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Abstract

Collective Command and Control (C2) in Multinational Civil-Military Oper-
ations pose stringent requirements on C2 Information Systems (C2ISs) interop-
erability as well as the higher level automated reasoning processes. One such
process, Case-Based Reasoning (CBR), depends on proper case formal represen-
tations and on the ability to assess similarity between an unfolding case (e.g. C2
situation) and known cases a priori in the case base. This paper explores the main
classes of similarity metrics and reflects on the most desirable features of an ideal
similarity measure in support of C2 situation analysis.

1 Introduction
The need to support Collective Command and Control (C2) in Multinational Civil-
Military Operations pose stringent requirements on C2 Information Systems (C2ISs)
interoperability as well as the higher level automated reasoning processes. While the
dynamics of military coalitions are known to be complex in nature[1], some issues with
supporting automated reasoning in C2ISs need to be considered in order to achieve ef-
fective support to C2. One such method of formal reasoning in computer science, Case-
Based Reasoning (CBR), has drawn attention over the years as a promising tool to sup-
port the sense-making process[2]. Applied research projects in DRDC Valcartier are
currently using CBR techniques to support C2 situation analysis and maritime anomaly
detection[3]. However, the potential impact of some sensitive aspects of CBR on C2
support has yet to be taken into account in these initiatives. Notably, CBR is highly
dependant on cases formal representation (knowledge representation) and the estab-
lishment of similarity between the problem under study and the problems base[4]. This
impacts the case retrieval process.

While many research initiatives in Valcartier addressed knowledge representation
from a broad perspective [5, 6, 3], or more particularly to CBR [7] none have tackled,
as a research focus, what would be the most sensible way to establish similarity for
C2 CBR. This paper aims at bringing into focus how CBR similarity is established,
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2 CASE-BASED REASONING BASIC CONCEPTS 2

exposing the many different strategies that currently exists, highlighting their strengths
and weaknesses and finally discussing the characteristics of a similarity metric suitable
to C2 situation analysis.

The paper is structured as follows: Section 2 explains CBR basic concepts, sec-
tion 3 describes some of the most prominent measures of similarity, section 4 brings
back into consideration how CBR paired with an appropriate measure of similarity can
support C2. and section 5 brings concluding remarks.

2 Case-based Reasoning Basic Concepts
A case-based reasoner solves current problems by using or adapting prior solutions to
old problems[8]. The general idea is to emulate the human reasoning process that relies
on past experiences to solve new problems, reusing past solutions. The classical exam-
ple considers how doctors establish diagnoses and treatments based on the successful
matching of apparent symptoms to known diseases, thus relying on past experience of
thousands of similar cases[9]. It is hypothesized in this approach that new cases (sets
of symptoms) will bear sufficient similarity with known cases (diseases with typical
symptoms) to allow an appropriate matching. Case-Based Reasoning (CBR) systems
thus require a storage component, the case base, and some means to match unfolding
cases to known cases in the case base. Typically, a known case, described by some
knowledge representation means is paired with a specific solution to address the prob-
lem at hand.

2.1 The Case-based Reasoning Cycle
Case-based Reasoning can also be explained by considering its CBR cycle (Figure 1),
termed the four Rs in Aamodt and Plaza[2]:

1. Retrieve similar cases to the problem description,

2. Reuse a solution suggested by a similar case,

3. Revise or adapt that solution to better fit the new problem,

4. Retain the new solution once it has been confirmed or validated.

Any new problem is first compared to other cases present in the case base in order
to retrieve one or more similar cases. The associated solutions are proposed for reuse
to the new problem. With the revise process, the solution is tested for success and
validated by an expert. At this point, the solution may have to be adapted in order to
solve the problem more efficiently. Finally, in the retain process, the validated, adapted
solution and the new problem are added to the case-base for future reuse.

2.2 CBR Challenges
Achieving CBR and applying the four Rs leads to a series of tasks and challenges,
among which:
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Figure 1: The CBR Reasoning Cycle

1. A standard problem template must be produced in order to describe and organize
problems in a way that will allow comparison.

