16th ICCRTS
“Collective C2 in Multinational Civil-Military Operations”

Plan Failure Analysis and Plan Adaptation for Multi-Level Campaign Planning
Topic 2: Approaches and Organizations

Name of Author(s)
Jens Happe
MacDonald, Dettwiler and Associates (MDA)
13800 Commerce Parkway
Richmond, BC, Canada, V6V 2J3

Mohamad Allouche, Micheline Bélanger
R & D Defence Canada - Valcartier
2459 Pie XI North
Quebec, QC, Canada, G3J 1X5

Point of Contact
Jens Happe
MacDonald, Dettwiler and Associates (MDA)
13800 Commerce Parkway
Richmond, BC, Canada, V6V 2J3
e-mail: jhappe@mdacorporation.com

Abstract

The military campaign planning process involves multiple commanders at different levels of
command and with different areas of responsibility. In such a highly interdependent and data-intensive
activity, it becomes difficult to coordinate all plans and plan components to generate a joint plan free of
inconsistencies, or even to track the source of an inconsistency, let alone repair it. This paper presents a
plan management approach based on Hierarchical Task Networks. It demonstrates how this approach
can be developed into a system for visual analysis of plans, plan validation and monitoring, and
explains on a practical example how such a system can trace failures through different levels of
command, so as to detect and repair inconsistencies between plans.

1. Introduction

The complexity of today’s operations requires the involvement of a multidisciplinary team that can
be distributed in time and space. For example, different military environments may be working in
parallel on their respective part of a global plan. Then, considering that multiple plans may have to be
executed in parallel, different operational commanders as well as tactical commanders will require to
have real-time access to information about the execution of these different plans based on their
responsibilities. Accordingly, to support the Canadian Forces in their planning and monitoring
activities, this work addresses their need for an intuitive distributed, real-time multi-plan management
system. The system must analyze dependencies and possible conflicts between plans (e.g. regarding
resource use). It must adequately cater to commanders, operators and users responsible for operations
in different locations and at different levels of abstraction. It must respond to the highly dynamic and
uncertain situation in the operational theatre and allow plan adaptations and repairs. On the other hand,
it should not require military personnel to become knowledge experts, but instead it should display

plans and plan elements in familiar, easy to absorb, graphical and text-based representations. The
amount of information should be tailored to the respective operator’s need and include elaborate details
only if the operator specifically drills down for them. Finally, it is desirable to furnish a formal concept
for validating the correctness and executability of plans and attainment of the mission goals.

This work borrows largely from the theory of Hierarchical Task Networks (HTN), a branch of
Artificial Intelligence planning. It supports the concept of hierarchical plan decomposition and
instantiation of plan templates according to the given situation, locations, and resource assignments.
The pure HTN approach falls short of military needs, though, as it has no notion of goals or time (time
points and durations). It also does not provide for executing plans and actions in parallel. Our main
accomplishment is an adaptation of HTN to the needs of military plan execution, incorporating ideas
from Hierarchical Goal Analysis (HGA) (Hendy et al., 2002) and Effects-based Reasoning (Farrell,
2007) to represent and reason with goals and effects, as well as ideas from Scheduling Theory to reason
with time.

An integral part of this description is how these concepts are presented to military users in an
intuitive user interface. Among the features shown are: 1. a plan and goal hierarchy representing the
user’s scope of responsibility and allowing drill-down into lower-level goals and plans, 2. a map view
representing the spatial aspects of plans and/or goals, 3. a schedule view representing the temporal
allocation of plans and executing resources, 4. a browser view allowing cross-hierarchy navigation and
tracing of plan failures to the elements that caused them, and 5. user dialogues to facilitate plan
adaptations and changes. A proof-of-concept implementation of these features is available.

Furthermore, the paper describes approaches and algorithms for validating plans, as well as how the
user can interact with the system to monitor plans under execution, and investigate and repair failures.

2. The Military Campaign Planning Process

The Canadian Forces Operational Planning Process (CFOPP) (SJS 2008) is a coordinated and
coherent process for determining the best method of accomplishing objectives or for planning possible
future tasks. It is composed of 5 stages (Initiation, Orientation, COA Development, Plan Development
and Plan Review) and can be used to develop campaign plans, operations orders, contingency plans and
the detailed planning of each campaign phase, branch and sequel. The CFOPP can be employed for
deliberate planning as well as for rapid response planning (or crisis action planning):

e Deliberate planning consists of initiating and developing plans in anticipation of a known or
anticipated future events or circumstance. It is not subject to the immediate pressures of time or
prevailing threats;

e Rapid response planning consists of initiating and developing plans in response to a current or
developing crisis. It requires an expeditious co-ordination and approval.

Nowadays it is often very difficult to draw a firm distinction along classic staff lines between
operations and plans. Operations in the 21st century have become analogous to continuous planning,
and planning and operations have grown into a single integrated process (Hales et al. 2008).

