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Abstract 
 

In modern day operations, planning has been an increasingly complex activity. 

This is especially true in civil-military scenarios, usually involving numerous and 

diverse actors as well as intertwining requirements that limit the solution space in non-

trivial ways. Under these circumstances, decision support systems are an essential tool 

that can also become a liability if not properly devised or employed, and one of the 

critical parts of the planning process is the definition of Course of Action (COA). 

Although this has been widely recognized by the planning and Decision Support 

Systems communities, there has been little progress in designing a comprehensive 

methodology for COA representation that supports the diverse aspects of the Command 

and Control cycle. For instance, formally capturing command intent in a way that 

allows for automated generation of alternative COAs is still an open research topic. This 

paper proposes an approach for effective COA representation by means of a 

probabilistic ontology, as a first step towards the goal of automating the operational 

planning process. The current research is focused in the planning process of a Joint 

Force Air Component Command. 

Keywords: Decision-making, probabilistic ontology, Course of Action 

representation 

1 Introduction 
 

In spite of the domain of discourse or the characteristics of decision-makers, the 

identification of courses of action is a key step when planning a complex activity.  

Factors such as the complexity of the activity, the time available for decision-making, 

and the level of uncertainty involved will have a strong impact on both the definition of 

Courses of Action (COA) and the choice of the most suitable one. The existence of 

various decision-models suggests how important it is for humans to seek methods that 

favor choosing the best option whenever possible (BOSSE; ROY; WARK, 2007) 

(PHILLIPS-WREN; ICHALKARANJE; JAIN, 2008). In spite of this diversity, there is 

no definitive approach to the process of decision-making, and most approaches avoid 



the exponential growth of the problem space by restricting the solution space and 

attempting to find the local optima (HAIDER; LEVIS, 2007). 

Decision-making in complex situations is usually performed under uncertainty, 

with cost and time constraints. Further, there is a significant potential for negative 

results due to the presence of multiple variables and conflicting goals. In such 

environments, the decision-maker very often cannot reach good results (ROWE; 

DAVIS, 1996). 

Decision Support Systems (DSS) are meant to address these issues, and have 

been subject of intense research and evaluation since the early 1970s (GORRY; 

SCOTT-MORTON, 1971). In the 80's, Herbert A. Simon (SIMON, 1987) suggested 

that artificial intelligence techniques could improve decision support systems by 

incorporating knowledge models and employing efficient AI-based algorithms (GUPTA 

et al., 2006). Others have also supported this idea (e.g., JACOB; MOORE; 

WHINSTON, 1988, LITTLE, 1986) resulting in the definition of an Intelligent 

Decision-Making Support System (i-DMSS). However, these new developments didn’t 

contribute to find a definitive approach to the problem (GUPTA et al., 2006), resulting 

instead in further fragmentation in the field as new methodologies aimed at specific 

types of problems were devised. 

Decision-makers in military operations, whether or not in the context of an 

armed conflict, also face the same above-cited issues. The process adopted by military 

organizations for operational planning determines steps to be performed to ensure that 

no aspect is overlooked. However, DSS researchers (e.g., THUNHOLM, 2006) have 

been questioning the efficacy of a rigid process for decision-making in situations where 

time is tightly restricted. In these situations, they argue, the traditional Command and 

Control (C2) decision cycle is not fast enough, indicating that other approaches should 

be considered since there is a hard limit on the ability of human planners to generate 

more than one efficient and effective course of action in a timely manner. 

Traditional methods of generating courses of action rely on analysts (HAIDER; 

LEVIS, 2007) to search through mission reports and intelligence information in order to 

update the situational picture and assess the expected results for each generated COA. 



As complexity grows, this inevitably results in a cognitive bottleneck that plagues most 

situational rooms in current operations, seriously limiting the decision-making process. 

A generic decision-making model of a military organization can be seen in 

Figure 1.1, where the military decision process starts with incoming orders from the 

higher levels in the command structure or requests from an organization (governmental 

or not). In the depicted process, updates coming from the environment trigger the 

decision cycle, which encompasses a series of important steps whose output is a set of 

possible actions. These actions form the basis for defining the set of missions to be 

executed by the forces in order to achieve the desired effects in the environment. 