2. In order to retrieve a similar problem from the case base’s problem space, there
must be a way to measure similarity between problems.

The challenge in building an appropriate problem template lies in carefully select-
ing attributes that accurately describe a given situation. Selecting too few attributes
might result in not being able to properly describe a number of emerging problems. A
lack of relevant attributes may also lead to difficulties in building an efficient similar-
ity measure. On the other hand, selecting too many attributes would make populating
problem templates tedious. A large amount of attributes would also possibly lead to
having many seldom used, less relevant attributes, which would add noise, and poten-
tial imprecision, to the similarity measure. In order to retrieve similar problems from
the case base, there must be a way to measure the similarity between problems. There
are many ways to measure similarity. Selecting a proper and efficient similarity mea-
sure is the central topic of this paper, and is discussed in greater details in the following
sections.
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3 Measures of Similarity
CBR relies on the establishment of similarity between a current case under assessment
and a case base. CBR, in effect, emulates part of the human reasoning process where
past experience is stored in memory for later retrieval. In cognitive psychology and
later in computer science, many research efforts have been deployed to discover the
most appropriate similarity measuring tool1 that will emulate the human recollection
of past experience (the case base).

This section presents these measuring tools grouped into five main categories:
Geometry-based, feature-based, structure-based, transformation-based and Informa-
tion content-based measures. There is no specific consensus on this classification
(exemplified when comparing Cunningham [4] and Goldstone et al [10]) that would
support the building of a similarity measure ontology, but it still helps in understanding
the major trends and efforts since the 1970s.

3.1 Geometry-based Measures
Geometry-based measures assess similarity as a function of distance between objects
in a n-dimensional euclidian space. That is, the smaller the distance between objects,
the greater is the similarity between them. Applied to CBR, cases from the case base
would be retrieved based on the distance with the new case (from the unfolding situa-
tion). Each of the n dimensions of the euclidian space correspond to specific features of
importance to the CBR system. In this metric approach, the similarity between a cur-
rent case Ccurrent and another one CCB from the case base is first established by porting
those into a metric space where they will be represented by points. Formally,

Ccurrent → P = (x1, . . . ,xn),CCB→ Q = (y1, . . . ,yn) (1)

where n is the number of relevant features of the CBR problem space (e.g. Situation
analysis, threat evaluation, anomaly detection, etc.) Similarity is then modeled as an
inverse function of distance between the geometric points counterparts:

sim(Ccurrent ,CCB) |= f ∝ 1/d : P×Q→ R (2)

In geometry, distance d can be established in different fashions, notably with Minkowski’s
distance function family

d(x,y) =

(
n

∑
i=1
|xi− yi|p

)1/p

(3)

Here, p determines the specific distance function. For example, p = 1 yields the
Manhattan distance (city-block distance), p= 2 yields the Euclidian distance and p=∞

yields the Chebyshev distance.
In CBR a classical algorithm that makes use of geometric distances is the K Nearest

Neighbor Rule.
1In this paper the term metric will be used for the measuring tools used in Geometry. From a pure

ontological perspective, a metric implies Geometry and thus precludes those measuring tools that are not
using that theory.
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3.1.1 K Nearest Neighbor Rule

The K Nearest Neighbor Rule (k-NNR) is a method of classification often used in
CBR. Its typical implementation is to assess the closeness of an unclassified object to
k labeled (classified or training) objects in a n-dimensional metric space. A decision
procedure assigns the unknown object to a specific class, based on the smallest average
euclidian distance with the k neighbors. Like CBR, k-NNR is often viewed as a lazy-
learning method since it defers its classification function until it is queried. It therefore
has less stringent requirements on a priori training but necessitates more computation
each time it is queried and thus requires more storage.

k-NNR’s performance is known to be sensitive to feature weighting, i.e. the deci-
sion procedure for classification is blurred if a specific feature is much more conspic-
uous than the others (two order of magnitude in feature scaling can produce dramatic
results). If normalization of the most salient features is an option to consider for better
performance of the algorithm, then the limiting factor becomes how faithful the feature
representation is. Indeed, if a specific feature in the conceptual (real-world) space is
known to be more conspicuous, then its the process of normalization to ease the k-
NNR process inevitably brings distortion. Also, as the number of features increases,
k-NNR’s performance tends to decrease as the distance between unclassified data and
other classes also decreases, resulting in higher uncertainty in the classification[11].