Plans can be complex, involving many tasks, objectives and constraints. Managing the execution of
plans in a dynamic environment is a difficult problem. Challenges related to the dynamic management
of plans involve being able to allow different people with different responsibilities at different levels of
the organization to work simultaneously on a set of plans. Based on the task that they have to do (some
may want to consult plans, others to refine development of plans, and yet others to monitor plans, etc).
These people may have to work on the same plan at different levels of abstraction in terms of level of
detail related to the organizations, activities, timing, space and purpose. In a literature survey (Hunter
et al., 2007), we examined existing plan management systems and identified requirements for plan
management activities. We found that most existing software to support planning is focused on efficient

plan generation. In order to manage plans effectively, information tools should also support the
development of situation awareness through current, past and future plan activities in the battlefield. In
fact, making informed decisions involves being aware of the status of plans that are currently being
executed, as well as past and future plans. If it appears that a plan is not going to meet some objective,
it may be necessary to modify this plan while considering how these changes impact on other existing
plans. Accordingly, plan management involves activities of plan representation, analysis, forecasting,
and monitoring, which we examined in (Hunter et al., 2007).

2.1. Plan representation

A representation of a plan is a complete, unambiguous description of that plan at the appropriate
level of abstraction. The amount of detail included in this representation depends on the individual
communicating the plan, as well as the intended use of the plan. For example, representations of plans
must be very precise to be useful for computer-assisted plan management at the tactical level. On the
other hand, a rough sketch of units overlaying a map might provide sufficient detail for strategic
planning at a very high level. Plan representation involves formulating conventions for specifying all
aspects of a plan, including resources, assumptions, constraints, and objectives. It also includes
approaches to plan visualization.

2.2. Plan Analysis

Plan analysis refers to the process of assessing the quality of a plan. One aspect of plan analysis is
to look for flaws in the plan that will make the plan fail to achieve the desired goal. It involves:
e validating the mission as to the executability of plans and attainment of the desired outcomes
e analyzing dependencies between plans; finding redundant plans and plans blocking each other
e deriving links/dependencies between plan elements at a higher level from dependencies between
corresponding plan elements at a lower level
e identifying aspects that may have an impact (positive or negative) on a plan (e.g. geographical
characteristics, infrastructure needed, possible threats from enemy courses of action).
For example, plan analysis may cover resource availability/status, what-if analyses, error detection,
collision avoidance with other plans, and the impact of a plan on other plans.

2.3. Plan Forecasting

Plan forecasting refers to the capability to predict the outcome of a plan. A plan is typically
formulated to achieve a specific goal, but changes in the environment and actions of the adversary may
alter its outcome. Plan forecasting involves a method that predicts the most likely state of affairs at a
specific future time point. Since plans often have uncertain outcomes, plan projection may include:
Identifying expectations of future plan outcomes
Predicting future situations
Projecting the impact of unexpected events and outcomes
Projecting the impact of plan updates
Plan Status: Can the status of the plan be predicted at any point in time?

Impacts of changes on future plans: If changes in the execution or outcome of a plan affect the
future execution of another plan, can this dependence be identified and highlighted?

2.4. Plan Monitoring

Plan monitoring refers to the ability to observe the execution of a plan in real time. This requires
physical resources such as sensors for detecting unit locations, and the ability to communicate with

active units. Plan monitoring involves obtaining this information and using it to determine any changes
required to an active plan. Consequences of changes to an active plan may be significant and difficult
to predict. Plan monitoring involves comparing the current state of the plan with the state that would
have been predicted at the same stage prior to execution. Accordingly, plan monitoring covers:

e displaying status and performance of the plans currently running

displaying the progress made towards attaining the active goals

highlighting critical plans, i.e. those at risk of failing

displaying the impact of a plan change on one level to its parent plans on a higher level

analyzing plan failures and identifying possible causes of the failure.

3. How HTN can Support the Planning Process

HTN have existed for almost as long as STRIPS-based planners. They have been defined as early as
1975 (Tate 1975), (Sacerdoti 1975). However, the early approaches were framed more like heuristics;
only in 1994 has a formal theoretical framework been published (Erol, Hendler et al. 1994), specifying
syntax and semantics of HTN, and stating a sound and complete planning algorithm (Erol 1994). The
goal of HTN planning is to treat planning problems as humans approach them: by decomposing them
into a hierarchy of smaller and smaller subproblems, whereas the lowest-level problems have
elementary solutions. By contrast, the Classical Planning approach constructs a flat sequence of actions
to transform the initial state of the world into a desired goal state (Figure 1). Another goal was to bridge
the gap between planning (which belongs to the realm of Artificial Intelligence) and scheduling (which
belongs to the domain of Operations Research). HTN contribute to this, since a plan hierarchy specifies
a partial order of tasks; a temporal interpretation is straightforward.

