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Abstract—Recently, it was postulated that information theory
would be useful in analyzing command and control (C2) pro-
cesses. Here, that theory is expounded upon first by demonstrat-
ing entropic drag in sample observation scenarios and providing
numerical calculations of information loss due to entropic drag.
Additionally, a model for observation abstraction is introduced
and an analysis between the information loss due to abstraction
and entropic drag is presented. This results in optimum abstrac-
tion levels, which depend on the information-theoretic character-
istics of the system being observed. Prior efforts demonstrated
that the efficacy of distributed C2 system topologies vary as a
function of the information-theoretic characteristics of the system
being controlled. We extend that work, providing additional
insight into the relationship between information theory and C2
performance. First, the parameter space is expanded, resulting
in additional complexity in topology dominance. Second, we
consider an alternative gossip-based communication protocol.
Third, the results of an evolutionary approach to optimizing
the C2 structure are discussed. Overall, these results continue
the development of the application of information theory to the
study of C2 and should be an important tool in the development
of future C2 systems.

I. I NTRODUCTION

It has been postulated that modern warfare has shifted from
“platform-centric” to “network-centric,” [1]–[3], meaning the
force that is able to achieve “information superiority” is better
able to influence and counter the adversary. Here, information
superiority relates to morerelevant information and better
situational awareness. This concept dovetails nicely within-
formation theory [4], and the mathematics of information-
theoretic control theory. Specifically, it has been demonstrated
that the reduction in uncertainty achievable in controlling some
system is equal to the decrease possible without using any
information plus the information gathered by a controller ob-
serving the system (called open-loop and closed-loop control,
respectively) [5], [6].

One difficulty in applying these concepts to command and
control (C2) is that the information content (in the information
theory sense) of an observation is rarely static, specifically, the
reduction in uncertainty attributed to a specific observation
may decrease over time as the observation becomes less
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relevant to the current system state. In [7], [8] an information-
theoretic and graph-theoretic characterization of a C2 process
was introduced, along with a comparison of simulated in-
formation flow for a number of different C2 communication
network topologies. A key concept in this characterization
is the notion of entropic information, that is, observation
outcomes whose information content monotonically decreases
over time. For instance, a specific observation of a target pro-
duces information dependent on the capabilities of the sensor
and encoding of the scene into coordinates (i.e., thedescriptive
complexity). As time elapses, the information content of this
earlier observation decreases, and this rate of decay is defined
asentropic drag[7], [8].

Here, the application of information theory to C2 problems
is continued from [7]. Concrete examples, including numerical
calculations, of systems that exhibit entropic information and
are affected by entropic drag are provided. In particular, these
examples provide insight into how the agility of an adver-
sary manifests as entropic drag. Additionally, the examples
illustrate how the entropic drag may be estimated, which is a
necessary component in the application of these concepts to
an agile C2 control system [8]. The information theory of C2
processes is also extended by looking into the information loss
due to abstraction, and the trade-offs that should be considered
by transmitting and processing fewer observations, when the
observations are subject to entropic drag.

Another facet of the work in [7] was a demonstration of
the effects of entropic drag on C2 structures, in the form
of an agent-based simulation. Agents in this simulation were
connected via a network that was modeled as a graph. Agents
were tasked with observing some unspecified system and
then passing this information to its neighbors for fusion and
communication with neighbors’ neighbors, and so on. A note-
worthy result of [7] was the variation in relative performance
of a fixed set communication topologies as the information-
theoretic characteristics of the observation problem varied.

That work is extended here by expanding the parameter
space from the original set of information-theoretic parameters
considered in [7]. This expanded parameter space introduces
additional structure and complexity into the regions of rel-
ative dominance of the original set of topologies tested.
Additionally, the same set of topologies are compared using



an alternative communications protocol, and then compared
with the original broadcast model. Finally, a summary and
interpretation of the results of a genetic algorithm used to
optimize the topologies in the information flow simulation is
presented.

II. I NFORMATION THEORY AND COMPLEXITY

One theme of [7] is the notion of a cost associated with
coordination and collaboration. A component of this cost isthe
time it takes to obtain, process, and communicate information.
Not only does this increase in time tax the C2 process, this
time also degrades the utility of the very information that is
being manipulated. This notion of the decay of information
due to the manipulation of information is called entropic drag
[7], [8], and it has been shown that the information-theoretic
characteristics of a scenario can determine the efficacy of
particular coordination strategies [7].

To develop this theory formally, we assume that the C2
processx(t) operates in a discrete state spaceX = {xi} with
finite cardinality |X|. The discreteness of the state space can
be relaxed, provided the sensor discretizes the state spacein an
appropriate fashion (see [8]), but for simplicity we will keep
the assumption of a finite and discrete state space. The number
of bits required to fully describe the state of the C2 processis
the descriptive complexity, and this is equal tolog2 |X| bits.
The descriptive complexity can be thought of as the fidelity
at which the process is described, for instance the locationof
an adversary to the nearest meter as compared to kilometer.

The notions of uncertainty and information of a C2 process
are quantified using Shannon information entropy [4]. The
information entropyH (in bits) of the processx at time t
is

H(x(t)) = −
∑

P (xi, t) log2(P (xi, t)) ,

whereP (xi, t) is the probability that the processx is in state
xi at time t. The informationI of a particular observation
x(t) = xi is

I(xi, t) = − log2 P (xi, t) .

Thus, an interpretation of entropy is the expected information
gain of an observation. It is known that entropy is maximized
when all states of the system are equally probable (P (xi, t) =
|X|−1, all xi ∈ X). This means that the descriptive complexity
is also the maximum possible entropy of the system, given a
fixed discretization.

Next, consider an observationS(xi, t), interpreted asx(t) =
xi. Then, the initial information content of the observation
(allowing for an abuse of notation) is

I(S, t) = − log2 P (xi, t) .

Note that the second argument inI(S, t) is a time index as
well. As time elapses, the relevance of the observationS
(that occurred at timet) should be less at timet′ > t. If
the system is not uniquely defined by a single observation,
then the conditional expected information content of a second
observationS′ = (xj , t

′) of the same sensor for timet′ > t is
H(x(t′)|S) = H(x(t′)|x(t) = xi) and this is non-zero. The

very fact that repeating the same observation (i.e., polling the
same sensor) results in the gain of new information beyond the
original observation indicates that the previous observation’s
information content has in some sense decayed. For a sequence
of k observationsS1:k = {(xj , tj)} of the processx ending
at tk = t, we define the entropic drag (Γ) of the system on
the observationsS1:k at time t′ > t by

Γ(S1:k, t, t
′) =

H(x(t′)|S1:k)

t′ − t
.

