

Game Theory, Adaptation, and Genetic Programming: Some Perspectives on Operations Research for Counter-IED Paper 055

Anthony H. Dekker

dekker@acm.org DSTO, Australia

Australian Government

Department of Defence

Defence Science and Technology Organisation

The IED Problem

photo from www.army.mil

Overview of this talk

A simple simulation model

Simple optimisation

Game theory

Adaptation

Genetic programming

A simple simulation model

Blue & Red options in real life

Blue

- IED detection
- IED countermeasures
- IED-resistant vehicles
- IED disposal techniques
- Route planning
- SOPs

Counterinsurgency (COIN)

Red

- IED type (buried, EFP, etc.),
- **Triggering device** (radio, wire, phone, pressure plate, IR, etc.)
- Placement options
- Camouflage options
- Decoy devices.

In both the simulation & real life ...

Simple optimisation

Assume a fixed Red strategy (random)

Construct a "fitness landscape" of Blue options

The peak is the best option (direct route)

Limitations of simple optimisation

Assumes a fixed Red strategy, but IEDs are **improvised**.

Ignores Red's **mind** – Red **chooses** a strategy.

Game theory – taking Red's mind into account

Has been used for anti-submarine warfare, cold-war strategy, etc.

Game theory uses a matrix of options & outcomes

Red Options

Blue Options

	Sand	Path	Road	Direct
Sand	37%	87%	93%	63%
Path	70%	0%	94%	41%
Road	66%	65%	1%	49%
Rock	81%	54%	66%	59%
Central	26%	10%	94%	19%
Random	44%	27%	41%	60%

Textbook methods exist for "solving" the matrix

The result is two "pessimistic" probability distributions over options

45% getting through is the best eac

Blue Options & probabilities

ach side can hope for		Sand 0.58	Road 0.29	Direct 0.12
Red Options & probabilities	Road 0.28	66%	1%	49%
	Central 0.29	26%	94%	19%
	Random 0.44	44%	41%	60%

Limitations of "textbook" game theory

For the IED problem, **the table is not fully known**, and is constantly changing as well.

"Standard" game theory is "single-shot." **The IED problem is an iterated game, where both sides adapt**, but neither side can do so instantly – buying equipment & changing SOPs takes time.

Counterinsurgency (COIN) is a nonzero-sum game – the desired solution is a "win-win" where insurgents stop placing IEDs, and counter-IED tactics should take COIN into account

Adaptation ...

... using the table options

Performance oscillates, as one or other side gets ahead

Trips

Crippling one side (delayed learning) benefits the other

Limitations of this approach

Ad-hoc learning mechanism – doesn't easily generalise to more complex problems.

Doesn't allow for innovation.

Genetic programming CAN produce innovation

Genetic programming (GP) has been used for ...

Simulation of cooperative hunting strategies in lions

Evolved X-band antenna (NASA)

Evolved strategies for Tic-Tac-Toe

"Genes" are tree-structured programs, not 0's & 1's

Oscillation again – sides take turns being "ahead"

Trips

The adaptivity effect is stronger this time

GP has potential for simulating adaptation & innovation

Summary

A simple model, for looking at basic principles

Simple optimisation ignores Red's mind

Simple game theory doesn't adapt

Adaptation yes, but innovation?

Yes! With GP!