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Abstract—Recently, it was postulated that information theory relevant to the current system state. In [7], [8] an inforioat
would be useful in analyzing command and control (C2) pro- theoretic and graph-theoretic characterization of a C2¢s®
cesses. Here, that theory is expounded upon first by demonstra was introduced, along with a comparison of simulated in-

ing entropic drag in sample observation scenarios and providing . - L
numerical calculations of information loss due to entropic drag. formation flow for a number of different C2 communication

Additionally, a model for observation abstraction is introduced Nnetwork topologies. A key concept in this characterization
and an analysis between the information loss due to abstraction is the notion of entropic information that is, observation

and entropic drag is presented. This results in optimum abstrac- outcomes whose information content monotonically de@sas
tion levels, which depend on the information-theoretic character- over time. For instance, a specific observation of a target pr

istics of the system being observed. Prior efforts demonstrated d inf tion d dent th biliti f th
that the efficacy of distributed C2 system topologies vary as a uces information depencent on the capabiliies ot theaens

function of the information-theoretic characteristics of the sysem ~and encoding of the scene into coordinates (i.e.dgseriptive
being controlled. We extend that work, providing additional complexity. As time elapses, the information content of this
insight into the relationship between information theory and C2  earlier observation decreases, and this rate of decay isedefi
performance. First, the parameter space is expanded, resulting asentropic drag[7], [8].

in additional complexity in topology dominance. Second, we U . .
consider an alternative gossip-based communication protocol. Herg, the application of information the‘?fy to _CZ problems
Third, the results of an evolutionary approach to optimizing IS continued from [7]. Concrete examples, including nuceri
the C2 structure are discussed. Overall, these results continue calculations, of systems that exhibit entropic informatand
the development of the application of information theory to the are affected by entropic drag are provided. In particutase
study of C2 and should be an important tool in the development examples provide insight into how the agility of an adver-
of future C2 systems. . . o

sary manifests as entropic drag. Additionally, the exasple
illustrate how the entropic drag may be estimated, which is a

necessary component in the application of these concepts to

It has been postulated that modern warfare has shifted fré agile C2 control system [8]. The information theory of C2
“platform-centric” to “network-centric,” [1]-[3], meaniy the Processes is also extended by looking into the informatiss |
force that is able to achieve “information superiority” istter due to abstraction, and the trade-offs that should be ceresid
able to influence and counter the adversary. Here, infoomatiPy transmitting and processing fewer observations, when th
superiority relates to moreelevant information and better Observations are subject to entropic drag.
situational awareness. This concept dovetails nicely with ~ Another facet of the work in [7] was a demonstration of
formation theory [4], and the mathematics of informationthe effects of entropic drag on C2 structures, in the form
theoretic control theory. Specifically, it has been demmatst of an agent-based simulation. Agents in this simulationewer
that the reduction in uncertainty achievable in contrgliome Cconnected via a network that was modeled as a graph. Agents
system is equal to the decrease possible without using aMgre tasked with observing some unspecified system and
information plus the information gathered by a controller o then passing this information to its neighbors for fusioml an
serving the system (called open-loop and closed-loop cbntrcOmmunication with neighbors’ neighbors, and so on. A note-
respectively) [5], [6]. worthy result of [7] was the variation in relative perforncan

One difficulty in applying these concepts to command aff 2 fix_ed set com_ml_mication topologie_s as the informgtion-
control (C2) is that the information content (in the infottioa theoretic characteristics of the observation problemedhri

theory sense) of an observation is rarely static, spedifigae ~ 1hat work is extended here by expanding the parameter
reduction in uncertainty attributed to a specific obseorati SPace from the original set of information-theoretic pagéers

may decrease over time as the observation becomes fe@@sidered in [7]. This expanded parameter space intreduce
additional structure and complexity into the regions of rel

Distribution Statement A: Approved for Public Release; rilistion is ative._dominance of the original SeF of topologies teSte_d'
unlimited. Additionally, the same set of topologies are compared using

I. INTRODUCTION



an alternative communications protocol, and then compareery fact that repeating the same observation (i.e., pplire

with the original broadcast model. Finally, a summary angame sensor) results in the gain of new information beyoed th
interpretation of the results of a genetic algorithm used twiginal observation indicates that the previous obsemas
optimize the topologies in the information flow simulatia iinformation content has in some sense decayed. For a segjuenc
presented. of k observationsS,.;, = {(z;,t;)} of the process: ending

Il | NFORMATION THEORY AND COMPLEXITY at t, = t, we define the entropic drad’ of the system on
' the observations,.; at timet’ > t by

One theme of [7] is the notion of a cost associated with ,
coordination and collaboration. A component of this coshés D(S1pt,t) = H(x(t")|S1k)
time it takes to obtain, process, and communicate infolgnati ’ t—t

Not only does this increase in time tax the C2 process, thiSConceptuaIIy, entropic drag can be thought of as the time
time also degrades the utility of the very information that igerivative of conditional entropy, but in a strict matheicait
being manipulated. This notion of the decay of informatiogense the assumed discrete space will not admit a derivative
due to the manipulation of information is called entropia@ir Fqor gbservations that occur with fixed sampling tirhe > 0,
[7], [8], and it has been shown that the information-theoretine quantityl'(Sy., ¢, t + At) is effectively the expected rate
characteristics of a scenario can determine the efficacy &finformation generation of the system at timeThis notion
particular coordination strategies [7]. can be generalized to multiple sensors, but requires a more
To develop this theory formally, we assume that the C&ymplicated exposition and the single sensor case is ®iffici
processr(t) operates in a discrete state spae= {x;} With {5 jllustrate the concepts here (see [8] for this exposjtion
finite cardinality| X|. The discreteness of the state space C&#htropic drag should not be interpreted solely as the change
be relaxed, provided the sensor discretizes the state 8pace of state of the underlying system. For example, a pendulum
appropriate fashion (see [8]), but for simplicity we willé® o train moving at a fixed speed have predictable trajectorie

the assumption of a finite and discrete state space. The MuMReq have considerably lower entropic drag that systemsevhos
of bits required to fully describe the state of the C2 pro@essmotion is not as constrained.

the descriptive complexity, and this is equalltg, | X| bits.
The descriptive complexity can be thought of as the fidelit. Entropic Drag for Target Tracking

at which the process is described, for instance the location A . .
. The definitions of entropic drag and related concepts in [7],
an adversary to the nearest meter as compared to kilomet

The notions of uncertainty and information of a C2 proceié] appeal to basic intuition about the behavior of reakdor

are quantified using Shannon information entropy [4]. T stems, but the entropic drag of specific example systeras wa