Conceptually, entropic drag can be thought of as the time
derivative of conditional entropy, but in a strict mathematical
sense the assumed discrete space will not admit a derivative.
For observations that occur with fixed sampling time∆t > 0,
the quantityΓ(S1:k, t, t+∆t) is effectively the expected rate
of information generation of the system at timet. This notion
can be generalized to multiple sensors, but requires a more
complicated exposition and the single sensor case is sufficient
to illustrate the concepts here (see [8] for this exposition).
Entropic drag should not be interpreted solely as the change
of state of the underlying system. For example, a pendulum
or train moving at a fixed speed have predictable trajectories
and have considerably lower entropic drag that systems whose
motion is not as constrained.

A. Entropic Drag for Target Tracking

The definitions of entropic drag and related concepts in [7],
[8] appeal to basic intuition about the behavior of real-world
systems, but the entropic drag of specific example systems was
not calculated. Here, we provide calculations demonstrating
entropic drag using an example C2 system, that being a target
tracking scenario. In this tracking scenario, a single target is
tracked in discrete time in a 51×51 zone “world”, and the
sensors are noiseless and observe the entire state space at once.
Thus,x(t) is the location of the target, and its domainX are
the51×51 discrete zones that it can inhabit. Furthermore, the
sampling rate and target motion occurs at discrete instances,
and to emphasize this, we writex(t) = x(k), for k ∈ Z≥0.

A number of different probabilistic motion models are
considered. The motion model of the target corresponds to the
probabilities assigned to the location of a target at time step
k + 1, given its location at timek. Thus the motion model is
Markovian. To find the probability distribution of a target at a
later time, given its distribution at timek, we repeatedly apply
this motion model at each zone, and sum these weighted by
the probability that the target was in that zone at the previous
time step, with circular boundary conditions assumed.

Formally, for any zonexi in the state spaceX, let Pxj
(xi)

be the probability that the target moves from the zonexj

to the zonexi ∈ X in one time step. As noted above, the
targets position at the next time step is dependent only on its
current position. Next, letP (xi, k) denote the probability that
the target is in zonexi at timek. Then, we have that

P (xi, k + 1) =
∑

xj∈X

P (xj , k)Pxj
(xi) .



Given some priorP (xi, 0) (for these results, a uniform prior
of P (xi, 0) = 1/|X| was used), the probabilities of target state
can be propagated forward in times by repeatedly applying the
update rule.

The uniform prior provides no initial information about
the location of the target, so the uncertainty before any
observations islog2(51 · 51) = log2(2601) ≈ 11.34 bits.
The sensor is assumed noiseless, so the initial information
content of the first observation is≈ 11.34 bits, regardless of
the motion model for the target. This initial observation is
the only observation performed, and the effects of entropic
drag on the information content of this single observation are
calculated. However, the different motion models cause the
information content of this initial observation to decrease at
different rates. Again, since sensor is noiseless and can observe
the entire state space, the observationx∗ returned by the sensor
creates a probability fieldP (x, 1) where

P (x, 1) =

{

1 if x = x∗,

0 else.

To calculate the information decay from this single ob-
servation, the motion models (that is, the state transition
probabilities) need to be specified. The models considered here
are:

• 1-zone movement: target moves in a known direction.
• 5-zone movement: target moves up, down, left, right, or

stays put with equal probability.
• 5-zone drift: target moves up, down, left, right, or stays

put with unequal probabilities.
• 9-zone movement: target moves to an adjacent zone

(including diagonals) or stays put with equal probability.
• 9-zone drift: target moves to an adjacent zone (including

diagonals) or stays put with unequal probabilities.
• 25-zone movement: target moves up to two zones in any

direction (including diagonals) or stays put, all with equal
probability.

Figure 1 shows the information content of the single observa-
tion over time for each of the motion models. Since entropic
drag is roughly equivalent to the rate at which the information
content decreases, this plot actually shows the integral ofthis
decay rate.

The one-zone movement model is a non-entropic system.
Initially, the target’s location is unknown, but once an ob-
servation is performed, its location is perfectly predictable
(as the direction of motion is assumed to be known by the
observer). Thus the information content of the observation
does not decay over time. The difference between the five-
zone movement and five-zone drift models is the probability
distribution on each of those five options. In the five-zone
movement model, the probabilities are all uniform, so this
motion model introduces maximal uncertainty at each itera-
tion. Note that the five zones need not be the specific five
zones, only thatPy(x) is uniformly distributed among five
zones for eachy. The five-zone drift model has an unequal
probability distribution on the same five zones, and thus at
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Fig. 1: Plots of information decay as the observation rate
decreases relative to the movement rate of the prey. Alter-
natively, plots show the remaining information content of a
prior observation.

each iteration less uncertainty is added (i.e., less information
is lost from the initial observation) as compared to the five-
zone movement model. The nine-zone movement model is
a uniform distribution on nine possible zones, and the nine-
zone drift model is skewed to introduce less entropy at each
iteration. The nine-zone drift model was chosen to introduce
more uncertainty than the five-zone movement model, but this
is not necessarily required (i.e., there are distributionson nine
zones that introduce less uncertainty at each iteration than the
uniform distribution on five zones). The 25-zone movement
model, introduces the most uncertainty at each iteration among
the motion models considered.

Since all of these models apply the same movement rules
at each iteration, the state transition probabilities are spatially
invariant. This causes the relative orderings of the information
contents associated with a single observation of each move-
ment model to stay fixed. This is not always the case, as
the state transition probabilities model could have dependency
on the current zone state of the system. This could have
a drastic effect on the information decay calculations. For
example, consider a target that only occupies a few zones,
but moves randomly between them. Additional variation in
the decay could result if the systems next state was dependent
not only on the current states, but also on prior states (i.e., the
system is not memoryless), or if the transition probabilities
are dependent on time (i.e., the system is non-stationary).

There is a another class of movement models that is not
considered in Figure 1, those that are non-entropic when
conditioned on multiple observations. Consider the following
target movement model for the same scenario as in Figure 1:
the target moves in the same direction at each iteration but this
direction is initially unknown (cf., the one-zone movement
model). In this situation, any single observation considered
by itself will decay based on constant motion in each of



the nine directions uniformly. So after the first observation,
the targets location will be in one of nine known squares
at each subsequent iteration. So the initial observation loses
information content, but only after the first iteration. A sub-
sequent observation that didn’t also consider the previous
observation would gain this information back, only to lose
it at the next iteration when the target moves. However,if two
observations are conditioned upon, then the target motion is
known and the information is non-entropic. It is easy to see
how more complex target movement models requiring multiple
observations to make the information non-entropic could be
constructed.