St @ Goal
®.9.0.7., 000 @2
e o0 -

Figure 1 The Classical Planning approach

3.1. What are Hierarchical Task Networks?

This section briefly describes the theory of HTN. It largely follows (Erol, Hendler, & Nau, 1994)
and (Nau, 2004), but simplifies a few aspects for the sake of brevity and clarity in this paper.

3.1.3. Tasks

The central concept in HTN is that of a task. Unlike its more restricted definition in the military,
tasks comprise anything that needs to be accomplished, potentially from adjusting the wing angle on a
plane to preserving world peace. However, the application domain will determine the highest and
lowest level of abstraction. For instance, move(resource, start, dest) could be a task that sufficiently
describes a resource moving along some unspecified trajectory from start to dest. In other contexts (e.g.
in a tactical surveillance operation over an area of interest) this task may have to be subdivided along a
number of waypoints into subtasks for moving along individual straight or curved segments.

As the example in the previous paragraph shows, tasks have parameters specifying the resource

executing the task, the target(s), locations, and any other relevant objects. (It is usually understood that
each parameter has a specific domain defining what type(s) of objects it can stand for.) To allow
general, reusable rules for task decomposition, variables can be used in place of these parameters. In
the description below, we use x, ...,x, for variables and r, ...,r, for parameters that are either variables

or instantiating objects. Hence, tasks are formally written as expressions of the form t(r1 N)

Tasks at the lowest level of abstraction are called primitive. An operator is a rule that specifies
when and how a primitive task can be executed, and how it changes the current state. An action is a
ground instance of an operator, i.e. the execution of the primitive task using a particular resource in a
particular location etc. Actions and operators constitute the atomic level of state transitions, in that they
have no distinguishable internal structure.

By contrast, non-primitive tasks need to be decomposed. The rules that describe when a task can be
decomposed, and into what subtasks in what order, are called (decomposition) methods. The expressive
power of HTN lies in the way a non-primitive task can be broken into a hierarchy, down to primitive
tasks, which can then be executed by instantiating actions. The remaining sections will define this
formally.

3.1.1 States

A state is a set of ground atoms (predicates), describing all relevant static facts, and all dynamic
facts holding at a certain time. This includes not just the environment, but also the location and status
of own resources, information about the enemy, etc. HTN planning usually makes the closed-world
assumption, that is, if a state does not contain the predicate p, then —p (not p) is assumed to be true in

that state.

3.1.2. Operators and Actions

An operator is defined by:
e aunique name oper(xl‘ ...,xn), whereas (X, ..., Xn), lists all the variables occurring as parameters in

any of the other elements below, which need to be instantiated. For instance, fly(resource, start,
dest) could be an operator that can be instantiated by a variety of resources flying from any given
start location to any given destination.

e aprimitive task t(rl,. .. ,rm). The operator describes one possible way of executing this task.

e aset of preconditions p(r',,...,r'",), which are predicates that must be true in order to apply this

operator in the current state. For instance, at(resource, start) is one of the preconditions for
fly(resource, start, dest).
e Aset of effects q(r"l rk) which are predicates that hold after the operator has been applied.

For instance, at(resource, dest) is one of the effects of fly(resource, start, dest). Similarly to
Classical Planning, applying an operator can be regarded as a transition from a state containing all
preconditions, among other predicates, to a state in which all the specified effects are attained but
that is otherwise unchanged.
Actions are ground (fully instantiated) operators. As such, they correspond to actions in Classical
Planning. Since deciding on resource assignments, locations, routes etc. is part of the planning process,
ultimately all parameters are ground, and the end result, an executable plan, is a sequence of actions.

3.1.4. Constraints

A constraint in some way restricts the execution order of tasks. One can distinguish the following
types of constraints (see (Nau, 2004) for a formal definition):
e precedence constraint: specifying that a task must be executed before another;

e before-constraint: specifying that a predicate must be true when a task starts executing;

e after-constraint: specifying that a predicate must be true when a task finishes executing;

e Dbetween-constraint: specifying that a predicate must be true between the end of a task and the start
of another task.

3.1.5. Task Networks

A task network is a tuple (U,C) consisting of a set U of tasks and a set C of constraints. The network

is called primitive if all its tasks are primitive. The root node (or highest level) of a planning problem is
also a (usually non-primitive) task network; the objective of planning is to expand (or decompose) it
into a primitive task network, and then find a plan (a partially ordered set of actions) that “satisfies” it.

3.1.6. Methods

Methods state how a task can be decomposed into lower-level (sub-)tasks. A method specifies:
e anon-primitive taskt(r, ...,r,), which we call the head task of the method. For instance,

transfer(resource, payload, start, dest) could be a task that can be instantiated by different resources

carrying different types of loads (or even people) from a specific start location to a specific

destination.

e anetwork of subtasks. For instance, a suitable task network breaking down transfer(resource,
payload, start, dest) has three subtasks: load(resource, payload), fly(resource, start, dest), and
unload(resource, payload), and precedence constraints between the first and second, and between
the second and third subtask, to ensure the correct temporal order of execution.

