, and between hierarchies

Alberts & Hayes, 2003
Nissen, 2005
Botnet C&C (1): operational environment

Four domains again

Interaction between actors:
- Mostly in information domain
- Social engineering in cognitive domain

Key determinants of action:
- Cyberspace is man-made:
 - Topology / connectivity
 - IP address equivalent to lat-long:
 > Easily changed – no inertia
- Free from physical & legal constraints
Botnet C&C (2): threats & responses

Threats:
- Target’s developer & system administrator
- OS, FW, AV, IDS & application developers
- Rival botnet herders
- Law enforcement authorities

Responses:
- Exploit vulnerabilities
- Encrypting malware
- Multiple versions of malware
- Remove rival botnets
- Exchange techniques via dark fora & chat channels
Botnet C&C (3): topologies & techniques (1/2)

Botnet generations:
- Open-source
- Kit-based
- Specialized

Botnet topologies:
- Centralized via IRC
- Peer-to-peer (P2P) networks:
 - Random graphs
 - Small worlds
 - Scale-free

References:
- Czosseck et al, 2011
- Li et al, 2009
- Zeldanoo & Manaf, 2009
- Wang et al, 2010
Botnet C&C (3): topologies & techniques (2/2)

Communication technologies:
- IRC protocol (popular)
- HTTP
- Twitter

Obfuscation techniques:
- Encryption
- Onion routing
- Lookup resilience
- Redundant C&C servers
- Intermittent C&C; calling home
- IP & domain fluxing (cf. frequency-hopping)

Kartaltepe et al, 2010

Damballa, 2009a/b
Comparison (1)

<table>
<thead>
<tr>
<th></th>
<th>Military C2</th>
<th>Botnet C&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed loop</td>
<td>Yes (OODA)</td>
<td>Yes</td>
</tr>
<tr>
<td>Tempo</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Domains</td>
<td>Physical, information, cognitive, social</td>
<td>Information (cyberspace), cognitive</td>
</tr>
<tr>
<td>Supervisory control</td>
<td>Commander</td>
<td>Botnet herder</td>
</tr>
<tr>
<td>Direct control</td>
<td>Command team & C2 system</td>
<td>C&C servers</td>
</tr>
<tr>
<td>Process under control</td>
<td>Subordinate units</td>
<td>Zombie-hosted bots</td>
</tr>
<tr>
<td>Targets</td>
<td>Opposing forces</td>
<td>Target systems</td>
</tr>
</tbody>
</table>
Comparison (2)

<table>
<thead>
<tr>
<th></th>
<th>Military C2</th>
<th>Botnet C&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Terrain, objects (natural & man-made), weather, etc</td>
<td>Open Internet, computing systems, routers, networks</td>
</tr>
<tr>
<td>Infostructure</td>
<td>Dedicated; air-gapped from Internet</td>
<td>Embedded in “dirty” Internet</td>
</tr>
<tr>
<td>Organizational structure</td>
<td>Hierarchy -> Edge</td>
<td>Centralized (scale-free); P2P (small worlds); unstructured (random graphs)</td>
</tr>
<tr>
<td>Threats</td>
<td>Opposing forces</td>
<td>Developers; system administrators; rival botnet herders; law enforcement</td>
</tr>
<tr>
<td>Responses</td>
<td>Air-gapping; security classification; need-to-know; policies; SOPs; encryption</td>
<td>Stealth; obfuscation; creating multiple bot varieties</td>
</tr>
</tbody>
</table>
Comparison (3)

<table>
<thead>
<tr>
<th></th>
<th>Military C2</th>
<th>Botnet C&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal constraints</td>
<td>National & international law; national boundaries; jurisdictions</td>
<td>None</td>
</tr>
<tr>
<td>Physical constraints</td>
<td>Natural, national & man-made barriers; geography; metric distance; inertia of objects; vehicle speed</td>
<td>None Except for diurnal rhythm of users of some zombie & target systems</td>
</tr>
</tbody>
</table>
Comparison (4)

Does C2 = C&C?

- Both closed loop & emphasize tempo
- Both have overall commander
- Both contend with intelligent adversaries
- Subordinates differ
- => Similar in character
Comparison (5)

Botnet herder has easier job in terms of:
- No physical limitations (inertia, distance, speed)
- No legal constraints

But botnet operates in "dirty" environment:
- Open Internet
- Surrounded by targets
- Must "hide in plain sight"
- Must secure assets from malware:
 - Like everyone else
- Confronted with rival botnet herders
Comparison (6)

Military C2 systems “air-gapped”:

- Cannot “live off the land”
- Logistics footprint
- Cut off from useful open-source information:
 - CNN, Google, social networks
- “Air-gapping” is leaky:
 - Updates
 - Careless users
 - USB as WMD
Conclusions (1)

Operational advantages of botnet techniques?

• Enables agility, “living off land”, & reduced footprint:
 – Use existing infostructure
 – Bring Your Own Device

• Integrate formal & open-source information:
 – Use public databases
 – C2 systems as mash-ups:
 › eg Google Maps, Ushahidi, etc for SA
 › eg social media as comms channel

• Simplify interoperability with non-military partners

• Manouevre & stealth as cyber defence:
 – Instead of fortress thinking (FW, AV, IDS)
Conclusions (2)

Botnet herders further than military C2:
- NML 4? TRL 6?
- Developed range of techniques:
 - Stealth, obfuscation, fluxing, etc.
Made *prima facie* case for adopting their techniques

Recommendation:
- Perform military C2 proof-of-concept (CD&E)
Any Questions?

(Up to 12:00 NL, 29 June 2012:)

tj.grant@nlda.nl

(From 1 July 2012 onwards:)
tim.grant.work@gmail.com
Mob: +31 (0)638 193 749
SkypeID: t.j.grant