It should be noted that Figure 1 is not the result of some
Monte Carlo simulation, but is a numerical calculation of the
target probability field using the motion model. For illustrative
purposes, the targets all started in the exact middle of the track-
ing space, and we truncated the calculation well before any
boundary effects occurred. The calculation of probabilityof
target presence is not particularly difficult, provided a mostly
spatially identical motion model. In fact, it is a convolution be-
tween the current probability field and a kernel corresponding
to the motion model. Corrections must be performed, however,
for boundary conditions. In particular, truncated, toroidal, and
reflective boundary conditions all undergo different correction
calculations.

The information decay shown in Figure 1 can be interpreted
in two ways. The first, as noted above, is that it can be viewed
as the information loss due to time elapsing. This delay could
be introduced by transmission delay in the communication,
delay introduced while the sensor’s operator is performing
other tasks, or any number of reasons. The second interpreta-
tion is the effects of entropic drag induced by increased target
mobility, i.e., if the movement rate of target is greater than the
sampling rate of the sensor, then the information loss between
observations is greater.

This second interpretation highlights the impact of agility
on the observer, orient, detect, and act (OODA) loop [9].
If the target is more agile, then the information content of
observations decreases faster, and the associated processing
of observations associated with that target could result in
less useful actions taken. Furthermore, if the target were
performing its own OODA loop targeting the tracker/sensor,
then the extra time spent by the tracker to gather information
about the target could allow the target get inside the OODA
loop of the tracker and successfully execute a counterattack
on it.

While this tracking scenario is rather simple, these concepts
are apparent in a number of research areas related to state
estimation. The Kalman filter is a classic technique for track-
ing, data fusion, and more generally recursive state estimation
[10]. Uncertainty in the Kalman filter is represented by the
propagated covariance matrix. The difference (in some sense)
between successive covariance matrices relate to the informa-
tion gained by each observation, assuming observations are
taken at each time step. When observations are not taken at
each time step (relative to the prediction step of the filter),

this is known as intermittent Kalman filtering. There are a
number of results that speak to the change of uncertainty over
time relative to different rates of sampling [11]–[13]. This
idea can be extended to multi-target/multi sensor scenarios,
for example, through the notion of random finite set based
tracking [14], [15]. These latter concepts apply even when the
number of targets is also uncertain and time-varying.

Given the current distribution of state for the C2 process
and its transition function, the calculation of entropic drag
is in theory straight forward. However, state estimation and
functions of estimated state are generally not as easy. Since
the observation space considered here is discrete, quantized
particle filtering or discrete space hidden Markov models may
be useful in the development of estimators of entropic drag
[16], [17]. Robust and efficient estimation of the information-
theoretic properties of the system being observed is an impor-
tant part of an agile C2 system. Spending time to communicate
and process irrelevant information further degrades existing
information. The ability to dynamically decide with whom to
communicate and accurately compute the utility of potential
information is a key factor in maximizing useful information
and thus situational awareness.

B. Abstraction in Complex Scenarios

In [18] the effects of increasing the descriptive complexity
of an underwater C2 scenario were investigated. The descrip-
tive complexity was increased by increasing the spatial fidelity
of the world. Using a communications channel with fixed
bandwidth and a fixed geometric rate of information decay
(entropic drag), it was illustrated that there is an optimallevel
of spatial fidelity after which the increased communication
time results in less overall information, due to the effectsof
entropic drag.

The results in [18] illustrate a trade-off that needs to be
considered when entropic drag occurs, namely the balance
between the loss of information incurred due to a reduction
in descriptive complexity as compared to delay introduced
by dealing with the scenario at high fidelity. Alternatively,
the spatial fidelity of the scenario could be held constant,
and the elements of interest in the scenario abstracted. By
abstraction, we mean the process of summarizing a number
of elements of interest into a broader element. This is related
to fidelity of another sort, namely, the aggregation of high-
resolution states into a single state that conveys similar (but
potentially less) information. This generalization into asingle
macroscopic state carries with it an additional amount of
uncertainty. For example, individual soldiers’ positionscould
be grouped into an approximate squad position, squads into
platoons, platoons into companies, and so on. First of all,
observations may be abstracted to a certain level (say the
company level), because the additional fidelity of a more fine
level of detail does not present much additional utility to
the operators of some C2 process. Alternatively, perhaps the
information sources themselves are not capable of producing
finer detail. Here, however, we do not consider the reason



for abstraction and instead focus on the interaction between
abstraction and entropic drag.

Abstraction may result in a loss of information, but it also
results in less observations to manipulate. As was shown in
[7], [19], the time-cost of communicating and processing a
set of observations reduces the information content through
entropic drag. Thus, there is a trade-off between abstraction
and entropic drag, resulting in an optimal level of abstraction
in a given scenario. This optimal level depends on the rate at
which information content decays, so the information-theoretic
characteristics of the system are important in determiningthis
level of abstraction.

Consider the following model to illustrate this phenomenon.
There areN = 128 elements of interest, and the world is set
up such that elements are described using messages of length
L = 64 bits. Thus, the maximum descriptive complexity in this
scenario isN ·L = 8192 bits. However, there is the option of
describing elements using less thanN messages (abstracting
them), but a loss of information is incurred in doing so.
To calculate the cost of abstracting toM ≤ N messages,
assume that the information content of each message decays
proportionally to the square of the number of elements per
message,N/M . This assumption is motivated by tracking in
a two-dimensional environment, if the 64-bit message length
is directly related to the resolution of the sensor (i.e., the world
is divided into264 distinct locations), then we expect thatn
elements would be distributed spatially proportionally ton2.
In this scheme, the information content ofM messages is

I(M) = N · L− ⌊N/M⌋ · log2(M
2/N2).

Figure 2 shows calculation ofI(M) for M taking values
between1 and 128. For these assumptions,I(1) still retains
a significant portion of the possible information, but this is
adjustable by changing the expression⌊N/M⌋· log2(M

2/N2)
to one that penalizes low message counts more harshly. Also,
as the number of messages used increases, there is less in-
formation gain per additional message, indicating diminishing
returns. On its surface this model may seem to violate some
tenets of information theory by claiming that it is possible
to summarize many elements through abstraction and create
a single message that is more informative than a message
about a single element. However, this model is exploiting the
correlations (i.e., mutual information) between the elements to
create messages that are more informative (i.e., changing the
coding of the messages).