Computational tools (e.g., simulation) usually support the definition of this set of 

missions, facilitating the assessment of how likely each combination of missions would 

achieve the desired effects. In other words, the output of the decision-making process is 

a coordinated action plan in time and space to be conducted into the environment. 

 

 

	  

 

 

FIGURE 1.1 A generic decision-making model of military organizations. 

As new information and outcomes from the environment accrue, it is essential to 

have a constant alignment between sub-processes, as well as between the planning and 

the development of COAs. Likewise, the final plan should be consistent with the orders 

sent from the upper echelon or requests by organizations. This dynamicity is a challenge 

for decision-makers, as new information may invalidate a course of action even during 

its planning phase, likely affecting the decision cycle and hence its ability to react to 

emerging situations. Thus, our research motivation is to devise an approach that allows 

Environment 

	  

Situation	  Assesment	  

Mission	  
Analysis	  

Decision	  
COA	  

Analysis	  

Execution	  

Outcomes	  	  Updates	  



semi-automated planning of alternative COAs that are reliable, efficient and opportune. 

As a case study, we are developing the approach in support of the decision making 

process within the Brazilian Joint Force Air Component’s C2 cycle.  

This document is organized as follows: Section 1 introduced the motivation for 

the ongoing research. Section 2 conveys a brief literature review, while the overall 

approach is explained in Section 3. Finally, Section 4 concludes with some remarks on 

the present work. 

2 Literature Review 
 

2.1 Military Decision-Making Process 
 

As Brazilian armed forces increase their participation in complex operations 

such as leading the United Nations contingent in Haiti or supporting flooding relief 

operations in the Santa Catarina state, their decision-making process is being forced to 

operate in environments for which it was not originally designed, such as peacekeeping 

operations, humanitarian assistance and monitoring of the national territory borders. In 

all these scenarios, military organizations must operate efficiently and effectively when 

receiving orders within its hierarchical structure or requests from other organizations.  

Upon receipt of orders or requests, a planning process occurs to define which 

missions to accomplish totally or partially given the existing guidance and available 

resources. In general terms, the Brazilian Armed Forces’ decision process is based 

largely on the US Joint Operation Planning process and its description will serve as the 

basis for the discussions in this work. Nonetheless, to withstand the issues mentioned in 

Section 1, this process must rely on decision support tools to ensure an optimal 

accomplishment of its goals. 

Figure 2.1 depicts the planning cycle of airspace activities in a joint operation, as 

described in manual JP 3-30 (DOD, 2010). In the diagram, a Warning Order/Planning 

Directive from the Mission Analysis task at the operational level (JTF) starts the tactical 

level decision process of a Joint Force Component. This triggers the following sub-

processes: Mission Analysis (tactical level); COA Development; COA Analysis/War 



Gaming; COA Comparison; and COA Approval. These will provide the basis for the 

generation of Supporting Plan/Order in conjunction with the operational level. 

 

FIGURE 2.1 Joint Operation Planning Process (DOD, 2010). 

The Joint Force Air Operations Center (JAOC) also receives a Warning 

Order/Planning Directive to develop its part of the mission planning, which has a 

different cycle timing (i.e., faster at the very lower tactical level). The JAOC’s battle 

rhythm depends on the type of campaign and the defined doctrine. As a joint tactical 

unit it has to handle all the resources available of many different organizations under its 

operational control.  

Each planning level (i.e., operational or tactical) will have distinct planning 

horizon perspectives and levels of detail (granularity) when defining their respective 

COAS. In general, actions at the operational level will be the goals for the tactical level. 

In order to reconcile these differences, it is important to understand the paradigm upon 

which the current military decision-making process is based: Effects Based Operation. 