3.1.2 Cosine Similarity

The cosine similarity metric makes use of the same isomorphism expressed by Equa-
tion 1. From the two vectors

−→
P = 〈(0,0),P〉 and

−→
Q = 〈(0,0),Q〉, the cosine of the

angle they form is calculated. The resulting value is then reinterpreted in the concep-
tual space as a degree of similarity. Formally,

sim(Ccurrent ,CCB) |= f ∝ cos(
−→
P ,
−→
Q ). (4)

As the cosine value varies from −1 to 1, Three special meanings of similarity are
often attributed to values −1, 0 and 1, such that:

sim(Ccur.,CCB) =


Identical, if cos(

−→
P ,
−→
Q ) = 1;

Independent, if cos(
−→
P ,
−→
Q ) = 0;

Opposite, if cos(
−→
P ,
−→
Q ) =−1;

(dis)similar, otherwise.

3.1.3 Applicability of Geometry-based Measures to CBR

Geometry-based metrics constitute a strong body of measuring tools that is still ac-
tively being researched[12, 13]. Geometry provides in effect many efficient tools to
assess the distance between any two constructs embedded in the metric space. The real
challenge concerns the isomorphism that must be established between the CBR cases
and their geometric counterparts. That is, how can we ensure that a distance effectively
models the notion of similarity between cases as stated in Equation 2? Also, since the
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geometric model strongly leans to the establishment of a number of orthogonal dimen-
sions to establish the metric space, what can be said about those non-orthogonal case
features that are still determinant in the decision-making process (the Retrieve phase of
the CBR cycle)?

Perhaps one of the most serious blow against geometric models of similarity came
from Amos Tversky in 1977[14]. By considering the axiomatic foundation of Geome-
try, namely,

1. d(x,y)≥ 0; non-negativity,

2. d(x,y) = 0 iff x = y; identity,

3. d(x,y) = d(y,x); symmetry,

4. d(x,z)≤ d(x,y)+d(y,z); triangle inequality,

Tversky showed how the establishment of similarity in psycho-cognitive experi-
ments seemed not to follow geometry axioms, notably on identity, symmetry and tri-
angle inequality. This in effect questioned the validity of modeling similarity with Ge-
ometry from its very axiomatic foundation. Tversky then proposed his own measure of
similarity that spawned the feature-based family of similarity measures.

3.2 Feature-based Measures
To alleviate the apparent inadequacies of geometry-based metrics, Tversky proposed a
metric that makes use of the number of similar and dissimilar features between objects.
Tversky’s argument is based on the assumption that, in comparing two concepts A
and B for similarity, the more features they share, the more similar they are. He also
reflected that the more features distinguish them, then the more dissimilar they are. His
measuring tool

S(A,B) =
|A∩B|

|A∩B|+α · |A−B|+β · |B−A|
(5)

computes the similarity between A and B based on the number of features they share
and do not share. The weighting factors α and β take into account possible asymmet-
ric aspects of similarity between A and B. In considering, for example, the similarity
between a person and his portrait, it is acceptable (cognitively) to say that this portrait
resembles (is similar to) that person but not that the person resembles the portrait. Tver-
sky’s index can consider asymmetry where geometric models axiomatically cannot.

3.2.1 Jaccard Index and Dice’s Coefficient

Setting α = β = 1 in Equation 5 yields the Jaccard index,

SJ(A,B) =
|A∩B|
|A∪B|

(6)
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which has been used in Biology to establish resemblance between two community
species. Dice’s coefficient is linearly proportional to the Jaccard index, but gives twice
more weight on the shared attributes.