Note thatI(M) only accounts for information loss due to
describingN elements inM messages. If theseM messages
are then communicated, entropic drag from the resulting time
lapse for the communication ofM messages further reduces
the information content of the original observations. We will
assume that communication occurs over a noiseless channel,
and there is an ideal coding that allows for the messages to
be sent usingL bits per message. Let this channel have bit-
rate r bits/sec, then it takesT = L/r seconds to transmit a
message. To quantify entropic drag, we use a geometric decay
rate of γ. Thus, the final value of the information received
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Fig. 3: Information loss due to abstraction and entropic drag
during communication of messages, for a specific geometric
decay approximation to entropic drag.

after both abstraction and communication is

Ĩ(M,γ) = I(M) · (1− γ)MT .

The value ofγ has an interesting affect on which level of
abstraction is optimal. Asγ → 0, Ĩ becomes a monotonically
increasing function ofM , indicating that for low enoughγ,
M = N is optimal. Asγ → 1, this function will become
monotonically decreasing, and a single message is optimal.
This transition is smooth, so for a range of decay values, there
is an optimumM between1 andN . An example of a decay
rate that results in an optimum level of abstraction is shown
in Figure 3, for communications bandwidthr = L bits per
second and geometric decay rateγ ≈ 3.95× 10−3.
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Fig. 4: Optimal abstraction level at different geometric decay
rates for various linear processing time costs. Note the loga-
rithmic scale of the decay rate.

This notion of abstraction is not only applicable to com-
munication, but also to the processing and manipulation of
information locally. For a givenM , suppose we have a
functionf that indicates the amount of processing time that it
takes to deal withM elements. Then, the ‘MT ’ in Ĩ can be
replaced withf(M). For example, consider a linear processing
modelf(M) = bM . This is the same model used in [7], and
represents a relatively low-level of computational complexity.
Alternatively, a linear processing model could represent the
time it takes to communicate messages for theM elements,
transmitted serially. The effects of varying the slopeb in a
linear processing model on the optimal abstraction level (in
terms of the number of messages used in the abstraction)
are shown in Figure 4. As expected, larger values ofb favor
higher levels of abstraction (fewer messages) for a given rate of
information decay. What is somewhat surprising, however, is
the sharp drop between no abstraction initially, to summarizing
the scenario using half of the maximum number of messages.
No levels of abstraction in between these two are optimal over
the decay rates and slopes investigated. Similar, but smaller,
drop-offs occur as the decay rate increases for each value of
b. These results indicate that the optimal abstraction levelis
sensitive to both the processing model and rate of information
decay. Figure 4 only shows the optimum abstraction level,
Figure 5 shows the information content for the same linear
processing models at the optimum level of abstraction.

The optimal levels of abstraction at a given decay rate for
additional processing models are shown in Figure 6. These
processing models (in order of increasing complexity) are
linear, log-linear, quadratic, quartic, exponential, andfactorial
complexities. These increases in complexity result in even
more abstraction than slope increases in linear complexity.
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Fig. 5: Maximum information content after decay associated
with processing time for various linear models. Note the
logarithmic scale of the decay rate.
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III. S IMULATION -BASED EXPERIMENTS OFDISTRIBUTED

SENSORNETWORKS

The previous section continued the development of the
application of information theory to the study of C2. The
remaining portions of the paper present several results of
simulation-based experiments derived from a simulation of[7].

A. Problem Definition

As in [7], the simulation considered here models a scenario
of multiple agents observing a common system. The agents
are trying to maximize the amount of information about the
system that is distributed amongst the agents. Some of the



agents are equipped with sensors, and these sensors observe
distinct portions of the system, so there is no mutual infor-
mation between sensors. The agents’ communication network
is modeled as a graph. As in [7], the motivating question
is which network topologies perform well in which regions
of information-theoretic parameter space of the system being
observed.

B. Graph Theory Preliminaries

As the communication network of the agents in the simula-
tion is modeled using a graph, some graph theory preliminaries
are introduced that cover the concepts required here. Let a
graphG be defined byG = (V, E), whereV = {1, . . . , N}
are the vertices of the graph andE ⊆ V × V are the edges
of the graph. We assume thatG is undirected and there are
no self-loops, so(i, j) ∈ E ⇐⇒ (j, i) ∈ E ∀i, j ∈ V and
(i, i) /∈ E , ∀i ∈ V. Let deg(i) = |{(i, j) ∈ E : j ∈ V}| be
the degree of the vertexi. A graph is said to be connected if
for any i, j ∈ V, i 6= j, there is a sequence of verticesak,
k = 0, . . . K, where(aℓ−1, aℓ) ∈ E for ℓ = 1, . . . ,K, a0 = i,
andaK = j. We call this set of vertices a path, and the length
of the path is said to beK, and the minimum length of all such
paths betweeni andj is called the (geodesic) distance between
i andj. Denote this lengthd(i, j) wheni, j are connected, and
defined(i, i) = 0, andd(i, j) = ∞ if they are not connected.
A path is said to be simple if it repeats no vertices from start
to end. A graph is said to be acyclic if for everyi ∈ V, there
does not exist a sequence of verticesak, k = 0, . . . ,K such
that (aℓ−1, aℓ) ∈ E for ℓ = 1, . . . ,K, a0 = aK = i, and
a1 6= a2 6= · · · 6= aK−1, i.e., there does not exist a simple
path of non-zero length from any vertexi to i.

A fully connected graph is a graph where each vertex is
connected to all other vertices, i.e.,deg(i) = |V| − 1, ∀i ∈
V. A tree is a connected acyclic graph. If one vertexi in
is designated the “root” of the tree, it is a rooted tree. The
parent of a vertexi in a rooted tree is the vertexj such that
(i, j) ∈ E and(i, j) is in the simple path to the root, and every
vertex except the root has a unique parent. The children of a
vertex i are the set of vertices for whichi is a parent, and
a leaf is a vertex without any children. Vertices of the same
geodesic distance from the root are said to be of the same
generation. Two classes of rooted tree are included in [7],
m-ary trees, where each vertex has at mostm children, and
regular trees that are described by a vector[a1, a2, . . . , an] ∈
N

n, where the root has at mosta1 children, its children have
at mosta2 children, and so on. Clearly anm-ary tree is also
an [m, . . . ,m] regular tree.

A path graph is a tree with two vertices of degree one,
and the remaining vertices of degree two. A1-ring is formed
by taking a path graph and adding an edge between the two
vertices of degree one (assuming|V| ≥ 3). A k-ring (for
k > 1) can then be defined by connecting each vertex to
vertices with geodesic distance≤ k along the1-ring, up to
k = ⌊|V|/2⌋, where ⌊x⌋ is the greatest integer≤ x. The
final class of non-random graphs considered in [7] were two-
dimensional grid graphs. A grid graphG is defined as the

Cartesian product of two path graphsP1 = (V1, E1) and
P2 = (V2, E2), where the vertices ofG = V1 × V2 and two
vertices(i, i′) (j, j′) are adjacent inG if i = i′ and(j, j′) ∈ E2
or j = j′ and (i, i′) ∈ E1.