. : L . not calculated. Here, we provide calculations demonstyati
information entropyH (in bits) of the process at timet . . :
i entropic drag using an example C2 system, that being a target

tracking scenario. In this tracking scenario, a singledai
H(x(t)) = _Zp(x“t) log, (P(xi,t)) , trackec? in discrete time in a 5(21 zone “world”,gand tr?e

where P(z;,t) is the probability that the processis in state Sensors are noiseless and observe the entire state spaceat o
z; at time t. The information/ of a particular observation Thus,z(t) is the location of the target, and its domaihare

z(t) = x; is the 51 x 51 discrete zones that it can inhabit. Furthermore, the

I(x;,t) = —log, P(x;,t). sampling rate and target motion occurs at discrete instance

) ] } o and to emphasize this, we writgt) = x(k), for k € Z>o.
Thus, an interpretation of entropy is the expected infoiomat 5 number of different probabilistic motion models are

gain of an observation. It is known that entropy is maximizegy,sidered. The motion model of the target correspondseto th
Whef‘l all states of the system are equally probablect, ) =, opapilities assigned to the location of a target at tine st
[ X", allz; € X). This means that the descriptive complexity, | | given its location at time:. Thus the motion model is

is also the maximum possible entropy of the system, given\g,qvian. To find the probability distribution of a targeta
fixed discretization. _ _ later time, given its distribution at timie, we repeatedly apply
Next, consider an observatidf{z;, t), interpreted as(f) = s motion model at each zone, and sum these weighted by
z;. Then, the initial information content of the observation, . probability that the target was in that zone at the previo
(allowing for an abuse of notation) is time step, with circular boundary conditions assumed.
I(S,t) = —log, P(x;,t). Formally, for any zoner; in the state spac4, let P, (z;)

_ _ . be the probability that the target moves from the zone
Note that _the second argument 1igS, ¢) is a time index as to the zonex; € X in one time step. As noted above, the
well. As time elapses, the relevance of the observation (rqets position at the next time step is dependent onlyson it
(that occurred at time) should be less at tim¢ > ¢. If o, rent position. Next, leP(z;, k) denote the probability that
the system is not uniquely defined by a single obs:ervatlom,e target is in zone; at time k. Then, we have that
then the conditional expected information content of a sdco
observations’ = (z;,t") of the same sensor for timé > ¢ is Pz, k+1) = Z P(xj, k)P, (z;) .
H(z()|S) = H(z(t')|=(t) = x;) and this is non-zero. The 2 eX



Given some priorP(z;,0) (for these results, a uniform prior
of P(z;,0) = 1/|X| was used), the probabilities of target stat
can be propagated forward in times by repeatedly applyiag t
update rule.

The uniform prior provides no initial information about . -~ -5-zone Drift
the location of the target, so the uncertainty before ai RN 9-zone movement;
e 9-zone Drift

observations idog,(51 - 51) = log,(2601) =~ 11.34 bits.

12

Entropic drag vs velocity for a 51 by 51 world
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——1-zone movement
——5-zone movement
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The sensor is assumed noiseless, so the initial informati

Information content of single observation, in bits
(o))
!
!
!
!

content of the first observation s 11.34 bits, regardless of
the motion model for the target. This initial observation i 4 I - —
the only observation performed, and the effects of entrog o
drag on the information content of this single observation a 2t
calculated. However, the different motion models cause t
information content of this initial observation to decreast 0 ‘ ‘ ‘ ‘
0 5 10 15 20 25

different rates. Again, since sensor is noiseless and cserod
the entire state space, the observatidmeturned by the sensor
creates a probability field(z, 1) where

P(x,D:{llfa::x,

Steps since observation

Fig. 1. Plots of information decay as the observation rate
decreases relative to the movement rate of the prey. Alter-
natively, plots show the remaining information content of a

0 else. prior observation.

To calculate the information decay from this single ob-
servation, the motion models (that is, the state transiti%ch iteration less uncertainty is added (i.e

probabilities) need to be specified. The models consideses his lost from the initial observation) as compared to the five-

are. zone movement model. The nine-zone movement model is

« 1-zone movement: target moves in a known direction. 5 yniform distribution on nine possible zones, and the nine-

« 5-zone movement: target moves up, down, left, right, @ne drift model is skewed to introduce less entropy at each
stays put with equal probability. iteration. The nine-zone drift model was chosen to intreduc

« 5-zone drift: target moves up, down, left, right, or staygore uncertainty than the five-zone movement model, but this
put with unequal probabilities. is not necessarily required (i.e., there are distributiomsine

« 9-zone movement: target moves to an adjacent zofgnes that introduce less uncertainty at each iteratiom tihe
(including diagonals) or stays put with equal probabilityyniform distribution on five zones). The 25-zone movement

« 9-zone drift: target moves to an adjacent zone (includingodel, introduces the most uncertainty at each iteratiooram
diagonals) or stays put with unequal probabilities. the motion models considered.

« 25-zone movement: target moves up to two zones in anysince all of these models apply the same movement rules
direction (including diagonals) or stays put, all with ebjuayt each iteration, the state transition probabilities xatially
probability. invariant. This causes the relative orderings of the infation

Figure 1 shows the information content of the single observeontents associated with a single observation of each move-
tion over time for each of the motion models. Since entropiwent model to stay fixed. This is not always the case, as
drag is roughly equivalent to the rate at which the inforimmati the state transition probabilities model could have depeoy

content decreases, this plot actually shows the integrtiisf on the current zone state of the system. This could have
decay rate. a drastic effect on the information decay calculations. For

The one-zone movement model is a non-entropic systeexample, consider a target that only occupies a few zones,

Initially, the target’s location is unknown, but once an obbut moves randomly between them. Additional variation in
servation is performed, its location is perfectly predit¢éa the decay could result if the systems next state was dependen
(as the direction of motion is assumed to be known by tht only on the current states, but also on prior states the.
observer). Thus the information content of the observati@ystem is not memoryless), or if the transition probalketiti
does not decay over time. The difference between the fivere dependent on time (i.e., the system is non-stationary).
zone movement and five-zone drift models is the probability There is a another class of movement models that is not
distribution on each of those five options. In the five-zoneonsidered in Figure 1, those that are non-entropic when
movement model, the probabilities are all uniform, so thisonditioned on multiple observations. Consider the foitmyv
motion model introduces maximal uncertainty at each itertarget movement model for the same scenario as in Figure 1:
tion. Note that the five zones need not be the specific fitlee target moves in the same direction at each iteratiorhimit t
zones, only thatP,(x) is uniformly distributed among five direction is initially unknown (cf., the one-zone movement
zones for eachy. The five-zone drift model has an unequamodel). In this situation, any single observation consder
probability distribution on the same five zones, and thus by itself will decay based on constant motion in each of