SD(A,B) =
2|A∩B|
|A|+ |B|

=
2 ·SJ(A,B)

1+SJ(A,B)
(7)

Tversky’s index, Jaccard index and Dice’s coefficient are essentially mathemati-
cally equivalent. They have been used for different purposes since their inception.
They stress out however the fact that feature weighting is an important aspect. Dice’s
coefficient certainly does that in highlighting the importance of similar attributes over
distinguishing ones. In her PhD dissertation, Rodriguez, recognizes that fact in propos-
ing her own Matching-Distance Model of similarity between spatial entity classes:

SMD(A,B) = ωp ·Sp(A,B)+ω f ·S f (A,B)+ωa ·Sa(A,B) (8)

where ωp, ω f and ωa are weights of the similarity values for parts, functions and
attributes respectively of geospatial concepts[15]. Rodriguez uses Tversky’s index,
tailored to geo-concepts.

3.2.2 Applicability of Feature-based Measures to CBR

Feature-based measures present a solution set that does not need to rely on Geometry
to compute similarity. Similarity in this model is established solely on the number of
shared and distinctive features of the objects (cases) under consideration. However, the
model in its general formulation is insensitive to feature weighting (or salience) in that
it only needs feature counts. This consideration must be accounted for by means of ap-
propriate attribute weights and is domain-dependant. For example, apple and bananas
may be judged to share the features of being sweet, of being fruits, and opposed in
features of color and shape. However, the feature of nutritiousness may be judged to be
of less importance than the other features and this would evidently affect the computed
similarity.

3.3 Structure-based measures
Case-based reasoning relies on Knowledge Representation Mechanisms (KRMs) to
represent the cases. Exemplar KRMs are Description Logics, the Entity-Relational
model, Modal logic, etc. Many of these depend on the fundamental relationship of
subsumption (the is-a relationship). Within a case representation, concepts related
by means of the subsumption relationship form graphs, revealing the inherent cases
structure. Structure-based measures are determined from this apparent structure. It is
hypothesized that two concepts present a high degree of similarity if they show a high
similarity in their respective graph topologies. A common parent node often serves as a
reference point to establish the distance, in edge or node counts, between the concepts
and thus their similarity.

We say that
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sim(Ccurrent ,CCB) |= f (NCcurrent ,NCCB)→ R (9)

where NCcurrent and NCCB represent nodes or edges count that separate concepts from
a certain reference point in the respective structures, often the root node or the least
upper bound (closest common parent node).

The model can also be extended to consider similarity between subgraphs, sug-
gesting that more complex cases can be compared for similarity. However, it must be
noted that structure-based measures are highly dependant on cases representations or
topology. The similarity measure can be greatly affected if different KRMs are used for
the case base and the current case representations. Even with a single KRM, there can
be significant modeling differences in cases representation that will blur the resulting
similarity measure.

3.4 Transformation-based Measures
Another approach to measure similarity between structures (e.g. character strings, gene
sequences, images, etc.) is to consider how many operations are needed to transform
the first structure into the other one. Hamming and Levenshtein distances are classical
measures in this realm, labeled edit distance measures. The Hamming distance re-
turns the number of symbols that are different between two sequences of equal length.
The Levenshtein distance yields the minimum number of edit operations (delete, in-
sert and substitute specifically) needed to morph a sequence into the other one. Many
other measures have been derived from Levenshtein’s by allowing different sets of edit
operations.

Transformation-based measures are particularly useful for comparing structures
that refer to the same domain (e.g. DNA sequences). However, they become use-
less when the structures represent distinct non-overlapping domains. Let’s consider for
example the strings "HHTHTTHT" and "THTHTTHT". Hamming’s and Levenshtein’s dis-
tance would both yield a value of 1, suggesting a rather strong similarity considering
their length. This makes sense if those strings represent two sequences of 8-tossing
of a coin, where "H" is "heads" and "T" is "tails". However, if those strings represent
codewords (granted that it is a weird choice for codewords) referring to different con-
cepts, such as Ship and Tank, then the similarity value of 1 no longer makes sense.
Transformation-based measures do not take into consideration the semantic content of
the structures. One has to be careful to ensure that the application domain where these
measures are to be used is well defined and suffers minimal heterogeneity.