 

2.2 Effects Based Operation - EBO 
 

Effects Based Operation (EBO) can be understood as coordinated sets of actions 

directed at shaping the behavior of friends, foes, and neutrals in peace, crisis, and war 



(SMITH, 2002). It aims at pursuing objectives defined in terms of human behavior 

described in multiple dimensions and multiple levels, as well as in terms of 

measurement of their success based on the produced behavior. Therefore, actions 

encompass all available sources of a national power and create effects in anyone 

observing it, not only the enemies. Effects can occur simultaneously on all levels of a 

military operation, in the political (domestic or external) and in the economic arenas as 

well, are interrelated, and cumulative over time. Also, they are both physical and 

psychological in nature. 

Since effects are interrelated, a created effect will tend to cascade into 

successions of indirect effects in ways that are not entirely predictable. In such 

environment, the main goal is to identify the most likely outcomes that are sufficient for 

planning purposes. Also, it is necessary to have some knowledge of the observers’ 

decision-making processes in order to understand the influences upon their decisions. 

During the evaluation of the operation it is necessary to adapt agilely to 

changing situations. Thus, the implemented process must be able to incorporate 

accruing information during the decision cycle.  

Figure 2.2 presents EBO in the three domains of conflict (SMITH, 2002). This 

research concentrates on the cognitive domain, encompassing all phenomena involved 

in the decision process. As implied in the second block of the diagram (“Deep” 

understanding of situation), prior knowledge and mental models are assets to develop an 

understanding on how uncertainty of the shared awareness and cognitive aspects (e.g. 

emotions, beliefs, etc.) impact the cause and effect relations, temporal relations, and 

dynamic futures of a situation. Thus, performing decision-making with partial 

information requires approaches that can capture such nuances. In Decision Theory the 

decision-maker preferences, expressed in utility measures, may be combined with 

probabilities (RUSSEL; NORVIG, 2002). 

Ontologies have been proposed as a tool to better express a domain in terms of 

its concepts, relations and rules (GUARINO, 1998). Within the military domain, 

researchers have suggested its use in support of the decision process (DARR; 

BENJAMIN; MAYER, 2009) (DORION; MATHEUS; KOKAR, 2005) (BOURY, 

2007). Ontologies may help in contextualizing an order that was received from the 



higher hierarchical level or even a request from a different organization during a civil-

military operation. One limitation of ontologies is the lack of a standardized, principled 

support of uncertainty (COSTA, 2005), which jeopardizes its use in situation where 

uncertainty plays a significant role. To address this limitation, our work relies on 

probabilistic ontologies, which extend ontologies to capture uncertainty in a principled 

and standardized way. 

 

FIGURE 2.2 The Three Domains in EBO (SMITH, 2002). 

2.3 Probabilistic Ontologies 
	  

A probabilistic ontology is an explicit, formal knowledge representation that 

extends regular ontologies to express: statistical regularities that characterize a domain; 

inconclusive, ambiguous, incomplete, unreliable and dissonant knowledge related to 

entities of the domain; and uncertainty about entities, properties, and relationships 

among those entities. Probabilistic ontologies are used for describing knowledge about a 

domain and the uncertainty associated with that knowledge in a principled, structured 

and shareable way (COSTA, 2005). 

There are many approaches to model probabilistic domains (COSTA, 2005) 

(DING; PENG; PAN, 2006) (PREDOIU; STUCKENSCHMIDT, 2008) (CARVALHO, 

2010). Traditional ontologies do not have built-in mechanisms for representing or 

inferring with uncertainty, requiring extending it with new classes, subclasses and 

properties that support uncertainty representation and reasoning. The PR-OWL 



probabilistic ontology language (COSTA 2005) and its new version PR-OWL 2 

(CARVALHO, 2010) are written in OWL and provide a consistent framework for 

representation and reasoning in domains with uncertainty. 

The mathematical basis for both PR-OWL, and its newer version is Multi-Entity 

Bayesian Networks - MEBN, which integrates first order logic with Bayesian 

probability. MEBN provides adequate formal support for representing a joint 

probability distribution over situations involving unbounded numbers of entities 

interacting in complex ways (LASKEY, 2008). This is a major requirement to achieve 

principled representation of the multiple, multi-modal sensor input and their 

compounded interactions. 