Two different classes of random graph were included in [7].
Small-world graphs were introduced in [20], but the variation
in [21] was used in [7]. In this variation, a small-world graph is
generated from a low-dimensional lattice by adding additional
edges to the graph, instead of “swapping” a vertex in an
existing edge. Usingk-rings as defined above for the base
lattice, denote the resulting small-world graph as ak-ring
with m additional links (k-ring+m for short). The other class
of random graph is the scale-free graph generated using the
preferential attachment mechanism of [22]. Let(ℓ,m) scale-
free denote a graph generated starting from a fully connected
graph ofℓ vertices and addingℓ vertices each with degreem
for each iteration of the construction process.

C. Simulation Review

In this simulation,N agents are represented as vertices in
a graphG = (V, E), where|V| = N . There is a setS ⊆ V of
the vertices called sensors and these sensors are modeled as
exogenous communications channels that are observing some
system of interest, and letNS = |S|.

These agents are then implemented using a discrete event
system (DES) model [23] that can accommodate the variable
delays in computation and communication that form one
element of investigation here. In this simulation, each agent is
in one of four states:SEND, CHECK, COMPUTE, or SENSE,
representing the agent sending, checking, processing, and
sensing new information, respectively. In the sensing state,
an agenti ∈ S reads one bit of information and associates
with this information a time-stamp at the current simulation
time. In our experiments we assign an arbitrary delay of one
second to the sensing state. From the sensing state, an agent
next enters into a computation state whose time length is
a function of the number of observations to be processed.
Computational complexity is defined by a linear delay that
is proportional (β sec per observation) to the number of new
sensor readings, counting each sensor no more than once
(i.e., only the most recent observation from a given sensor
is “processed.”). AfterCOMPUTE has been completed, the
agent entersSEND to communicate to all its neighbors in
the graphG by sending observations that have been received
and/or sensed (as applicable). This takes the same amount
of time as theSENSE state. FromSEND the agent enters
SENSE again if the agent is inS and there are still sensor
readings to perform, otherwise, it goes intoCHECK. CHECK
is essentially a holding state where the agent remains until
it receives new observations, when the process transitions
to COMPUTE on the new observations. TheCHECK state
checks for new observations to process every 1 sec. The state
transitions are shown in Figure 7. This simulation is inspired
by the OODA loop popular in military strategy [9], and in
particular encompasses the first three steps of the loop.
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Fig. 7: State diagram for an agent in the DES simulation, using
a linear complexity factorβ.

For the simulations considered here, sensors observe one
bit each of independent information simultaneously at the
start of the simulation, and the remaining non-sensor agents
are in theCHECK state. Each sensor makes only this single
observation. This experimental setup was chosen to investigate
a topology’s response to a single anomalous event. As noted
above, the information content of an observation is initially
one bit, but entropic drag is modeled by applying a geometric
decay rateΓ (in bits/sec) to the information content of an
observation. Thus, for some timet after an observation, the
information content of that observation is(1−Γ)t. Given that
the information content of an observation decays over time,
define theinformation volumeat a point in time to be the sum
over all agents of all the information content of observations
received up to that point in time. Clearly, in this setup, the
information volume is initially zero and bound byN · NS .
Next, define theprocessed information volumeat a given
point in time to be the sum over all agents of information
content whose associated observations have gone through that
agent’sCOMPUTE stage by that time. The principle metric of
interest in this simulation is thepeak processed information
volume, that being the maximum over time of the processed
information volume.

As was the case for the first simulation in [7], all topologies
considered here haveN = 127 vertices andNS = 64,
including the outputs of the optimization algorithm (see Sec-
tion III-F). These parameters correspond to the size of a full
binary tree with seven generations having all of the leaves
as sensors. All of the same graphs with identical sensor
placements that were studied in [7] are considered here.
This includes a fully connected graph; a star graph ([126]
regular tree); the aforementioned binary tree ([2, 2, 2, 2, 2, 2]
regular tree) truncated[3, 3, 3, 3, 3, 3], [4, 4, 4, 4], [2, 3, 4, 5],
and [11, 11] regular trees; 1-,2-,and 3-rings; two each of
(1,1), (3,3), and (5,5) scale-free graphs; two each of 1-ring+5,
1-ring+10, 3-ring+5, 3-ring+10, and 3-ring+15 small-world
graphs; three 1-ring+15 small-world graphs; and a truncated
11× 12 grid graph. For completeness, also considered here is
the completely disconnected or isolated graph.

Fig. 8: (color online). Regions of dominance for different
topologies in an information flow simulation. 1) fully con-
nected, 3) binary tree, 11) (1,1) scale-free 13) (3,3) scale-free
14) (3,3) scale-free 15) (5,5) scale-free, 16) (5,5) scale-free,
24) 3 ring+10, Multiple1&2) various regular trees, Multiple3)
3-ring+10, 3-ring+15, grid Multiple4) 3-ring+10, 3-ring+15,
Multiple 5) several graphs, All Bad) all graphs equally poor.
Reprinted from [7] with permission from the author.

In [7], 31 different topologies were compared. As the pro-
cessing requirements and the rate that the information became
irrelevant (see Section II) were varied, the relative performance
of different topologies varied. A figure showing how the best
performing topology varied as the two information-theoretic
characteristics varied is shown in Figure 8. In general, when
the processing requirementsβ and decay rateΓ were low,
scale-free graphs [22] performed the best out of the different
topologies examined. As the processing requirements took
more time or as the decay rate increased (or both), graphs
with lower degree centrality [24] began to perform better, first
with the binary tree, then small-world graphs based on ring
lattices [21]. Finally, there was a region where all of the graphs
performed equally poor.