3.5 Information Content-Based Measures
In defining what would become Information Theory, Shannon[16] defined the concept
of information content, expressed in Equation 10. Information content expresses the
degree of likeliness of a specific message coming from an information source. It is
therefore intimately linked to the probability of occurrence of that message. If we
average the information content over all the K messages generated by the source, we
obtain its entropy (Equation 11).
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IX (xk) =− logb p(xk) (10)

H(X) =−
K

∑
k=1

logb p(xk) (11)

Figure 2: A Taxonomy

To assess the similarity between concepts that belong to the same taxonomy, Resnik
proposed to use information content[17]. He reasoned that if we consider the taxon-
omy to be a source of information, that we could effectively attribute probabilities of
occurrence to the concepts of the taxonomy. As such, the root concept’s probability
value is 1.0 in the sense that any message coming will, at the very least, express the
semantic content of that upper concept. It is also natural in his view to consider that
the more concrete concepts in the taxonomy are less likely to occur, and thus have
lower probabilities. As an example, let’s consider Figure 2. Since it is a taxonomy,
the instantiation of any concept necessarily involves the root concept of Animal, ex-
plaining its probability of 1.0. Other probabilities were determined by the specific
probabilistic profile of that source2. From this, Resnik proposed that the degree of
similarity between concepts within a taxonomy corresponds to the information content
value of its closest common parent. In Figure 2, the similarity between a Siamese cat
and a Dog is − log2(1.0) = 0, and the similarity between a Pitbull and a Labrador is
− log2(0.4) = 0.92 (not normalized).

Resnik’s proposal does not take into account all of the tools provided by Informa-
tion Theory. It opens however the door to a whole new class of similarity measures
that could bring light to other important aspects in the establishment of similarity. The
key still relies though on proper modeling of the random variables that represent the
information source, the virtual channel by which a case is semantically mapped to the
other (what is the remaining average uncertainty on that mapping?) and their coupling
to form a virtual communication system where information loss is to be minimized.

2Resnik did not posit that the probabilities of the nodes at the same level should sum to the probability of
their closest parent.
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4 CBR Measure of Similarity for Command and Con-
trol

All of the similarity measure we presented in the previous section have advantages
and drawbacks, strengths and weaknesses. Making a choice on a specific approach
depends on a number of aspects, the first of which is the actual process that will make
use of it. Since CBR was in focus in this work, we ought to bring back the argument
that the choice of a similarity is a recognized challenge of this reasoning method (see
Section 2.2). Although this challenge could be tackled from the unique viewpoint of
CBR research, it is reasonable to think that the application domain for which this rea-
soning method was chosen may provide insights on what would be the most suitable
similarity measure. Command and Control (C2) in Multinational Civil-Military Oper-
ations is our application domain. A characterization of its facets, however incomplete,
will yield important clues on the applicability of particular measures of similarity. Al-
though such a characterization is out of scope of this paper, we consider that C2 is
complex in nature, which would necessarily be reflected in a formal representation. It
ensues that the CBR cases will be complex aggregates of atomic concepts. The es-
tablishment of cases similarity must thus take place between those aggregates. In this
sense, the measures comparing single concepts together either have to grow to consider
concept aggregates or be discarded altogether. Geometry-based, feature-based and in-
formation content-based classes of measures seem to feature such a growth potential
while transformation-based and structure-based seem to be more rigid. This rigidity
is explained by the fact that transformation-based measures rely on fixed sets of edit
operators that operate on sequences or strings; Structure-based measures are highly
dependant on the concept graph topology. Since we know that CBR formal cases rep-
resentation may fluctuate, especially under the C2 application domain, these measures
seem not to be the best candidates.