less irdbion



the nine directions uniformly. So after the first observatio this is known as intermittent Kalman filtering. There are a
the targets location will be in one of nine known squarasumber of results that speak to the change of uncertainty ove
at each subsequent iteration. So the initial observatisedo time relative to different rates of sampling [11]-[13]. $hi
information content, but only after the first iteration. Absu idea can be extended to multi-target/multi sensor scesario
sequent observation that didn't also consider the previofs example, through the notion of random finite set based
observation would gain this information back, only to lost&racking [14], [15]. These latter concepts apply even when t
it at the next iteration when the target moves. However,d twhumber of targets is also uncertain and time-varying.
observations are conditioned upon, then the target moson i Given the current distribution of state for the C2 process
known and the information is non-entropic. It is easy to seghd its transition function, the calculation of entropiaglr
how more complex target movement models requiring multipie in theory straight forward. However, state estimation an
observations to make the information non-entropic could enctions of estimated state are generally not as easyeSinc
constructed. the observation space considered here is discrete, gedntiz
It should be noted that Figure 1 is not the result of somgarticle filtering or discrete space hidden Markov modely ma
Monte Carlo simulation, but is a numerical calculation of thbe useful in the development of estimators of entropic drag
target probability field using the motion model. For illatve [16], [17]. Robust and efficient estimation of the inforneti
purposes, the targets all started in the exact middle of#fuit theoretic properties of the system being observed is anrimpo
ing space, and we truncated the calculation well before amnt part of an agile C2 system. Spending time to communicate
boundary effects occurred. The calculation of probabitify and process irrelevant information further degrades iexjst
target presence is not particularly difficult, provided astho information. The ability to dynamically decide with whom to
spatially identical motion model. In fact, it is a convolutibe- communicate and accurately compute the utility of poténtia
tween the current probability field and a kernel correspogdi information is a key factor in maximizing useful informatio
to the motion model. Corrections must be performed, howeveand thus situational awareness.
for boundary conditions. In particular, truncated, toedjcand
reﬂectivg boundary conditions all undergo different cotien g Abstraction in Complex Scenarios
calculations.
The information decay shown in Figure 1 can be interpretedIn [18] the effects of increasing the descriptive complexit
in two ways. The first, as noted above, is that it can be viewefl an underwater C2 scenario were investigated. The descrip
as the information loss due to time elapsing. This delaydouive complexity was increased by increasing the spatialifide
be introduced by transmission delay in the communicatiodf the world. Using a communications channel with fixed
delay introduced while the sensor’s operator is performirfgandwidth and a fixed geometric rate of information decay
other tasks, or any number of reasons. The second interpréentropic drag), it was illustrated that there is an optitesel
tion is the effects of entropic drag induced by increasegetar of spatial fidelity after which the increased communication
mobility, i.e., if the movement rate of target is greatemtiiae time results in less overall information, due to the effeats
sampling rate of the sensor, then the information loss batweentropic drag.
observations is greater. The results in [18] illustrate a trade-off that needs to be
This second interpretation highlights the impact of agilitconsidered when entropic drag occurs, namely the balance
on the observer, orient, detect, and act (OODA) loop [9between the loss of information incurred due to a reduction
If the target is more agile, then the information content oh descriptive complexity as compared to delay introduced
observations decreases faster, and the associated pngceds/ dealing with the scenario at high fidelity. Alternatively
of observations associated with that target could result the spatial fidelity of the scenario could be held constant,
less useful actions taken. Furthermore, if the target wemed the elements of interest in the scenario abstracted. By
performing its own OODA loop targeting the tracker/sensoabstraction, we mean the process of summarizing a number
then the extra time spent by the tracker to gather informatiof elements of interest into a broader element. This is edlat
about the target could allow the target get inside the OOD& fidelity of another sort, namely, the aggregation of high-
loop of the tracker and successfully execute a countekattaesolution states into a single state that conveys simiat (
on it. potentially less) information. This generalization intsiagle
While this tracking scenario is rather simple, these corscephacroscopic state carries with it an additional amount of
are apparent in a number of research areas related to stateertainty. For example, individual soldiers’ positicztauld
estimation. The Kalman filter is a classic technique forkracbe grouped into an approximate squad position, squads into
ing, data fusion, and more generally recursive state egtima platoons, platoons into companies, and so on. First of all,
[10]. Uncertainty in the Kalman filter is represented by thebservations may be abstracted to a certain level (say the
propagated covariance matrix. The difference (in someejensompany level), because the additional fidelity of a more fine
between successive covariance matrices relate to thariafor level of detail does not present much additional utility to
tion gained by each observation, assuming observations #re operators of some C2 process. Alternatively, perhaps th
taken at each time step. When observations are not takerninédrmation sources themselves are not capable of producin
each time step (relative to the prediction step of the filtediner detail. Here, however, we do not consider the reason



for abstraction and instead focus on the interaction batwe Information loss due to abstraction for 128 entities

abstraction and entropic drag. 8200

Abstraction may result in a loss of information, but it alscg  gygq ]
results in less observations to manipulate. As was shown §
[7], [19], the time-cost of communicating and processing & & 7800 ]
set of observations reduces the information content th’rouf § |

. . 65 7600

entropic drag. Thus, there is a trade-off between abstracti= 2
and entropic drag, resulting in an optimal level of absteact £ 2 7400 8
in a given scenario. This optimal level depends on the rate 8 j
which information content decays, so the information-teio 5 p 7200 1
characteristics of the system are important in determittifgy g g 7000 ]
level of abstraction. S8

Consider the following model to illustrate this phenomenoi-£ < 6800 ]
There areN = 128 elements of interest, and the world is se5 gl 1
up such that elements are described using messages of lel
L= 64_b|t_s. Thus, the maximum descriptive c_omplexny_ in thi 6400, 25 50 75 100 125
scenario isV - L = 8192 bits. However, there is the option of Number of messages used

describing elements using less thAhmessages (abstractingFi
them), but a loss of information is incurred in doing so.
To calculate the cost of abstracting fd < N messages,
assume that the information content of each message dec Information after communication vs abstraction
proportionally to the square of the number of elements p 128 entities at 64 bits with y=0.0039544
message/N/M. This assumption is motivated by tracking ir
a two-dimensional environment, if the 64-bit message leng
is directly related to the resolution of the sensor (i.ee,whorld 7200
is divided into254 distinct locations), then we expect that
elements would be distributed spatially proportionallynta
In this scheme, the information content &f messages is

I(M)=N-L—|N/M]|-logy(M?/N?).

g. 2: Abstraction model information loss due to abst@tti

7400

7000

6800

Figure 2 shows calculation of (M) for M taking values
betweenl and 128. For these assumption$(1) still retains
a significant portion of the possible information, but thés i
adjustable by changing the expressiaW/M | -log,(M?/N?)

to one that penalizes low message counts more harshly. Al
as the number of messages used increases, there is les: 6200, 25 50 75 100 125
formation gain per additional message, indicating dintiimg Number of messages used to summarize entities

returns. On its surface this model may seem to violate SO'E%. 3: Information loss due to abstraction and entropigydra

tenets of information theory by claiming that it is pOSSibI(tajuring communication of messages, for a specific geometric
to summarize many elements through abstraction and cre é%ay approximation to entropic dra’g

a single message that is more informative than a message
about a single element. However, this model is exploitirg th
correlations (i.e., mutual information) between the eletado
create messages that are more informative (i.e., changig
coding of the messages). . . I(M,~) = I(M)- (1 —y)MT.