D. Topology Performance for Non-Integer Delay

The results of [7] shown in Figure 8 were generated using
only integer values for the complexity factorβ. When non-
integer values ofβ are considered (incremented between0
and 16 in 0.25 intervals), additional structure is apparent as
shown in Figure 9. The notion of non-integer delay simply
means that the processing time for an observation is not an
integer multiple of the sampling time. In [7], the sampling time
(SENSE) was the same as the communication time (SEND)
and the hold state (CHECK) polling time (as is also the case
here), and when the computation delay factorβ is an integer
multiple of the sampling time, the time for theCOMPUTE state
is also an integer. In this case, the system is effectively a
discrete time system, and the sampling time is the time step.
Whenβ is not an integer, the system becomes in some sense



Fig. 9: (color online). Plots of topology when non-integer
values forβ are considered. Numbered dominant topologies
1-24 are the same as in Figure 8, M1) various trees, M5) both
(1,1) scale-free graphs, M12) 3-ring+10 and 3-ring+15, M13)
3-ring+10 and 3-ring+15 and grid, MM) A combinations of
twelve different groups of graphs whose total dominance was
less than 0.2% of the overall decay-complexity values tested,
AB) all topologies performed equally poorly.

more asynchronous as the agents now potentially have state
transitions at non-integer times, once they have completeda
COMPUTE state.

The banding effect of Figure 9 is such that the topologies
dominant at integral values in the bands are only dominant at
integral β values, even when very small increments (0.001)
in complexity are considered. This appears to be the related
to the fact that in the integral computational delay cases, all
of the states will have integer time delays. It appears that in
the non-integral computational delay cases, the highly non-
uniform nature of the (1,1) scale-free graphs are able to exploit
the less synchronized state transition times to outperformthe
more uniform small-world and binary tree topologies for some
ranges ofβ and Γ. This increase in relative performance in
the regions of non-integer delay is not particularly large,as the
(1,1) scale-free graphs are the second best performing graphs
in the striated region, even when the delay factor is an integer.

E. Efficiency of Gossip Protocols

In the original formulation of the simulation in [7], an
agent in its communication stage “pushed” observations to
all of their neighbors. An additional communication protocol
is considered here that is gossip-based [25]. In this gossip-
based protocol an agent chooses uniformly at random one
of its neighbors to communicate with, as opposed to the
original simulation, where all neighbors in the network were
communicated with simultaneously.

Formally, if the communication topology is the graphG =
(V, E) then when the agenti enters itsSEND stage in the
original simulation, it sends all of agenti’s most up-to-date

observations of each sensor (both those observed directly in
the SENSE state and those received in communication with
other agents) to each agentj such that(i, j) ∈ E . All of this
communication occurs simultaneously in theSEND state. In
the gossip protocol, an agenti in the SEND state selects a
single agentj to communicate with. This agentj is such that
(i, j) ∈ E (i.e., j is a neighbor ofi), and the probability of
selectingj is such thatP (j) = |{j : (i, j) ∈ E}|−1. Again, all
of agenti’s most recent sensor observations are communicated
to j. Note this is time-independent, so the agenti does not take
into consideration which of its neighbors that it has previously
communicated with.

This gossip protocol potentially reduces the amount of
communication in the network initially (and would continueto
do so should repeated observations be taken), and in particular
reduces the number unprocessed observations that each agent
must process in a given computation cycle. Since agents
are processing fewer observations perCOMPUTE stage, this
stage takes less time. When entropic drag is high, this could
potentially result in more processed information volume, as
the processing of more information would decay to the extent
that the additional observation’s increase in informationcould
not offset the additional decay. However, when entropic drag
is low, the inefficiency of the gossip-protocol as compared to
the original communication method should result in poorer
performance.

This communication protocol was implemented in a sim-
ulation similar to [7] but theSEND state was changed to
implement the gossip protocol described above. Other than this
change, the simulation is otherwise comparable to the earlier
simulation in [7]. As in [7] the simulations here have single
observation taken by the sensors at the start, and the task is
to see how this initial set of observations progresses through
the agents in the simulation. Also, the range of decays (0.001
to 0.999 in 0.002 increments) and complexities (0 to 16 in
0.25 increments) used in Section III-D (see Figure 9) are used
here. Unlike the earlier results of [7] which were deterministic
(except for the creation of small-world and scale-free graphs,
which were first sampled, and then effective samples held
constant throughout the series of experiments), the gossip-
based experiments are inherently random. To account for
this, 100 Monte Carlo simulations were performed for each
information decay and processing delay pair for each of the
31 original topologies tested in [7].

For the deterministic simulations of [7], the metric of com-
parison between topologies is the peak processed information
volume (see Section III-C). For the gossip-based simulations,
however, the mean peak processed information volume over
the Monte Carlo simulations is the metric of comparison. This
quantity is used to compare topologies using the gossip proto-
col the peak processed information volume of the deterministic
simulations (and with the mean peak processed information
volume of other gossip-based communication simulations).
Due to the increased number of dominant topologies and co-
dominant topologies, as well as the fragmentation of dominant
regions due to the randomness of the gossip communication
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Fig. 10: Proportion of cells where a given topology is domi-
nant. An ’L’, ’M’, or ’U’ after a random graph indicates that it
was selected because of its dominance amongst other random
graphs of the same class in the lower, middle, or upper(Γ, β)
plane. The ’(Gossip)’ designation indicates that the gossip
protocol was used instead of the original simulcast model.

method, a dominance plot in the style of Figure 9 is not shown
here. Instead, Figure 10 shows the distribution of dominant
topologies (split equally among co-dominant topologies for
those (Γ,β) locations). The topologies are ordered by Eu-
clidean norm of the mean (Γ,β) location of the locations that
they were (co-)dominant in, normalized by the maximumΓ
andβ values considered. Thus, topologies on the left tend to
dominate closer to the origin than topologies on the right.

The results indicate that the gossip method tends to result
in new regions of dominance that are closer to the upper-right
of the decay-complexity plane than the regions of dominance
that the topology using the original communication method
was dominant in. In particular, the binary tree using gossiphas
dominant regions in the portion of the plane that the original
binary tree dominated. Since the leaf nodes are the sensors
for a binary tree, gossip and simulcast simulations begin with
the same steps, so their overlap is not entirely unexpected.
Another change of note between the two simulations is the
amount of area gained by the (1,1) scale-free L that had very
little of the area in the original method, but gains dominance
in the regions where the binary tree and the (1,1) scale-free
U were dominant. Additionally, the (1,1) scale-free U became
dominant in many of the places that (1,1) scale-free U was
dominant in with the original communication method. The
(3,3) and (5,5) scale-free graphs also gain some dominance

in some of the more entropic regions of the plane. Overall,
it would appear the gossip protocol adds some versatility in
in the scale-free graphs by allowing to take some advantage
of the low graph diameter without the bottlenecks observed at
the super-nodes [22] in the original communication paradigm.

