

Applicability of Visual Analytics to Defence and Security Operations

(Presentation #42)

16th ICCRTS Québec, 21-23 June 2011

Valerie Lavigne Denis Gouin Innovative Interfaces and Interactions Group Intelligence and Information Section DRDC Valcartier

Presentation Plan

- Information Overload
- Introduction to Visual Analytics
- Key Organisations
- Advanced Visual Analytics Concepts
- Application to Defence and Security Operations
- Visual Analytics Resources

Information Overload – Scale of Things to Come

- Information (IDC, 2007):
 - In 2002, recorded media and electronic information flows generated about 22 EB (10¹⁸) of information
 - In 2006, the amount of digital information created, captured, and replicated was 161 EB
 - In 2010, the amount of information added annually to the digital universe will be about 988 EB (almost 1 ZB)

IDC (2007), The Expanding Digital Universe - A Forecast of Worldwide Information Growth through 2010

Kielman, J. and Thomas, J.J. (2008), Visual Analytics: A Global Collaboration

Information Overload – Scale of Things to Come

- Drivers of digital universe:
 - 70% of the universe is being produced by individuals
 - Organizations (businesses, agencies, governments, universities) produce 30% :
 - Walmart has a database of 0.5 PB; it captures 30,000,000 transactions/day
 - The growth is uneven
 - Today the United States accounts for 41% of the Universe; by 2010, the Asia Pacific region will be growing 40% faster than any of the other regions

IDC (2007), The Expanding Digital Universe - A Forecast of Worldwide Information Growth through 2010

Kielman, J. and Thomas, J.J. (2008), Visual Analytics: A Global Collaboration

Information Overload – Scale of Things to Come

- Kinds of data:
 - About 2 GB of digital information is being produced per person per year
 - 95% of the Digital Universe's information is unstructured
 - 25% of the digital information produced by 2010 will be images
 - By 2010, the number of e-mailboxes will reach 2 billion
 - The users will send 28 trillion e-mails/year, totaling about 6 EB of data

IDC (2007), The Expanding Digital Universe - A Forecast of Worldwide Information Growth through 2010 Kielman, J. and Thomas, J.J. (2008), Visual Analytics: A Global Collaboration

Visual Analytics Definition

examine evidence, infer meaning, test truth

"Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces."

> Thomas, J.J. and Cook, K.A., eds. (2005), Illuminating the Path: The Research and Development Agenda for Visual Analytics

ask questions, test hypothesis, filter results, explore information, record thinking process

take advantage of human brain's aptitude for visual pattern recognition

Visual Analytics R&D

Detecting the Expected --Discovering the UnexpectedTM

Key Organisations

VAC Views (2010)

Information Visualization

Napoleon's Invasion of Russia

Minard (1869)

Visual Perception

Color Matters

Stone (2006)

adapted from Healey (2009)

Kosara et al., 2001

Interaction – Response Time

• Three categories of responsiveness for interactivity:

Miller (1968), Card et al. (1991)

• 0.1 s : perceived as instantaneous

• 1.0 s : uninterrupted flow of though but perceived delays

• 10 s : for delay longer than that, users will want to do something else while waiting for the computer

Analytics

Geovisual Analytics

Linked Animal-Human Visual Analytics (LAHVA)

Maciejewski et al. (2008)

Network Visualization

NodeTrix Social Network Visualization

14

Hierachical Display

Stocks Treemap

SmartMoney (2010)

Temporal Visualization

NFL Drive Chart

Gunderson (2009)

Temporal Analytics

Lifelines2

Wang (2010)

Multimedia and Video Analytics

New Streams Event River

Multivariate Analysis

Parallel Sets

19

Maritime Domain Awareness

Shipping Density Landscapes

Oculus Info Inc

Willems et al. (2009)

Military Intelligence

Video and

Imagery

System of Systems

Entities +

Attributes

Oculus Info Inc

nSpace

Emergency Management

Precision Information Environments

Cyber Warfare

101 10.12

State Page

DEFENCE

DÉFENSE

Future Point Systems (2011)

NFlowVis

(a) Identification of compromised hosts using threshold adjust-(b) Graph visualization showing communication flows between source (red) and destination hosts (blue).

Mansmann et al. (2009)

Resources

- VADL
- InfoVis:Wiki
- VAC Views
- <u>ivac.org</u>

VAST Challenges

VAST(2008)

DÉFENSE

valerie.lavigne@drdc-rddc.gc.ca denis.gouin@drdc-rddc.gc.ca