Note thatI(M) only accounts for information loss due to
describingNV elements inM messages. If theskl messages The value ofy has an interesting affect on which level of
are then communicated, entropic drag from the resulting tinabstraction is optimal. As — 0, I becomes a monotonically
lapse for the communication df/ messages further reducesncreasing function of\/, indicating that for low enough,
the information content of the original observations. WH wilM/ = N is optimal. Asy — 1, this function will become
assume that communication occurs over a noiseless chanmanotonically decreasing, and a single message is optimal.
and there is an ideal coding that allows for the messagesTtais transition is smooth, so for a range of decay valuesgthe
be sent using. bits per message. Let this channel have bits an optimum\/ betweenl and N. An example of a decay
rate r bits/sec, then it take¥’ = L/r seconds to transmit arate that results in an optimum level of abstraction is shown
message. To quantify entropic drag, we use a geometric degayFigure 3, for communications bandwidth= L bits per
rate ofv. Thus, the final value of the information receivedecond and geometric decay ratez 3.95 x 1073,

Information content after
processing induced decay

rflfter both abstraction and communication is



Optimal abstraction vs. decay rate Maximum processed information content

for linear (f(M)=b[M) processing model for linear (f(M)=b[M) processing model
c 140 \ -~ 10000 ‘
2 —b=0.01 S
Q _ -
8 120 b = 0.1 || §
@ —b=05 c 8000
[ b=1 Sy
g 100 — b=2 g5
£ —b=5 58 I
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Geometric decay rate Geometric decay rate

Fig. 4: Optimal abstraction level at different geometricaye Fig. 5: Maximum information content after decay associated
rates for various linear processing time costs. Note tha-logvith processing time for various linear models. Note the
rithmic scale of the decay rate. logarithmic scale of the decay rate.

Optimal abstraction vs. decay rate
for various processing models

This notion of abstraction is not only applicable to com § 140 Y ‘ ‘ ‘
munication, but also to the processing and manipulation g 120l Miog,(M) ] |
information locally. For a given)M, suppose we have a & W2
function f that indicates the amount of processing time that < 190 s i
takes to deal with\/ elements. Then, theMT” in I can be 'g Y
replaced withf (/). For example, consider a linear processin = & 80— M 8
model f(M) = bM. This is the same model used in [7], anc
represents a relatively low-level of computational comrite £ 60f i
Alternatively, a linear processing model could represéwt t S
time it takes to communicate messages for Meelements, % 407 7
transmitted serially. The effects of varying the slapén a §
linear processing model on the optimal abstraction level ( = 201 1
terms of the number of messages used in the abstracti 0 ‘ ‘ ‘
are shown in Figure 4. As expected, larger value$ &vor 1072 1078 107 107° 10°
higher levels of abstraction (fewer messages) for a givenaf Geometric decay rate

information decay. What is somewnhat surprising, however, i, 6. Optimal abstraction level at different geometricae
the sharp drop between no abstraction initially, to sumntei (a¢e5 for a number of different processing models. Note the
the scenario using half of the maximum number of messagggerence inz-axis as compared to 4 and 5.

No levels of abstraction in between these two are optimal ove
the decay rates and slopes investigated. Similar, but emall
drop-offs occur as the decay rate increases for each value pf s \yLaTION -BASED EXPERIMENTS OFDISTRIBUTED
b. These results indicate that the optimal abstraction level SENSORNETWORKS
sensitive to both the processing model and rate of infoanati . . .
decay. Figure 4 only shows the optimum abstraction IeveI,The previous schqn continued the development of the
Figure 5 shows the information content for the same Iineﬁppl'?a_t'on of !nformatlon theory to the study of C2. The
processing models at the optimum level of abstraction. remaining portions of _the baper present seyeral _results of
simulation-based experiments derived from a simulatidi7pf

The optimal levels of abstraction at a given decay rate for o
additional processing models are shown in Figure 6. Thefe Problem Definition
processing models (in order of increasing complexity) are As in [7], the simulation considered here models a scenario
linear, log-linear, quadratic, quartic, exponential, #actorial of multiple agents observing a common system. The agents
complexities. These increases in complexity result in eveme trying to maximize the amount of information about the
more abstraction than slope increases in linear complexity system that is distributed amongst the agents. Some of the



agents are equipped with sensors, and these sensors obseartesian product of two path grapt® = (V1,&;) and

distinct portions of the system, so there is no mutual info?, = (V», ), where the vertices of = V; x V» and two

mation between sensors. The agents’ communication netwegktices(i, ') (j, j’) are adjacent iy if ¢ = i’ and(j, j') € &;

is modeled as a graph. As in [7], the motivating questicor j = j' and (i,4’) € &;.

is which network topologies perform well in which regions Two different classes of random graph were included in [7].

of information-theoretic parameter space of the systemgbeiSmall-world graphs were introduced in [20], but the vadati

observed. in [21] was used in [7]. In this variation, a small-world gheig

L generated from a low-dimensional lattice by adding addélo

B. Graph Theory Preliminaries edges to the graph, instead of “swapping” a vertex in an
As the communication network of the agents in the simulaxisting edge. Using:-rings as defined above for the base

tion is modeled using a graph, some graph theory prelimésariattice, denote the resulting small-world graph ag:-aing

are introduced that cover the concepts required here. Letvh m additional links §-ring+m for short). The other class

graphG be defined byg = (V,£), whereV = {1,...,N} of random graph is the scale-free graph generated using the

are the vertices of the graph a@dC V x V are the edges preferential attachment mechanism of [22]. I(étm) scale-

of the graph. We assume th@dtis undirected and there arefree denote a graph generated starting from a fully condecte

no self-loops, sq(i,j) € £ <= (j,7) € £ Vi,j € V and graph of/ vertices and adding vertices each with degree

(i,i) ¢ &, Vi € V. Letdeg(i) = [{(i,j) € £ : j € V}| be for each iteration of the construction process.

the degree of the vertex A graph is said to be connected if

for anyi,j € V, i # j, there is a sequence of verticeg,

k=0,...K, where(ag_1,ap) e Efort =1,..., K, ag =1,

andarx = j. We call this set of vertices a path, and the length In this simulation,/V agents are represented as vertices in

of the path is said to b&’, and the minimum length of all sucha graphG = (V, £), where|V| = N. There is a se§ C V of

paths betweenandj is called the (geodesic) distance betweethe vertices called sensors and these sensors are modeled as

i andj. Denote this lengthi(i, j) wheni, j are connected, and exogenous communications channels that are observing some

defined(i,i) = 0, andd(i, j) = o if they are not connected. system of interest, and le¥s = |S|.