The same non-primitive task can occur in multiple methods. This introduces nondeterminism, as
there may be more than one way to decompose a given instance of a task. To speed up the planning
process, one can specify preferences between methods.

In the context of planning, each method defines a reduction schema, or a recipe for decomposing a
given task network. The idea is as follows: Given a task network (U,C) containing a non-primitive task
t and a method m=(t,(U',C")):

e Remove t from U.

e Merge (U',C') into the given task network to obtain a new task network (U**,C'"). This operation
involves slightly more than taking the set union: namely, a unifying substitution must be applied to
the variables, and the constraints in C referring to t must be propagated into suitable constraints for
the tasks in U".

If we apply this process until there are no more non-primitive tasks, we get a primitive task network,
from which a plan can then be obtained.

Example. Assume the following tasks are defined:
e rescue(personnel, loc)— rescue some personnel stranded at location loc
e move(res, locl, loc2) — move a resource res from locl to loc2
e attach(resl, res2) — attach (load) a resource res2 to a resource resl.

The latter two can be executed by elementary actions, whereas the first task must be decomposed.
For instance, the following operator might be used to execute move(res, locl, loc2), in case res is an
aerial resource:

rescue(personnel, loc)

\ 4

move(res, start, loc) attach(res, personnel) move(res, loc, end)

N N

Figure 2 A Hierarchical Task Network Decomposing a Rescue Task

Operator: fly(res, from, to):
e Task: move(res, from, to)
e Precondition: is_at(res, from) at start of the executing action
e Effect: is_at(res, to).
Likewise, attach(resl, res2) might be decomposed thus, provided the resource to be attached are
people:
Operator: pick_up(res, person, at):
e Task: attach(res, person)
e Precondition: is_at(res, at) at start of the executing action
e Precondition: is_at(person, at) at start of the executing action
e Effect: is_attached(res, person).
The following, method for rescue(personnel, loc) shows how tasks are decomposed into more
elementary tasks:
Method: airlift(res, personnel, start, loc, end):
e Head Task: rescue(personnel, loc)
e Subtasks:
1. move(res, start, loc)
2. attach(res, personnel)
3. move(res, loc, end)
e Precedence constraints:
e 1. ends before 2. starts
e 2. ends before 3. starts
The task network defined by this method is shown schematically in Figure 2.

3.2. Why are HTN superior to Classical Planning?

HTN models an iterative planning process, which breaks down a high-level planning task with
incremental level of detail, with the ultimate output being a primitive plan network, whose lowest level
has elementary, executable actions. Classical reasoning with tasks and actions separated planning
(decomposing goals, creating actions and tasks) and scheduling (allocating tasks to resources and time
slots, obeying all constraints). HTN-based planning combines planning and scheduling: it selects tasks
and actions, and verifies constraints as they occur. It has been shown to solve planning problems much
more efficiently than classical planners (Nau, 2005).

In HTN, specifying the decomposition methods to break down tasks becomes a conceptually
separate activity from actually breaking down tasks into a plan hierarchy. In fact, it requires the skills
of a knowledge expert, and great care must be taken to take into account as much as possible all

probable situations and contexts. However, this initial investment pays off as the same task is
encountered again, possibly in slightly different situations with different parameter instances, as the
same methods can be re-used.

In the planning process, branch plans and alternative courses of action can be modelled and stored as
part of the same plan. Different environment conditions simply “activate” different branches of the
plan. Provided that several alternative decomposition methods have been developed for a task, it is also
easy to locally repair a plan if one of its currently executing tasks is likely to fail: simply decompose
the task using a different method.

The HTN planning approach is scalable (Ambite 2003): an additional level of detail can be easily
added. By contrast, classical planning suffers serious performance drops as the level of detail increases.

HTN can be extended to handle the following critical requirements for dynamic plan management in
a military setting:

Modelling and reasoning about resources
Representing and reasoning with time

Planning at different levels of abstraction
Conditional outcomes of actions

Uncertain outcomes of actions

Exogenous events

Incremental plan development

Dynamic real-time replanning (Mufioz-Avila 1996)
Dynamic execution monitoring.

3.3. Hierarchical Goal Analysis

Hierarchical Goal Analysis (HGA) (Hendy et al. 2002) is a relatively new approach for mission
planning. It has been used in such diverse applications as multiple UAV control (Kobierski 2004),
piloting a decision-making architecture on a modernized Halifax-class frigate (Chow 2006),
autonomous distributed computing for a network of microprocessors onboard a spacecraft (Hartmann
2004), and operational plan execution management for the 2010 Olympics (Hunter et al., 2008). Instead
of a task decomposition structure, it proposes a goal decomposition structure, in which goals form a
multi-level hierarchy. This introduces the desirable aspect of goals as something one can systematically
work towards attaining. At the lowest level, goals can be handed over to a human operator or to a
machine, who will execute a suitable plan to accomplish the given subgoal.