MEBN represents domain information as a collection of inter-related entities and 

their respective attributes. Knowledge about attributes of entities and their relationships 

is represented as a collection of repeatable patterns, known as MEBN Fragments 

(MFrags). A set of MFrags that collectively satisfies first-order logical constraints 

ensuring a unique joint probability distribution is a MEBN Theory (MTheory). Figure 

2.3 presents an MFrag that captures, among other things, the relationship between one 

or more requested actions (via the input node IsRequestedAction(act,obj,rgn,t)) and one 

of their accumulated effects (via the resident node AccumulatedEffect(act, obj, rgn) ). 

An MFrag can have three different types of nodes, which are depicted in Figure 

2.3. Resident nodes (yellow ovals in the figure) are the actual random variables that 

form the core subject of an MFrag. Input nodes (gray parallelograms in the figure) are 

basically “pointers” referencing to another MFrag’s resident node, providing a 

mechanism for connecting resident nodes between MFrags at instantiation time. Finally, 

Context nodes (green pentagons in the figure) are boolean random variables 

representing conditions that must be satisfied to make the probability distribution of an 

MFrag valid. By allowing uncertainty on context nodes, MEBN can represent several 

types of sophisticated uncertainty patterns, such as relational uncertainty or existence 

uncertainty. 

An MFrag can be seen as a “chunk of domain knowledge” that encapsulates a 

pattern that can be instantiated as many times as needed to represent a specific situation.  



 
FIGURE 2.3 MFrag exemplifying an action and its outcome. 

That is, the MFrags of an MTheory are templates from which a Bayesian 

Network (BN)  - technically, a Situation Specific Bayesian Network, or SSBN - can be 

formed in response to a query. This provides a composeable modeling framework, 

which can be used to represent the specificities of the decision-making process for 

building COAs.  

Figure 2.3 is a screen shot of UnBBayes (UNBBAYES, 2011)1, an open-source, 

Java-based probabilistic reasoner application developed jointly by Mason and the 

University of Brasilia. UnBBayes-MEBN provides both a graphical user interface for 

building MTheories and a probabilistic reasoner for performing inference in particular 

situations. UnBBayes-MEBN uses the PR-OWL probabilistic ontology language to 

represent MTheories. 

In our approach, we employ traditional and probabilistic ontologies to formally 

describe prior knowledge supporting EBO’s “Deep” understanding of situation. PR-

OWL interoperates with ontologies represented in OWL, providing a means to represent 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The	  UnBBayes	  version	  used	   in	  this	  paper	  was	  4.2.2,	  which	  was	  the	   latest	  available	   from	  the	  UnBBayes	  sourceforge	  page.	  The	  
authors	   acknowledge	   the	   kind	   support	   provided	  by	   the	  developers	  of	   the	  UnBBayes-‐MEBN	  plugin,	   Rommel	  Carvalho	   and	   Shou	  
Matsumoto.	  



statistical regularities and probabilistic information associated with attributes and 

relationships of entities represented in an ontology. That is, PR-OWL provides a 

structured, sharable, logically coherent formalism for describing knowledge about a 

domain and the associated uncertainty.  

2.4 Related Work 
 

Section 2.3 stated many important concepts from EBO (SMITH, 2002) that are 

being addressed in our research. The proposed approach includes the ability to: 

1. Model effects that are cumulative over time; 
2. Identify the most likely outcomes that are sufficient for planning purposes;	  
3. Implement a process that incorporates accruing information during the 

decision cycle; and	  
4. To develop an implementation that captures how uncertainty of the shared 

awareness and cognitive aspects impact the cause and effect relations, 
temporal relations and dynamic futures of a situation.	  

The work in (HAIDER; LEVIS, 2007) presents an approach for effective COA 

identification in dynamic and uncertain scenarios based on evolutionary algorithms. 