A path is said to be simple if it repeats no vertices from start These agents are then implemented using a discrete event

to end. A graph is said to be acyclic if for eveiy V, there system (DES) model [23] that can accommodate the variable

does not exist a sequence of vertiegs £k = 0,..., K such delays in computation and communication that form one

C. Simulation Review

that (ag_1,a¢) € € for £ = 1,...,K, a9 = ax = i, and element of investigation here. In this simulation, eachnaige
ay # as # -+ # ax_1, .., there does not exist a simplen one of four statesSEND, CHECK, COVPUTE, or SENSE,
path of non-zero length from any vertéxo . representing the agent sending, checking, processing, and

A fully connected graph is a graph where each vertex sensing new information, respectively. In the sensingestat
connected to all other vertices, i.eleg(i) = |V| — 1, Vi € an agenti € S reads one bit of information and associates
V. A tree is a connected acyclic graph. If one veriein with this information a time-stamp at the current simulatio
is designated the “root” of the tree, it is a rooted tree. Th@me. In our experiments we assign an arbitrary delay of one
parent of a vertex in a rooted tree is the vertekxsuch that second to the sensing state. From the sensing state, an agent
(i,4) € € and(i, 7) is in the simple path to the root, and everynext enters into a computation state whose time length is
vertex except the root has a unique parent. The children ohafunction of the number of observations to be processed.
vertex i are the set of vertices for whichis a parent, and Computational complexity is defined by a linear delay that
a leaf is a vertex without any children. Vertices of the samie proportional § sec per observation) to the number of new
geodesic distance from the root are said to be of the sasensor readings, counting each sensor no more than once
generation. Two classes of rooted tree are included in [{i.e., only the most recent observation from a given sensor
m-ary trees, where each vertex has at masthildren, and is “processed.”). AfterCOMPUTE has been completed, the
regular trees that are described by a veftras,...,a,] € agent entersSEND to communicate to all its neighbors in
N", where the root has at mosgt children, its children have the graphG by sending observations that have been received
at mostas children, and so on. Clearly am-ary tree is also and/or sensed (as applicable). This takes the same amount
an[m,...,m] regular tree. of time as theSENSE state. FromSEND the agent enters

A path graph is a tree with two vertices of degree on&ENSE again if the agent is irS and there are still sensor
and the remaining vertices of degree twol#4ing is formed readings to perform, otherwise, it goes if@bIECK. CHECK
by taking a path graph and adding an edge between the tiwoessentially a holding state where the agent remains until
vertices of degree one (assumifig| > 3). A k-ring (for it receives new observations, when the process transitions
k > 1) can then be defined by connecting each vertex to COMPUTE on the new observations. TheHECK state
vertices with geodesic distance k£ along thel-ring, up to checks for new observations to process every 1 sec. The state
k = [|V|/2], where |z] is the greatest integex x. The transitions are shown in Figure 7. This simulation is insgir
final class of non-random graphs considered in [7] were twby the OODA loop popular in military strategy [9], and in
dimensional grid graphs. A grid grapf is defined as the particular encompasses the first three steps of the loop.



Dominance Plot for Communication Topologies
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Fig. 7: State diagram for an agent in the DES simulation,gusil 0.199 0.399 0.599 0.799 0.999
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Fig. 8: (color online). Regions of dominance for different

For the simulations considered here, sensors observe @gologies in an information flow simulation. 1) fully con-
bit each of independent information simultaneously at thfected, 3) binary tree, 11) (1,1) scale-free 13) (3,3) strake
start of the simulation, and the remaining non-sensor agen4) (3,3) scale-free 15) (5,5) scale-free, 16) (5,5) stale;
are in theCHECK state. Each sensor makes only this singlig4) 3 ring+10, Multiple1&2) various regular trees, Mult3)
observation. This experimental setup was chosen to igasti 3-ring+10, 3-ring+15, grid Multiple4) 3-ring+10, 3-rind5,
a topology’s response to a single anomalous event. As not@ditiple 5) several graphs, All Bad) all graphs equally poor
above, the information content of an observation is initial Reprinted from [7] with permission from the author.
one bit, but entropic drag is modeled by applying a geometric
decay ratel’ (in bits/sec) to the information content of an
observation. Thus, for some timeafter an observation, the In [7]’ 31 different topo]ogies were Compared' As the pro-
information content of that observation(is—T')*. Given that cessing requirements and the rate that the informationbeca
the information content of an observation decays over timigrelevant (see Section I1) were varied, the relative pentance
define theinformation volumeat a point in time to be the sumof different topologies varied. A figure showing how the best
over all agents of all the information content of observagio performing topology varied as the two information-theimret
received up to that point in time. Clearly, in this setup, thgharacteristics varied is shown in Figure 8. In general,rwhe
information volume is |n|t|aIIy zero and bound W - Ns. the processing reduiremen& and decay ratd’ were low,
Next, define theprocessed information volumat a given scale-free graphs [22] performed the best out of the differe
point in time to be the sum over all agents of informatiogppologies examined. As the processing requirements took
content whose associated observations have gone throagh fhore time or as the decay rate increased (or both), graphs
agent'sCOVPUTE stage by that time. The principle metric ofyith lower degree centrality [24] began to perform bettestfi
interest in this simulation is thpeak processed informationwith the binary tree, then small-world graphs based on ring
volume that being the maximum over time of the processagitices [21]. Finally, there was a region where all of thaygrs
information volume. performed edua”y poor.