F. Topology Optimization

In this section, we discuss the results of a genetic algorithm
(GA) [26] designed to directly optimize topologies in the
above information flow simulation (as opposed to [7] where
a number of sample topologies were simply compared). The
goal of the optimization is to find a topology that performs
better than the original set of topologies tested in [7], and
then see if it then performs well in some neighborhood of that
optimization point. The genome used is the upper half of the
adjacency matrix (since the matrices are assumed symmetric)
treated as a binary string. The fitness (objective) function
used is the processed information volume of the candidate
topology normalized by the processed information volume of
the dominant topology from Figure 9 at that point.

A representative set of points for optimization are shown
in Table I, along with the dominant topology at that point
from Figure 9, and the normalized increase in processed
information volume at that point (i.e., the fitness function).
As can be seen from the fitness column, these optimizations
are successful in increasing the processed information volume
at the point being optimized. Dominance plots involving
these optimized topologies indicate that they improve over
the baseline topologies of [7] in a neighborhood of the point
being optimized (see Figure 11). In some cases, the optimized
topology completely dominates the original dominant topology
in the original topologies dominant region, thus removing that
topology from the dominance plot.

# Decay,Γ Complexity, β
Orig.

Region Max Fit
1 0.051 0.75 15 0.111
2 0.199 1.25 14 0.693
3 0.121 4.25 13 0.578
4 0.399 2.00 3 0.0619
5 0.601 5.00 24 0.000435
6 0.601 4.75 M5 0.000756
7 0.851 8.00 M13 5.9e-10

TABLE I: Table of points in the decay-complexity plane that
were chosen for optimization, the original dominant region
corresponding to that point, and the maximum fitness obtained
by the GA.

Optimization over multiple points simultaneously is also
considered here. For technical reasons, the fitness function
used for the multipoint optimizations is different than in the
single point case. The multipoint fitness function is the sumof
the normalized increases in processed information volume at
each point, if that point had an increase, otherwise it was the
decrease, but unnormalized. Formally, letf(G,S,Γ, β) be the
peak processed information volume for the graphG, sensor set
S, geometric decay rateΓ, and linear processing complexity



Fig. 11: (color online). Dominant topologies when single point
optimized topologies are considered. Topologies 1,13,15,16,
AB are the same as in Figure 8 and 9. Topologies GAc for
c = 1, . . . , 7 refers to the topology generated by optimizing
at point c in Table I. M9 is co-dominated by the two (1,1)
scale-free topologies from the original set, GA5 and GA6.
M13 is co-dominated by topologies GA5 and GA7. MM is the
combination of twelve co-dominated regions totaling less than
0.12% of decay-complexity pairs tested. AB-all topologies
performed equally poorly.

factor β, according to information flow simulation described
in Section III-C. Additionally, letf̄(Γ, β) be the maximum
peak processed information volume with geometric decay rate
Γ and linear processing complexity delayβ over the original
set of topologies considered in [7]. Next, define

g(G,S,Γ, β) =
{

f(G,S,Γ, β)− f̄(Γ, β) if f(G,S,Γ, β) ≤ f̄(Γ, β),
f(G,S,Γ,β)−f̄(Γ,β)

f̄(Γ,β)
if f(G,S,Γ, β) > f̄(Γ, β).

Next given a set of pointsΦ = {(Γi, βi)} in the decay-
complexity plane, define the fitness functionF by

F (G,S,Φ) =

|Φ|
∑

i=1

g(G,S,Γi, βi) .

The fitness functionF tends to drive the GA towards solu-
tions that produce increases over all points in the optimization,
rather than using the gains at one point to cover for the
losses at another. Table II shows the results of this multi-
point optimization. Here, the two-digit numbers correspond
to optimizations at two points from Table I by concatenating
the point numbers from the first column together. Similarly,
the three-digit numbers in Table II correspond to three point
optimizations from Table I.

The results of the 63 multipoint optimizations shown in
Table II can be grouped into four ranges based on the value ob-
tained by the fitness function. These are the positive fitnesses,
the slightly negative fitnesses (fitnesses between 0 and -0.01),

# Fit # Fit # Fit # Fit
12 0.29 37 0.66 136 -931.6 247 -18.98
13 -339.8 45 0.05 137 -589.4 256 0.75
14 -12.92 46 0.03 145 -17.03 257 0.69
15 0.09 47 0.05 146 -17.03 267 0.64
16 0.16 56 -0.00 147 -19.49 345 -19.12
17 0.14 57 0.00 156 0.08 346 -19.09
23 0.97 67 0.00 157 0.11 347 -18.92
24 -12.31 123 -540.6 167 0.17 356 0.55
25 0.77 124 -19.30 234 -18.49 357 0.55
26 0.79 125 0.36 235 1.04 367 0.54
27 0.71 126 0.31 236 1.06 456 0.02
34 -12.52 127 0.20 237 1.04 457 0.07
35 0.56 134 -379.0 245 -18.90 467 0.02
36 0.53 135 -547.9 246 -16.61 567 -0.00

TABLE II: Fitness values for different two- and three-point
optimizations. Two digit topology numbers correspond to
two-point optimizations at the points in Table I, with each
digit indicating a point of optimization. Similarly, threedigit
topology numbers correspond to three-point optimization.

moderately negative fitnesses (fitnesses between -12 and 20),
and very negative fitnesses (fitnesses less than -100). Of the
63 total topologies, 41 were positive. As was the case with
the single point optimizations, these multipoint optimizations
with positive fitness increase performance over the baseline
topologies in a neighborhood of of the points of interest.
Since these points are trying to create gains in fitnesses at
multiple points, they do not perform as well at the original
seven single point of optimizations. However, many of these
multipoint optimized topologies do appear in the dominance
plot (which is highly, highly, fragmented). In particular,with
the addition of these multipoint optimized topologies, the
original set of topologies is completely dominated, except
for the fully connected graph which continues to dominate
when there is no computational delay. This indicates that
the multipoint optimizations are able to blend some of the
characteristics of successful graphs at different points and find
a topology that works well in a large range.

This wide-ranged improvement does not appear to always
be possible, however, as some multipoint optimizations are
negative. Despite positive fitnesses for many of the multipoint
optimizations, 22 were negative and fell into one of the three
ranges of negative fitnesses outlined above. The two fitnesses
in the slightly negative range come from points 56 and 567.
These two points are both multi-point problems containing
the two points chosen for comparison in the newly discovered
striated region of Figure 9. The other multipoint optimizations
that contain both points 5 and 6 may have found topologies
that result in an improvement in fitness at both points 5 and 6,
but this seems unlikely. The processed information volumesat
points 5 and 6 are much smaller than the processed information
volumes at points 1-4, due to the increased effects of entropic
drag. Thus, it seems more likely that optimizations at points
1-4 and both 5 and 6 are able to offset the negative fitness
results with a greater increase at the third point. This is
further supported by the fact that 567 has a negative fitness.
Since point 7 is subject to even more computational delay



and entropic drag than points 5 and 6, gains in processed
information volume at this point will be very small and unable
to offset the negative values at points 5 and 6. Despite the
fact that it was not possible to show improvement at both
points five and 6, there was slight improvement in fitness from
the original set of topologies at these points. Since the (1,1)
scale-free graphs already performed well in both regions, the
optimized topology at point 56 operates even better.