Uncertainty is modeled using timed influence nets (TIN), which are instances of 

Dynamic Bayesian Networks (DBNs). 

The work in (DARR; BENJAMIN; MAYER, 2009) describes an ontology to 

support modeling COA plans that are consistent with US Army and Marine Corps 

doctrine. It is structured into a core ontology that includes definitions of common COA 

planning concepts and multiple domain-specific ontologies. The work describes the 

context that a COA-ontology supports showing three phases during an operation with 

three possible COAs. The approach utilizes a forward chaining reasoning algorithm to 

identify the possible activities in each state and a backward chaining reasoning to 

determine what activities can achieve an end-phase outcome. 

Another aspect presented by the ontology is the Preferential Dominance that 

allows outcomes to be pruned, reducing the computational complexity. Although the 

paper only described a preliminary design of the ontology and some of the inference 

rules employed, it showed the possibilities of using ontologies to establish templates for 

COA planning. This can be an opportunity to improve automation in planning. 



The work presented in (MOFFAT; FELLOWS, 2010) analyses decision-making 

as the core of the new generation of simulation models. It focuses on models designed 

to respond the growing demand of the UK Ministry of Defense (MoD), which is 

pushing for a shortening of its decision cycle. The range of the models is from the single 

environment (tactical engagement) to the whole joint campaign, and across a number of 

coalition partners. The models are being implemented in WISE (Wargame 

Infrastructure and Simulation Environment) and address previously identified gaps in 

the representation of commanders’ decision-making process.  

Research on COA decision support tools includes (BÉLANGER; GUITOUNI; 

PAGEAU, 2009) and (WAGENHALS; HAIDER; LEVIS, 2006), which provide 

different approaches to help decision-makers generating effective COAs. Such tools 

improve the ability to generate alternative COAs, and are being used also to support 

COA analysis. 

The work in (MATHEUS et al., 2009) and (BOURY, 2007) describes an 

ontology representation of temporal aspects in scenarios that include threat evaluation 

or enemy modeling. In addition to addressing a knowledge representation problem, this 

work also considers the interoperability aspects that surface when putting together 

different domain representations formalized as OWL ontologies. 

Table 2.1 shows an overview of related work cited in this section and how they 

relate with the four EBO concepts that are emphasized in our approach. To address all 

the aspects raised above, our approach leverages many concepts and ideas implemented 

on these works. 

TABLE 2.1 Related Work Summary Based on the Four Addressed EBO Concepts 

 EBO Concept 

Work  1 2 3 4 

HAIDER; LEVIS, 2007 X  X X 

DARR; BENJAMIN; MAYER, 2009  X X X 

MOFFAT; FELLOWS, 2010  X X X 

BÉLANGER; GUITOUNI; PAGEAU, 2009  X X X 

WAGENHALS; HAIDER; LEVIS, 2006 X  X X 

MATHEUS et al, 2009   X X 

BOURY, 2007   X X 

 



3 Proposed Approach 
 

Our overall research aims to support the Joint Operation Planning Process 

(JOPP) at the level of a Joint Force Component Command (Section 2.1). Figure 3.1 

shows JOPP from the research development’s point of view. The process was divided 

into six steps, each one with its own role and task to be achieved. The present paper 

addresses the third step, namely the uncertainty representation during the process of 

COA determination. For the purpose of this work, the representation of command intent 

and the description of causal relations will be considered as given. The steps from 4 

through 6 are beyond the scope of this paper. 

 

FIGURE 3.1 – The six steps of the Joint Operations Planning Process. 

3.1 COA Development Input 
 

The process of COA development demands a high level of situation awareness.   

Command intent, intelligence reports, Geographic Information Systems support, and 

information about own units and resources are the main input of this step. As the OODA 

paradigm (Observe-Orient-Decide-Act) describes, in order to ask for information and to 

establish a COA it is important to understand the what the situation is and its meaning to 

one’s goals.  