As was the case for the first simulation in [7], all topologies
considered here hava& — 127 vertices andNg — 64, D- Topology Performance for Non-Integer Delay
including the outputs of the optimization algorithm (see-Se The results of [7] shown in Figure 8 were generated using
tion 1ll-F). These parameters correspond to the size of la funly integer values for the complexity factgx. When non-
binary tree with seven generations having all of the leavageger values of3 are considered (incremented betwegn
as sensors. All of the same graphs with identical sensamd 16 in 0.25 intervals), additional structure is apparent as
placements that were studied in [7] are considered hestown in Figure 9. The notion of non-integer delay simply
This includes a fully connected graph; a star grapt2d] means that the processing time for an observation is not an
regular tree); the aforementioned binary tré® %, 2,2,2,2] integer multiple of the sampling time. In [7], the sampliige
regular tree) truncatedB, 3,3,3,3,3], [4,4,4,4], [2,3,4,5], (SENSE) was the same as the communication tinSEND)
and [11,11] regular trees; 1-,2-,and 3-rings; two each oénd the hold stateQHECK) polling time (as is also the case
(1,1), (3,3), and (5,5) scale-free graphs; two each of @+ here), and when the computation delay fagtois an integer
1-ring+10, 3-ring+5, 3-ring+10, and 3-ring+15 small-wbrl multiple of the sampling time, the time for tI@OMPUTE state
graphs; three 1-ring+15 small-world graphs; and a trumtcates also an integer. In this case, the system is effectively a
11 x 12 grid graph. For completeness, also considered herediscrete time system, and the sampling time is the time step.
the completely disconnected or isolated graph. When s is not an integer, the system becomes in some sense



Domi”anczl\i')zte:’_r1‘;‘;1@2:;‘21‘:2;°p°'09i65 observations of each sensor (both those observed directly i
— - the SENSE state and those received in communication with

2 m:"s other agents) to each agepsuch that(i, j) € £. All of this

© 1375 W12 communication occurs simultaneously in tBEND state. In

& M5 the gossip protocol, an agentin the SEND state selects a

g 1125 M1 single ageng to communicate with. This agerjtis such that

g AB (i,j) € € (i.e., j is a neighbor ofi), and the probability of

Z 8 24 selectingj is such thatP(j) = |{j : (i,j) € £}|~". Again, all

(">j, 695 1: of agenti’'s most recent sensor observations are communicated
T 14 to 5. Note this is time-independent, so the agetbves not take

5 375 13 into consideration which of its neighbors that it has presiyg

g 11 communicated with.

g 125 3 This gossip protocol potentially reduces the amount of
3 o D e 1 communication in the network initially (and would contintee

do so should repeated observations be taken), and in darticu
reduces the number unprocessed observations that each agen
Fig. 9: (color online). Plots of topology when non-integemust process in a given computation cycle. Since agents
values for/ are considered. Numbered dominant topologiese processing fewer observations [@IVPUTE stage, this
1-24 are the same as in Figure 8, M1) various trees, M5) battage takes less time. When entropic drag is high, this could
(1,1) scale-free graphs, M12) 3-ring+10 and 3-ring+15, M1potentially result in more processed information volumeg, a
3-ring+10 and 3-ring+15 and grid, MM) A combinations ofthe processing of more information would decay to the extent
twelve different groups of graphs whose total dominance wasat the additional observation’s increase in informatonld
less than 0.2% of the overall decay-complexity values testaot offset the additional decay. However, when entropigdra
AB) all topologies performed equally poorly. is low, the inefficiency of the gossip-protocol as compared t
the original communication method should result in poorer
performance.
more asynchronous as the agents now potentially have stat&his communication protocol was implemented in a sim-
transitions at non-integer times, once they have complatedilation similar to [7] but theSEND state was changed to
COVPUTE state. implement the gossip protocol described above. Other thian t
The banding effect of Figure 9 is such that the topologiehange, the simulation is otherwise comparable to theegarli
dominant at integral values in the bands are only dominantsatmulation in [7]. As in [7] the simulations here have single
integral § values, even when very small incremen@isO(1) observation taken by the sensors at the start, and the task is
in complexity are considered. This appears to be the relatedsee how this initial set of observations progresses tirou
to the fact that in the integral computational delay casbs, the agents in the simulation. Also, the range of decays {0.00
of the states will have integer time delays. It appears thatto 0.999 in 0.002 increments) and complexities (0 to 16 in
the non-integral computational delay cases, the highly- nob.25 increments) used in Section IlI-D (see Figure 9) arel use
uniform nature of the (1,1) scale-free graphs are able tt#@xp here. Unlike the earlier results of [7] which were deterrsiiici
the less synchronized state transition times to outperfinen (except for the creation of small-world and scale-free gsap
more uniform small-world and binary tree topologies for somwhich were first sampled, and then effective samples held
ranges of andI'. This increase in relative performance irconstant throughout the series of experiments), the gossip
the regions of non-integer delay is not particularly la@®ethe based experiments are inherently random. To account for
(1,1) scale-free graphs are the second best performindigrafhis, 100 Monte Carlo simulations were performed for each
in the striated region, even when the delay factor is an erteginformation decay and processing delay pair for each of the
. ) 31 original topologies tested in [7].
E. Efficiency of Gossip Protocols For the deterministic simulations of [7], the metric of com-
In the original formulation of the simulation in [7], anparison between topologies is the peak processed infamati
agent in its communication stage “pushed” observations ¥olume (see Section IlI-C). For the gossip-based simuiatio
all of their neighbors. An additional communication praibc however, the mean peak processed information volume over
is considered here that is gossip-based [25]. In this gessthe Monte Carlo simulations is the metric of comparisonsThi
based protocol an agent chooses uniformly at random omeantity is used to compare topologies using the gossipprot
of its neighbors to communicate with, as opposed to tlwel the peak processed information volume of the deteriinis
original simulation, where all neighbors in the network ersimulations (and with the mean peak processed information
communicated with simultaneously. volume of other gossip-based communication simulations).
Formally, if the communication topology is the gragh= Due to the increased number of dominant topologies and co-
(V,€) then when the agent enters itsSSEND stage in the dominant topologies, as well as the fragmentation of dontina
original simulation, it sends all of agens most up-to-date regions due to the randomness of the gossip communication

Geometric Decay Rate (bits/sec)



Graphs ordered by 2-norm of mean (8/8maz:L'/T'maz)

in some of the more entropic regions of the plane. Overall,
it would appear the gossip protocol adds some versatility in
in the scale-free graphs by allowing to take some advantage
of the low graph diameter without the bottlenecks obserted a
the super-nodes [22] in the original communication panadig

0.3 | i

F. Topology Optimization

In this section, we discuss the results of a genetic algorith
(GA) [26] designed to directly optimize topologies in the
above information flow simulation (as opposed to [7] where
a number of sample topologies were simply compared). The
goal of the optimization is to find a topology that performs
better than the original set of topologies tested in [7], and
then see if it then performs well in some neighborhood of that
optimization point. The genome used is the upper half of the
adjacency matrix (since the matrices are assumed syminetric