The advantage of goal-oriented mission planning over task-oriented planning in a military setting is
that it forces the operators to think in terms of reaching desired outcomes, rather than fulfilling a
scheduled set of chores. Secondly, the mission decomposition structure tends to be leaner when using
goals, rather than tasks. Finally, mission planners can not only traverse the goal hierarchy top-down (by
decomposing a higher-level goal). But they can also analyze it bottom-up (by propagating the desired
outcomes represented by the subgoals into higher-level goals); in experiments, this enabled them to
find gaps in the goal decomposition process that would have critically affected mission success.

3.4. Proposed Approach

A major contribution of our work is that it combines goal decomposition and HTN-based task
decomposition into a new approach that combines plans and goals into one hierarchy. Every node in the
hierarchy decomposes either a plan or a goal. Hence both goals and plans can appear at any level;
however, (Kobierski 2004) shows that higher levels of abstraction in a real mission tend to have—and
decompose—goals, and lower levels tend to predominantly feature plans.)

3.4.1. Development of a Plan Hierarchy from a Task Network

Given a task that has been decomposed into a task network using HTN decomposition, we derive a
plan hierarchy, or plan decomposition structure. We simply map each task into a plan consisting of the
partially ordered subset of all actions accomplishing any of its primitive tasks. By extension, we say
that the plan accomplishes the task that is mapped to it. The hierarchy results from the plan-subplan
relationship, which directly corresponds to the task-subtask relationship in the task networks. Since a
subplan can have more than one parent plan, the Plan Decomposition Structure is a Directed Acyclic
Graph (DAG). The level of a plan in this hierarchy defines its level of abstraction. The leaf nodes in
this hierarchy include the plans corresponding to the primitive tasks, which are singleton sets consisting
of the actions accomplishing these tasks. But unless the task network is primitive, it will contain tasks
that have not been decomposed; we map these to what we call unspecified plans. This is desirable in a
military setting with an incremental, distributed planning process. A commander can plan a mission
down to a certain level (e.g. operational), without specifying all the details on a lower (e.g. tactical)
level. At that level, the unspecified plans are “actions at the operational level of abstraction”. Without
any further planning, these plans will fail to execute, since they correspond to tasks for which no
decomposition method has been chosen yet. Later on, as the mission execution draws nearer and more
knowledge about the actual situation becomes known, commanders at a lower level can decompose
these tasks further and create a hierarchy of subplans and lower-level (tactical) actions, so as to make
the operational-level plans actually executable. In fact, planning at the lowest levels (e.g. trajectory
planning, collision avoidance) could be delegated to autonomous planners or controllers. This low-level
plan development is completely transparent to the high-level operators who are only concerned with a
“view” of the plan hierarchy down to their own level of abstraction, and that this plan will succeed.

3.4.2. Scheduling, Plan Execution and Monitoring

A plan can only be scheduled, decomposed and executed if:
e it has been assigned a decomposition method (see Section 3.1.6);
e all variable parameters used in the method are instantiated,
e it has at least one subplan implementing each of the subtasks mentioned in the method.

Once a plan is assigned a decomposition method, then a subplan must be specified, instantiating
each of the method's subtasks. A subtask can be instantiated by more than one subplan, which provides
contingencies or redundancies a commander may deem necessary. A user monitoring a plan can also
cancel or unschedule a plan (that has not finished executing) when needed.

A plan can have the following status values:

NOT_STARTED not yet started

RUNNING started but not yet completed, and a subplan is running or waiting
WAITING running but currently no subplan is running or waiting

BLOCKED cannot (continue to) execute because a constraint is violated
CANCELLED would be running but prematurely cancelled

UNSCHEDULED | would be running but has not been scheduled, or unscheduled before start

SUCCEEDED finished successfully

FAILED past scheduled end time; did not finish or did not produce desired effect(s)

The interval defining the start and end time of an action is explicitly specified. For a composite plan,
however, a default interval can be determined as the smallest interval containing all scheduled subplans'

time intervals. But the operator could assign an earlier start time and/or a later end time, e.g. to allow
for briefing and debriefing times at the beginning and end of a plan. For unspecified plans, an
approximate start and end time must be given.

Example. Continuing the example in Section 3.1.6, the following provides an executable plan for
the ground instantiation rescue(stranded_crew, crash_site) of the rescue task, using the instance
airlift(rescue_heli, stranded_crew, start, loc, end) of the airlift method. It obviously satisfies the
precedence constraints and is executable, provided that resource heli is located in Nitric at 11:15 and
that the people to be rescued are at the crash site:

Plan: RescuePlan
Start time 11:15, End time 12:45

Subplans:
e fly(heli, nitric, crash_site)
Start time 11:15, End time 12:00
e pick_up(heli, stranded_crew, crash_site)
Start time 12:00, End time 12:15
o fly(heli, crash_site, wahhabe)
Start time 12:15, End time 12:45
An execution schedule for this plan is shown in Figure 2.