As previously mentioned our approach relies on ontologies for describing and 

updating the necessary information to support a planning cell from a military 



organization in acquiring and maintaining a high level situational awareness. This 

requires a formal representation of concepts about time, space, actions, effects, 

resources and uncertainty over a dynamic future. Figure 3.2 presents a probabilistic 

ontology about COA development. 

The five MFrags of the COA MTheory describe the probabilistic part of the 

domain knowledge and show the causal relations between its main concepts.  

 

  

   

   

 

 

 

 

FIGURE 3.2 – COA MTheory. 

The Reference MFrag conveys the main concepts from the COA MTheory. 

Consequently, these concepts will serve as the basis for the major part of context nodes 

of other MFrags. The Activity MFrag describes the causal relation from an action over 

an object. One important component is the node ActionOutcome(act,obj,rgn,t), which 

represents the probability of the requested action during the COA determination. From 

the node’s parameters, one can derive that the outcome will be dependent on the action, 

the object of the action, the region, and the time where it occurs. 

The Effects MFrag describes the accumulated effect resulting from an action 

over an object located in some region of the scenario. This knowledge is captured by the 

node AccumulatedEffect(act,obj,rgn) and shows the model’s ability to represent effects 

that are cumulative over the time (1st EBO’s adressed concept). The Phase MFrag 

describes the likelihood of accomplishing the phase’s goal as a function of the 

accumulated effects on all objects in the defined space. Note that the input node 

Legend	  



AccumulatedEffect(act,obj,rgn) is in fact a pointer to the corresponding resident node in 

the Effect MFrag (same name). 

To illustrate how MEBN semantics work, let’s assume that a query was posed 

about a likelihood of accomplishing a phase goal given the accumulated effects of a 

combination of a given action-object-region. Further, let’s assume that this combination 

produced five accumulated effects. In this case, the SSBN formed to answer the query 

will have the Effect MFrag instantiated five times (i.e., one for each combination and 

associated effect) and the hasAccomplishedPhaseGoal(pha) will have five parent nodes 

that are copies of the AccumulatedEffect(act,obj,rgn), one for each combination of these 

parameters. 

The COA MFrag has the same idea as the Phase MFrag, but applied to the 

outcome of the interested COA. Finally, the Activity MFrag deals with the 4th item from 

the EBO’s adressed concepts. It shows a cause and effect relation in which the Action() 

and the ObjType() nodes influence the ActionOutcome() node, which is the expected 

outcome from the activity. 

As MEBN has the expressiveness of First Order Logic (LASKEY, 2008), it is 

important to constrain each MFrag to reduce the combinatorial explosion during the 

SSBN construction, when each random variable can be replaced by the possible 

instances from the knowledge base (KB). Also, because of MEBN’s open world 

assumption, all non mentioned literals are unknown (RUSSEL; NORVIG, 2002) and 

must be described in the context nodes. Thus, all available information should be 

provided to the KB in order to reduce the seach space and improve decidability. 

Each new instance added to the knowledge base can be processed during a 

Query. Therefore, the generated reports can be used to incorporate new information 

during the COA development, even after the planning has already started (3rd EBO’s 

adressed concept). The challenge is then to identify the most likely outcomes that are 

sufficient for planning (2nd EBO’s adressed concept). 

As in any Bayesian approach, a MEBN model includes the a priori knowledge 

stored in local probability distributions. At this point a query would result in the 

reasoner applying Bayes rule to calculate the marginal distributions. During the 

campaign, as new information accrues, the same process is used to calculate the 



posterior probabilities, which represent the best knowledge possible to support new 

planned actions given the information available. 

3.2 COA Determination  

The developed MTheory will help COA determination by answering queries 

about the evidence available in or provided to the knowledge base. The probabilistic 

part of the KB was modeled with seven classes as showed in Table 3.1. The model also 

has the local probability distribution tables (LPD) for the resident nodes of interest. 

Table 3.2 presents the Effect’s LPD as an example. 