Of the 22 negative fitnesses, six of the multipoint opti-
mizations are in the very negative range. All six of these
multipoint optimizations contained both points 1 and 3. This
indicates that the behavior in these regions is rich enough that
it is impossible (or at least very unlikely) that a topology can
create a positive fitness at both points simultaneously. Fourteen
topologies are in the moderately negative region, and theseare
all the combinations containing both point 4 and one or more
of points 1, 2, and 3, with the exception of combination 134,
which is in the very negative region since it contains both
points 1 and 3.

Point 4 presents an interesting case that merits additional
discussion. In the baseline set of topologies this point wasin
the dominant region of the binary tree, serving as a boundary
between the scale-free topologies on one side, and the striated
region on the other, where (1,1) scale-free topologies also
performed well. The results in Table II indicate that the
optimization routine was unable to jointly optimize point 4
with one or more of points 1, 2, and 3 (which were are in
regions originally dominated by scale-free graphs). However,
these three points are able to be jointly optimized with points
5, 6, and 7, which are points originally in the banded region
(provided of course points 1 and 3 are not being jointly opti-
mized, as discussed above). Thus, is seems possible to achieve
a balance between the information-theoretic characteristics of
the first three points with those of the last three points, but
there is something about the characteristics of point 4 that
make it difficult to optimize jointly with the first three points.

Since the full set of baseline and optimized topologies
results in such a large number of different regions in the
decay-complexity plane, the question of covering the decay-
complexity plane with as few topologies as possible was
investigated. The first step was to chose a proper metric
to assess how well a given set of topologies performed.
The metric used here is the mean ratio between processed
information volume at each point for a set of topologies and
the maximum achieved processed information volume over
the entire set of baseline and optimized topologies. The next
step in the covering process was to search exhaustively over
all combinations of a fixed size from the set of candidate
topologies to generate the first few sets of topologies that
maximized the mean proportion of processed information
volume. This is another combinatorial optimization problem
for which only the first few iterations can be solved in a
reasonable amount of time. Covering solutions using up to
four total topologies are shown in Table III. Also shown in
Table III are a number of sample coverings using various
other sets of topologies, for comparison. The covering results

highlight the versatility of the three-point optimized topologies
in their ability to perform well over a large region in the decay-
complexity plane. In fact, a single three-point combination
is able to outperform the original baseline set of topologies.
These results also highlight the importance of considering
topologies with negative fitness in the covering problem, as
combinations 234 and 347 produced multi-point optimized
topologies that had negative fitness values.

Graph(s) % Max Proc. IV
Isolated 0.8439

Fully Connected 0.8630
(3,3) scale-free (13) 0.9096

Original 31 0.9362
Orig 31, one pt 0.9772

Orig 31, one & two pt 0.9863

356 0.9444
234,457 0.9742

Fully Conn., 234, 457 0.9846
Fully Conn., 27, 347, 457 0.9908

TABLE III: Table of percentage of maximum processed infor-
mation vulume for a given set of graphs. The top four rows are
graphs from the original set of 31 for comparison. The bottom
four rows are the optimal coverings by one, two, three, and
four graphs.

Overall, these results are encouraging for the development
of agile C2 controllers that use optimal (or at least better)
communication topologies and are able to change the topology
on the fly. In [7], it was posited that if one could accurately
estimate the information-theoretic characteristics of the C2
system, a good topology could be selected from the list of 31
topologies tested there. The results of the optimization routine
demonstrate that one can actively optimize around a nominal
operating point in the information-theoretic parameter space.
This optimization appears to perform well in a region near
this operating point, meaning that the optimizations should
be robust to uncertainty and error in the estimation of the
information-theoretic parameters. Additionally, it was shown
that it is possible to achieve improvement over the baseline
31 topologies using very few of these optimized topologies,
meaning that these could be used as a look-up table instead
of optimizing around the nominal operating point.

IV. CONCLUSION

Here, the application of information theory to C2 was
further developed. In particular, the quantification of the
information lost to entropic drag is calculated for a number
of sample scenarios. While these problems are far from
complex, they are a special case of the more general (hidden)
Markov model, and methods from there should prove useful
in the information-theoretic characterization of more complex
systems. Once this thread of research is completed, efficient
estimators for entropic drag can be combined with agile
control structures [8] to change the C2 topology on the fly
in order to optimize information volume, and thus situational
awareness. Additionally, these agile control structures should



be able adjust the abstraction level to further optimize the
information volume in the C2 system.

With regards to the information flow simulation work in
[7], here it was shown that the relationship between the
information-theoretic characteristics of the system being ob-
served and the relative performance of different communica-
tion topologies is more complex than previously demonstrated.
By looking at cases where the computational delay are not
integers, new regions of dominance were found. Interestingly,
the dominant topologies in these regions were of the scale-
free variety, which were previously only dominant in regions
with low computational delay and entropic drag. This indicates
that scale-free hierarchies (i.e., (1,1) scale-free graphs) have
a combination of features that allows them to operate well in
such disparate regions. This notion is supported by the results
of the optimization algorithm. The optimization algorithmwas
able to jointly optimize topologies in the scale-free dominant
regions and these regions of high computational delay and
entropic drag, but not in the intermediate region originally
dominated by the binary tree. The introduction of the gossip
algorithm into the information flow simulation adds another
facet to the problem of optimizing C2 topologies, as it is
clear from these results that the communications protocol
also has an affect on the dominance of a particular topology.
In particular, the gossip protocol appears to increase the
relative performance of scale-free graphs in regions of higher
computational delay and entropic drag.

Overall, these investigations are important steps in the
development of an agile C2 control system whose goal is
to maximize situational awareness in real-time by managing
the communication topology, communication protocol, and
abstraction level. Additional tools needed to achieve thisgoal
include information-theoretic characterization of C2 systems,
efficient state estimation and prediction, active diagnosis, the
control routines themselves, etc. Since the amount of informa-
tion that can be obtained by an actuator has a very specific
relationship on the efficacy of control that can be imposed by
that actuator [5], [6], we hypothesize that these concepts are
important in the broader context of control problems, as well.
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