Proportion of cells where given topology was dominant

el oA T Oy
=§M z;‘ LaE v ‘ treated as a binary string. The fitness (objective) function
;5 58 szotitt gggg;dw =52 used is the processed information volume of the candidate
“’% ¢ g@é%;gg es e g topology normalized by the processed information volume of
<< 555 the dominant topology from Figure 9 at that point.

g Sisisic

A representative set of points for optimization are shown
in Table I, along with the dominant topology at that point

Fig. 10: Proportion of cells where a given topology is domfffom Figure 9, and the normalized increase in processed
nant. An 'L, 'M’, or 'U’ after a random graph indicates that i information volume at that point (i.e., the fitness funcjion
was selected because of its dominance amongst other randircan be seen from the fitness column, these optimizations
graphs of the same class in the lower, middle, or ugpep) are successful in increasing the processed informaticumvel
plane. The '(Gossip)’ designation indicates that the gossit the point being optimized. Dominance plots involving

protocol was used instead of the original simulcast model. these optimized topologies indicate that they improve over
the baseline topologies of [7] in a neighborhood of the point

being optimized (see Figure 11). In some cases, the optiimize
topology completely dominates the original dominant toggl

method, a dominance plot in the style of Figure 9 is not Showg the original topologies dominant region, thus removinatt
here. Instead, Figure 10 shows the distribution of dominaggiogy from the dominance plot.

topologies (split equally among co-dominant topologies fo

those [,8) locations). The topologies are ordered by Eu- Orig.

clidean norm of the meari’(3) location of the locations that # | Decay,' | Complexity, 3 | Region | Max Fit

they were (co-)dominant in, normalized by the maximilim 1] 0051 0.75 15 0.111

and g3 values considered. Thus, topologies on the left tend to g 8'12? 41122 1431 8'232

dominate closer to the origin than topologies on the right. 2 0399 500 3 0.0619
The results indicate that the gossip method tends to result 2 8-281 i-gg ni; 8-888‘7‘22

in new regions of dominance that are closer to the uppet-righ = 0.851 800 Vi3 5 96-10

of the decay-complexity plane than the regions of dominance
that the topology using the original communication methoBABLE I: Table of points in the decay-complexity plane that
was dominant in. In particular, the binary tree using goksip Were chosen for optimization, the original dominant region
dominant regions in the portion of the plane that the origingorresponding to that point, and the maximum fitness obtaine
binary tree dominated. Since the leaf nodes are the sendd¥ghe GA.

for a binary tree, gossip and simulcast simulations begth wi

the same steps, so their overlap is not entirely unexpectedOptimization over multiple points simultaneously is also
Another change of note between the two simulations is tisensidered here. For technical reasons, the fitness functio
amount of area gained by the (1,1) scale-free L that had varged for the multipoint optimizations is different than het
little of the area in the original method, but gains domir@ancsingle point case. The multipoint fitness function is the ifim

in the regions where the binary tree and the (1,1) scale-friee normalized increases in processed information volume a
U were dominant. Additionally, the (1,1) scale-free U beearreach point, if that point had an increase, otherwise it was th
dominant in many of the places that (1,1) scale-free U wagcrease, but unnormalized. Formally, jéG, S, T, 5) be the
dominant in with the original communication method. Theeak processed information volume for the grgplsensor set
(3,3) and (5,5) scale-free graphs also gain some dominarfegeometric decay rat€, and linear processing complexity



Dominance Plot for Communication Topologies # Fit # Fit # Fit # Fit
INodese 127 #Sensors—64 12| 029 |[ 37 | 066 || 136 | 9316 | 247 | -18.98
13 | -339.8 45 0.05 137 | -589.4 || 256 0.75
14 | -12.92 46 0.03 145 | -17.03 || 257 0.69
15 0.09 47 0.05 146 | -17.03 || 267 0.64
16 0.16 56 -0.00 147 | -19.49 || 345 | -19.12
17 0.14 57 0.00 156 0.08 346 | -19.09
23 0.97 67 0.00 157 0.11 347 | -18.92
24 | -12.31 || 123 | -540.6 || 167 0.17 356 0.55
25 0.77 124 | -19.30 || 234 | -18.49 || 357 0.55
26 0.79 125 0.36 235 1.04 367 0.54
27 0.71 126 0.31 236 1.06 456 0.02
34 | -12.52 || 127 0.20 237 1.04 457 0.07
35 0.56 134 | -379.0 || 245 | -18.90 || 467 0.02
36 0.53 135 | -547.9 || 246 | -16.61 || 567 | -0.00

13.75

11.25

8.75

6.25

3.75

TABLE II: Fitness values for different two- and three-point
optimizations. Two digit topology numbers correspond to
two-point optimizations at the points in Table I, with each
digit indicating a point of optimization. Similarly, thredigit
topology numbers correspond to three-point optimization.

[, computation delay= 3 | unprocessed info |

0.199 0.399 0.599 0.799 0.999
Geometric Decay Rate (bits/sec)

Fig. 11: (color online). Dominant topologies when singlénpo
optimized topologies are considered. Topologies 1,13615,
AB are the same as in Figure 8 and 9. TopologiescGdt

c=1,...,7 refers to the topology generated by optimizin L '
at pointc in Table I. M9 is co-dominated by the two (1’1)911oderately negative fitnesses (fithesses between -12 and 20)

scale-free topologies from the original set, GA5 and GA .nd very negatiye fitnesses (fitne_s_ses less than -100). Of_the
M13 is co-dominated by topologies GA5 and GA7. MM is th 3 total topologies, 41 were positive. As was the case with

combination of twelve co-dominated regions totaling ldsmt Vci(;,\hsmgIﬁi\?o?:noptln;:]za:tlons, th?fsemr;nunltlpon:/t ?F;Em'%as lin
0.12% of decay-complexity pairs tested. AB-all topologie POSITIVE Iness Increase periormance over the base

?opologies in a neighborhood of of the points of interest.
performed equally poorly. Since these points are trying to create gains in fitnesses at
multiple points, they do not perform as well at the original
Feven single point of optimizations. However, many of these
multipoint optimized topologies do appear in the dominance
#Ilot (which is highly, highly, fragmented). In particulamjth
the addition of these multipoint optimized topologies, the
original set of topologies is completely dominated, except
for the fully connected graph which continues to dominate
9(G,S,T,3) = v;:hen trere is no computational t(;ilelay. l‘)l'lhisdindicatesf tf;]at

= . - the multipoint optimizations are able to blend some of the
{f(g,S,F,B) N {(F’ﬁ) if £(,5.1,5) < f(L. B), characteristics of successful graphs at different pointsfand

factor 8, according to information flow simulation describe
in Section 1II-C. Additionally, letf(I', 3) be the maximum

peak processed information volume with geometric decay r
I" and linear processing complexity delgyover the original

set of topologies considered in [7]. Next, define

W if (G,8,T,8)> f(T,B). a topology that works well in a large range.