airlift(heli, stranded_crew, nitric, crash_site, wahhabe)

e

pick_up(heli, . .
o : fly(heli, crash_site
stranded _crew 2 —=
fly(heli, nitric, crash_site) crash. site) wahhabe)
| | | | | | > |
I I I I I Itime v
11:15 12:00 12:15 12:45

Figure 3 Example of a decomposed Plan scheduled for Execution

3.4.3. Adding goals to the plan hierarchy

In classical planning, goals constitute an explicit set of desirable states of the world. HTN problems do
not specify goals explicitly, but we can equivalently define goals as predicates that should hold in the
end state brought about by the successful execution of plans. Hence we only need to check whether the
given goals are achieved or not, and if not, define tasks that will accomplish the goals and create plans
for them using the HTN technique as before.

As we have seen, the HGA approach proposes the idea of a Goal Decomposition Structure, in which
each goal can be decomposed into several subgoals. Again, a goal can be used more than once as a
subgoal, so the goal decomposition hierarchy is also a directed acyclic graph. Goals specify a level of
abstraction corresponding to the level at which the world is viewed. For instance, a goal of maintaining
the stability of national governments is very high-level, whereas a goal of safely flying an aircraft
through fog is low-level. Just as in the plan decomposition structure, the level of abstraction must
strictly decrease from goals to subgoals.

Alternatively, goals can also be assigned a plan that will be executed to attain these goals. This
provides a link between goal decomposition and plan decomposition. We require that a goal can only
be assigned one plan, but that a plan can be assigned to satisfy multiple goals.

@ Goals
Plans

Goal
Decomposition

Plan
Decomposition

Plan

E Assignment

Figure 4 Example of the mixed Goal/Plan Decomposition Hierarchy

The start and end time of a goal are not explicitly set. Instead, the “execution interval” of a goal is
defined as the smallest interval containing the execution intervals of all plans assigned to the goal or to
any of the subgoals in the hierarchy below it. The execution interval of a goal can be used to define a
timeout to monitor the accomplishment of this goal.

The status of a goal can take the following values:

NOT_STARTED not yet started

RUNNING started but not yet accomplished, and a subgoal or the assigned plan is executing

WAITING started but not yet accomplished, and no subgoal nor the assigned plan is executing

ACCOMPLISHED | Goal condition has been attained

FAILED Goal is past its end time, and condition has not (yet) been attained

There are many ways to define what constitutes accomplishment of a goal. One could require that
the subgoals have to be accomplished simultaneously, or each one just at some point during the
execution interval. Also, one must specify whether a goal can be accomplished after its end time. The
approach chosen here is as follows:

A goal is monitored beginning at its start time. If at any time the goal condition is satisfied on its
own (e.g. through an unrelated plan satisfying it as a side effect), the goal is considered accomplished

at that time. This holds also for unspecified goals. To keep the goal hierarchy coherent, once a specified
goal is accomplished, it remains so. If a plan is assigned to an unaccomplished goal, it must be
evaluated at the plan's end time. If the goal is still not accomplished, it is considered failed then.
However, it can be accomplished later on, due to a change in the goal condition or because all its
subgoals have been attained. This situation is very useful, as it will require no actions to be executed.

4. Prototype System

4.1. Architecture

<<component>>

Client

<<component>> {I

HierarchyViewer

<<component>>

View

<<component>> {I
PlanEditor

<<component>> {I

MapViewer

<<component>> {I

PlanViewer

<<component>> {I

Browser

|
UserEvent QJ

fl\ ViewUpdates

<<component>>
Controller
<<component>> $:| <<component>> ﬂ
Communicator Administrator
O O o
ExecutionReport | SituationReport ProjectedPlanData
<<component>> {I
Server
<<component>>
<<component>> ﬂ Controller <<component>> g

Communicator

e

<<component>> ﬂ

Validator

<<component>> g

Monitor

<<component>> g

Projector

-

N
Ext%Snal Data

PIanUpdate\‘)

.

? PlanData

<<component>>

Model

3]

<<component>> {I
HTNRepository

<<component>> {I

PlanDataRepository

<<component>> {I

EnvironmentDataRepository

<<component>> {I

UserDataRepository

PlanData

Figure 5 A UML Component Diagram of the Multi-plan Management System

The architecture of our prototype system, shown in Figure 5, resembles that of other distributed
plan management tools, such as COPlanS (COPIlanS 2007) However, as we will see, it uniquely
accommodates the HTN-based plan representation and plan management capabilities described earlier.
It is structured along a client-server design and implements a 3-tier Model/View/Controller paradigm.
The client side provides a user front end with its views of plans and plan elements. The server side is
responsible for storing and updating the plan structure (model). Controller functionality is found on
both server and client; hence the middle tier is split in two. Among other things, it provides the
communication between clients and server. In detail, the tiers comprise the following components:

View (client-side):

e Hierarchy viewer, Map viewer, Chart viewer, Browser, Editors: as described below.