After all instances and LPDs are included in the KB, a query can be posted to the 

model to assess a specific outcome. The Specific Situation Bayesian Network – SSBN 

(Laskey 2008) presented in Figure 3.4 is the result of a query on the planned outcome of 

the AirStrike phase [?hasAccomplishedPhaseGoal (?AirStrike )]. In the resulting 

SSBN, there are planned effects accumulated from T0, T1 and T2 for the activity 

Attack_Bridge to object Target1_Bridge and the activity Air_Defense_Suppression over 

object Target2_AAA. The same inference process will happen to the COA evaluation. 

TABLE 3.1 Knowledge base descriptions for COA determination 

Class Description Individuals 

Activity The possible type of missions during an operation Air_defense_Supression, 
Attack_Bridge, Attack_Runway, 
Reconnaisance 

COA The course of action we are interested in AirSuperiorityCampaign,  
Object The subject of the action Target1_Bridge, Target2_AAA 
Phase The phases within a COA AirStrike 
Region The region where the subject is Sector_ALFA1, Sector_GAMA2 
Report The evidence with the information about the 

Object, Activity, Phase, Region and TimeStep.  
Rpt0,Rpt1, Rpt2 

TimeStep The time when activities should occur (time is 
considered discrete) 

T0,T1,T2 

 

TABLE 3.2 Effect’s LPD 
 Action 

Effect Reccon Attack SEAD Reccon Attack SEAD Reccon Attack SEAD 
High .70 .60 .80 .60 .50 .55 .55 .20 .40 
Medium .20 .20 .10 .25 .30 .20 .30 .30 .35 
Low .05 .15 .05 .10 .15 .15 .10 .35 .20 
None .05 .05 .05 .05 .05 .10 .05 .15 .05 

Soft Medium Hard  
ObjType 

 



 

FIGURE 3.4 – SSBN for the query ?hasAccomplishedPhaseGoal(?AirStrike). 

The SSBN in Figure 3.4 does not fully support the decision process, since no 

information on utility and alternatives is considered. Thus, to provide full support to the 

COA determination process it is necessary to resort to Multi-Entity Decision Graphs 

(MEDGs) (LASKEY, 2008), which is the extension of MEBN that includes support to 

decision-making. MEDGs are for MEBNs what Influence Diagrams (ID) are for 

Bayesian Networks. 

Further, in response to a query, a MEDG will generate an influence diagram 

(technically, a Situation Specific Influence Diagram, or SSID). Figure 3.5 shows an 

influence diagram generated by UnBBayes after exporting the SSBN. 

 

FIGURE 3.5 – Influence Diagram for COA Determination. 

The COA representation based on hybrid ontologies written in PR-OWL has the 

ability to describe the characteristics of the domain of interest that would support the 



automated planning phase of the decision process, while addressing the four major 

aspects of the EBO.  

4 Conclusions 
 

The described work on COA representation addresses many aspects of Effects 

Based Operations representation. However, to fully support EBO it is necessary to have 

the ability to describe cumulative effects, temporal relations, dynamic futures, as well as 

the most likely outcomes that are sufficient for planning and incorporate novel 

information during the decision cycle. 

The present paper describes a work in progress for which there are, as yet, no 

validated results. The research presented here mainly addresses the cognitive domain of 

the problem, but includes verification and validation of the chosen COAs with support 

of Modeling and Simulation. The main approach is to improve the COA representation 

by means of a probabilistic ontology language to model the domain of interest and 

provide a description of the planning process. 

The adopted decision model was the Joint Operation Planning Process at the 

level of a Joint Force Component Command, which has to produce a complete COA 

with phases and actions to reach the desired end-state. The process was divided into six 

steps and this paper focuses on the third step, COA Determination representation. 

The model was implemented using PR-OWL (COSTA, 2005), a probabilistic 

ontology that is being supported by UnBBayes, a graphical modeling tool that includes 

a PR-OWL plugin (UNBBAYES, 2011). The knowledge base was described and a 

small example was introduced to show the applicability of the ontology modeling. 

Future work includes incorporating the planning formalism and also the 

command intent description. This will result in a complete description of the decision-

making process using a model that will reduce ambiguity and will support automated 

reasoning to generate conformant plans. 
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