The potential of Geometry-based measures lies in the expression of Equation 2.
There is a formal recognition that concepts must be ported into a geometric space.
Although not formally recognized, those concepts can be aggregates. It is therefore
equally possible to compare ships with tanks (atomic) and C2 Courses of actions with
one another (complex or molecular). This aspect is also shared by feature-based models
where feature extraction is the cornerstone. While this shows the flexibility of such
similarity models, it also constitutes their own Achilles’ heel in that feature selection
is a delicate and critical process.

Resnik’s information content-based measure of similarity seems to suffer the same
limitation of transformation-based and structure-based approaches because it is set up
with an apparent dependance on the topology of the structure. However, Information
Theory in its whole brings many other tools that ought to be tested in their proper
context. First and foremost, Information Theory reflects on the uncertainty inherent
to any communication process. Thinking in terms of uncertainty in thus central to
the application of this theory. In these terms, we could see how the establishment
of similarity is a complex cognitive process that aims at determining how uncertain
it is to state that two things (let it be objects, CBR cases or C2 Coalition Situations)
are identical. This last approach constitute prospective work that is currently being
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researched in DRDC Valcartier.

5 Conclusion
Achieving adequate C2 in a contextual environment as heterogeneous and as demand-
ing as Multinational Civil-Military Operations requires appropriate C2 reasoning tools.
One such tool, CBR, is actively being researched in DRDC Valcartier. One critical as-
pect of CBR is the ability to establish similarity between new situations and those
expressed in the case base.

This paper exposed many different approaches to measure similarity and discussed
their applicability to CBR in the context of complex C2. Further research is being
conducted to assess the applicability of Information Theory to this domain.

References
[1] H. Irandoust and A. Benaskeur. Political, Cultural and Command & Control

Challenges in Coalitions. Canadian Defence Academy Press, In Press 2011.

[2] A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations, and system approaches. Artificial Intelligence Communications,
vol. 7, no. 1:29–59, 1994.

[3] Alexandre Bergeron Guyard. Case-based reasoning for maritime anomaly detec-
tion. In COGnitive systems with Interactive Sensors (COGIS), 2010.

[4] Padraig Cunningham. A taxonomy of similarity mechanisms for case-based rea-
soning. IEEE Transactions on Knowledge and Data Engineering, Vol. 21(No.
11):1532–1543, November 2009.

[5] Eric Dorion and Alexandre Bergeron Guyard. Situation analysis for the tactical
army commander: Final report. DRDC Valcartier TR 2010-174, 2010.

[6] Jean Roy. A knowledge-centric view of situation analysis. DRDC Valcartier TR
2005-419, 2007.

[7] Alexandre Bergeron Guyard and Jean Roy. Towards case-based reasoning for
maritime anomaly detection: A positioning paper. In Proceedings of The IASTED
International Conference on Intelligent Systems and Control, 2009.

[8] C.K. Reisbeck and R. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, 1989.

[9] L.E. Mujica, J. Vehi, and P. Kolakowski. A hybrid approach of knowledge-based
reasoning for structural assessment. Smart Material Struct., 14:1554–1562, 2005.

[10] Robert L. Goldstone and Ji Yun Son. Similarity, pages 13–36. Cambridge Uni-
versity Press, 2005.



REFERENCES 12

[11] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When
is "nearest neighbor" meaningful? In Catriel Beeri and Peter Buneman, editors,
Database Theory – ICDT’99, volume 1540 of Lecture Notes in Computer Science,
pages 217–235. Springer Berlin / Heidelberg, 1999.

[12] Dominic Widdows. Geometry and Meaning. CSLI Publications, 2004.

[13] Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. MIT Press,
2004.

[14] Amos Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.

[15] Maria Andrea Rodriguez. Assessing Semantic Similarity among Spatial Entity
Classes. PhD thesis, University of Maine, 2000.

[16] Claude Elwood Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423,623–656, 1948.

[17] Philip Resnik. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. Journal of
Artificial Intelligence Research, 11:95–130, 1999.