Controller (client-side):

e Administrator module: allows user login and overall session management
e Communicator module: transmits individual users' updates as situation and plan execution reports,
and receives collective updates and projections from the server.

Controller (server-side):

e Validator: validates new and updated plan elements for consistency.

e Projector: projects the status of plans and changes in the environment to forecast plan outcomes
and goal attainment

e Monitor: periodically monitors the situation and its predicates, as well as changes in plan status at
the current time

e Communicator: receives situation and execution reports from clients, and transmits collective
updates and plan projections back to the clients

e Server |/O: reads plan and situation updates from external systems, databases and services.

Model (server-side):

HTN Repository: all predicates, rules, tasks and decomposition methods

Plan Repository: all plan and goal data

Environment Data Repository: all defined predicates and their histories over time

User Data Repository: data related to the users of the system, their login information, access
privileges, and responsibilities (level of abstraction).

4.2. Graphical User Interface

The main view (Figure 6) provides a concise but informative picture of the current situation, thus
facilitating real-time monitoring of plans as they unfold. It is shown at the initialization of the program
(after the user has logged in). In accordance with its purpose, it initially shows only the highest-level
information appropriate for the operator's level of abstraction. For instance, a strategic commander
would see a world map with all strategic plans, an operational commander would see their theatre of
operation, and a squadron leader might see the squadron members and the tactical plans assigned to
them. In general, a higher-level view is displayed as a summary of the union of the information from
the lower levels. Various capabilities for drill-down access to underlying levels exist, as listed below.

The goal and plan hierarchy is shown on the left-hand side of the screen. It forms the starting point
for navigating through goals, plans and plan elements. Therefore, it is always visible, and all other

views are aligned with the goals and plans shown in this view. The user can elect to display goals only,
or plans only, or both. In the following description, we will usually refer to the elements in the tree as
“goals”, but mean to include plans also.

£ RAP Dynamic Multi-Plan Management [jhappe] E]@
File

Show goals
Show level: |6 E
Show plans

¢ goal name="Platform Recovery
9 plan narme="f+" description="return t
plan name="f+1" description="
plan narme="f+2" description="g
¢ goal name="Echo at Home Base"
plan narme="f+2" description="g
¢ goal name="rescue at Home Base"
plan narme="f+1" description="re
¢ goal name="CSAR Extraction”
9 plan narme="f" description="rescue
plan name="f1"
9 goal name="Crew Evacuated” desc
plan name="f+1" description="re

CEanlevista

Time: 2000-06-13T11:18:247 (960895104)

[[} 1
7 5 H 1 i Play |Rewind| Loop
| Il | :00 11:00:00 12:00:00 13:00:00 14:00:00

Recognized Air Picture - lymamic Multi-Plan Management

Figure 6 Initial Main View and Goal Map View

By selecting a goal per mouse click, the user can show related information in the current view on the
Right-Hand Side (RHS) of the screen. It is possible to select multiple goals and show comparative or
aggregate information. This allows comparing goals or plans, or analyzing overlaps and dependencies
between plans. Any combination of goals, including goals at different levels of abstraction, and goals
with their subgoals, can be selected. There is no limit on the number of goals that can be selected.

Time Slider

A common element in many of the views is the time slider at the bottom of the right-hand side
panel. It encompasses the mission horizon; the slider knob indicates the current time. By dragging the
knob back in time, the state of all plans and goals in the past can be shown. Conversely, dragging the
knob into the future shows the projected state of the plans and goals, based on current assumptions and
estimates. The red markers on the time slider indicate the periods of interest (POI). To the right of the
slider, there are buttons for playing/pausing, rewinding, and looping through an animation.

Using colours to indicate plan and goal status

Many of the views use colours to visualize the execution status of plans and goals. The different
goal status values are as follows:
e Green, for agoal that has finished successfully, a current goal expected to finish successfully, or a

goal that is projected to execute successfully at its scheduled time in the future;
e Red for a finished goal that has failed, for a current goal expected to fail, or for a goal planned to be
executed in the future that cannot be executed successfully without plan repair;

. for a goal that is still predicted to finish successfully, but for which there is a change of
tendency, which renders it possible that the goal may fail without intervention.
. for a goal that is predicted to fail, (in missions being executed and those planned to be

executed in the future) but for which there is a change of tendency, which renders it possible that
the goal may succeed even without intervention.

Goal Map View

The system displays a map view at the top level of visualization (Figure 6). Initially, this view just
shows the background GIS, environment information (neutral, allied and enemy tracks), and a time
slider. The region and time interval shown correspond to the specific operator's ROl and POI.

As the user clicks on goals and plans in the Plan and Goal hierarchy, each goal and plan is shown on
the map view by the region of interest covered, each with a coloured circle or disc corresponding to its
current or forecast execution status. Furthermore, each goal's ROI is shown as a rectangle with a solid
border and a light semi-transparent fill colour.