This wide-ranged improvement does not appear to always
be possible, however, as some multipoint optimizations are
negative. Despite positive fithesses for many of the mukipo

d optimizations, 22 were negative and fell into one of the ghre
F(G,8,0) =Y g(G,8.T:,5). ranges of negative fitnesses outlined above. The two fitaesse
i=1 in the slightly negative range come from points 56 and 567.

The fitness functiorf’ tends to drive the GA towards solu-These two points are both multi-point problems containing
tions that produce increases over all points in the optitiira the two points chosen for comparison in the newly discovered
rather than using the gains at one point to cover for thstriated region of Figure 9. The other multipoint optimiaas
losses at another. Table Il shows the results of this multhat contain both points 5 and 6 may have found topologies
point optimization. Here, the two-digit numbers corregporthat result in an improvement in fithess at both points 5 and 6,
to optimizations at two points from Table | by concatenatingut this seems unlikely. The processed information voluates
the point numbers from the first column together. Similarlyoints 5 and 6 are much smaller than the processed informatio
the three-digit numbers in Table Il correspond to three fpoimolumes at points 1-4, due to the increased effects of eiatrop
optimizations from Table I. drag. Thus, it seems more likely that optimizations at point

The results of the 63 multipoint optimizations shown ifl-4 and both 5 and 6 are able to offset the negative fitness
Table Il can be grouped into four ranges based on the value ofsults with a greater increase at the third point. This is
tained by the fitness function. These are the positive fiegssfurther supported by the fact that 567 has a negative fitness.
the slightly negative fitnesses (fithesses between 0 and);0.(Bince point 7 is subject to even more computational delay

Next given a set of pointsb = {(I';,3;)} in the decay-
complexity plane, define the fitness functiéhby



and entropic drag than points 5 and 6, gains in procesdgdhlight the versatility of the three-point optimized tpgies
information volume at this point will be very small and urablin their ability to perform well over a large region in the dge

to offset the negative values at points 5 and 6. Despite tbemplexity plane. In fact, a single three-point combinatio
fact that it was not possible to show improvement at boik able to outperform the original baseline set of topolsgie
points five and 6, there was slight improvement in fithess frofthese results also highlight the importance of considering
the original set of topologies at these points. Since thg) (1topologies with negative fithess in the covering problem, as
scale-free graphs already performed well in both regidms, tcombinations 234 and 347 produced multi-point optimized

optimized topology at point 56 operates even better. topologies that had negative fitness values.
Of the 22 negative fitnesses, six of the multipoint opti-

mizations are in the very negative range. All six of these Graph(s) % Max Proc. IV
multipoint optimizations contained both points 1 and 3.sThi Isolated 0.8439
- L . . Fully Connected 0.8630
indicates that the behavior in these regions is rich enobgh t (3,3) scale-free (13) 0.9096
it is impossible (or at least very unlikely) that a topolognc Original 31 0.9362
create a positive fitness at both points simultaneouslyttEen _Orig 31, one pt 0.9772

. . - : Orig 31, one & two pt 0.9863
topologies are in the moderately negative region, and taese — o
all the combinations containing both point 4 and one or more 534 457 09745
of points 1, 2, and 3, with the exception of combination 134, Fully Conn., 234, 457 0.9846
which is in the very negative region since it contains both Fully Conn., 27, 347, 457 0.9908
points 1 and 3. TABLE IlI: Table of percentage of maximum processed infor-

_Point 4 presents an interesting case that merits additiopgltion vulume for a given set of graphs. The top four rows are
discussion. In the baseline set of topologies this point WWas qranhs from the original set of 31 for comparison. The bottom

the dominant region of the binary tree, serving as a boundggy,r rows are the optimal coverings by one, two, three, and
between the scale-free topologies on one side, and théestrig, graphs.

region on the other, where (1,1) scale-free topologies also

performed well. The results in Table Il indicate that the Overall. these results are encourading for the development
optimization routine was unable to jointly optimize point 4 v ! u uraging velop

with one or more of points 1, 2, and 3 (which were are in agile .CZt.cor:trolliars. that lése Op&m?l (c;}r at Ietﬁsttbettler)
regions originally dominated by scale-free graphs). Hawev communication topologies and are able to change the topolog

these three points are able to be jointly optimized with t.':zainon the fly. In [7], it was posited that if one could accurately

5, 6, and 7, which are points originally in the banded regio%Stimate the information-theoretic characteristics af 2

. . L system, a good topology could be selected from the list of 31
(provided of course points 1 and 3 are not being jointly OptEgpologies tested there. The results of the optimizatianime

mized, as discussed above). Thus, is seems possible tovach . - :
emonstrate that one can actively optimize around a nominal

a balance between the information-theoretic charadesisf catin int in the information-theoreti ramet
the first three points with those of the last three points, b]?{, erating poin € Information-theoretic parametescsd
is optimization appears to perform well in a region near

there is something about the characteristics of point 4 t i . . R
9 P t}ﬁls operating point, meaning that the optimizations stioul

make it difficult to optimize jointly with the first three pdin . ) S
Since the full set of baseline and optimized topologiek%e robu;t to uncertamty and error n .the est|mat|on of the
results in such a large number of different regions in tgformgﬂon-thgoreﬂc pargmetgrs. Additionally, it watsoan .
%/at it is possible to achieve improvement over the baseline
S1 topologies using very few of these optimized topologies,
eaning that these could be used as a look-up table instead
optimizing around the nominal operating point.

decay-complexity plane, the question of covering the dec
complexity plane with as few topologies as possible wa
investigated. The first step was to chose a proper met
to assess how well a given set of topologies performe‘&.
The metric used here is the mean ratio between processed
information volume at each point for a set of topologies and
the maximum achieved processed information volume overHere, the application of information theory to C2 was
the entire set of baseline and optimized topologies. The néurther developed. In particular, the quantification of the
step in the covering process was to search exhaustively oirdormation lost to entropic drag is calculated for a number
all combinations of a fixed size from the set of candidatef sample scenarios. While these problems are far from
topologies to generate the first few sets of topologies thedmplex, they are a special case of the more general (hidden)
maximized the mean proportion of processed informatidviarkov model, and methods from there should prove useful
volume. This is another combinatorial optimization prable in the information-theoretic characterization of more pbex

for which only the first few iterations can be solved in &ystems. Once this thread of research is completed, efficien
reasonable amount of time. Covering solutions using up éstimators for entropic drag can be combined with agile
four total topologies are shown in Table Ill. Also shown ircontrol structures [8] to change the C2 topology on the fly
Table Il are a number of sample coverings using various order to optimize information volume, and thus situasibn
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