Right-clicking on a goal's region or disc will bring up a context menu similar to that in the goal and
plan hierarchy view, with the possibility to expand this goal (show subgoals and -plans), edit the goal,
delete it, or switch the view.

£ RAP Dynamic Multi-Plan Management [jhappe] E]@
File

[Show goals
Show level: |6 E

Show plans

4 hlan name="f+" description="return fo h
plan narne="f+1" description="rescu -
plan name="f+2" description="escon

plan name="f+2" description="escort ret

7 plan name="f" descriplion="rescue dow
plan narme="f1" B
plan name="f+1" description="rescue rg Qf

| Time: 2000-06-13T11:18:24Z (960895104)

‘ -
] il 1 i Play |Rewind| Loop
i o) 4 :00 11:00:00 12:00:00 13:00:00 14:00:00

Recognized Air Picture - lymamic Multi-Plan Management

Figure 7 The Resource Map View shows Resources and Trajectories

Resource Map View

The resource map view is really the same as the Goal Map view: it shares the same functionality,
and it also displays a GIS map with environmental information. However, the foreground is different,
showing not goals and plans but rather the resources allocated to them, along with their trajectories (see
Figure 7). The resources are shown at the level of abstraction that best corresponds to the level of
abstraction of the plan. For instance, if an operational plan allocates a fleet of vessels, the fleet is shown
as one resource. The context menu allows the user to expand this resource and show lower-level
resources, e.g. the individual vessels. (Alternatively, the user can select subplans in the Plan and Goal
Hierarchy, of course.) Upon dragging the time slider or playing an animation, the display shows the
position of the resources as they move along their trajectories.

Schedule View

The schedule view displays a Gantt chart of tasks and resource allocations. The left-hand side of this
chart shows the selected goal(s) along with its allocated resources, performance measures and
subgoals/subplans. Each of these elements takes one row. For instance, Figure 8 shows the schedule
view shown upon selecting the action b-2. If this was the only plan selected in the goal and plan
hierarchy, only b-2 is shown in the Schedule View as well. For the action b-2, one resource, echo 2, is
allocated and the measure of performance, cost, is used. Being an action, b-2 has no subplans.

éw RAP Dynamic Multi-Plan Management [jhappe] E]@
File
o[o Pran: Restue crew I
Show goals : —
Show level: |6 E : §-Plan:f
Showplans o Plan f+1 [
] o= Plan: f+2 _
¢ goal name="Flatfarm Recoven : .]
¢ plan name="f+" description="return § ¢ Resiechoi _
plan name="+1" description="re{ el
plan narne="f+2" descripion="es ¢ Res: rescue heli [T i]
& goal name="Echo at Home Baze" : t
nlan name="f+2" description="gs fuel
% goal name="rescue at Home Base"| o Res echa 1]

plan name="f+1" description="re|
¢ goal name="CSAR Edraction”
¢ plan name="f" description="rescue
plan name="f1"
¢ goal name="Crew Evacuated” desec -
plan name="f+1" description="re

o Res rascue heli [[]

‘| [¥] Show Resource
< Il [*] | []Show mop 10:00 11:00 12:00 13:00

Recognized Air Picture - Dyrramic Multi-Plan Management

Figure 8 The Schedule View Displays Plans and their Resources

The right-hand side shows a schedule or graph for each row, depending on the item in that row:

e The blue bars in the rows containing a plan display the periods of time during which each plan is
executed. For an action, this is simply the interval from the action’s start time to its end time. For a
composite plan, it is determined as the union of the time intervals for all component subplans.

e Allocatable resources (units) are displayed with a coloured bar indicating their status. The light
green colour shows that the resource is available and not assigned to any plan; a blue colour shows
that the resource is scheduled for this particular plan; a dark gray colour indicates that the resource

is scheduled for this action but could not be allocated because of a resource conflict, whereas a light
gray colour shows that the resource is unavailable for assignment to any action.

For consumable resources (materiel), an area graph is displayed, showing the projected amount
remaining (in black) and the actual amount remaining. Thus the user can determine whether the
resource is consumed at the predicted rate.

Similar area graphs are used for the measures of performance: their predicted value and their actual
value over time.

By clicking on a row containing a (sub-)goal, the user can show details of this (sub-)goal, which are
inserted below the parent goal. Thus it is possible to select any level of subgoals and -plans for a
goal and have the information displayed in the schedule view. (The view will ensure that subplans
that have already been shown will only be shown once.) Likewise, the subresources of a resource
can be shown by clicking on the resource's row. This allows the user to drill down along these two
different hierarchies.

Higher-level resources are displayed by showing aggregate information of their subresources.

Browser View
£ RAP Dynamic Multi-Plan Management [jhappe] E]@
File
i
¥l : <<ﬂ , Add Edit Add Sub-PI
Show goals B _— ub-Plan
Show level: |6 E
Show plans
Plan: f+
goal name="Flatfarm Recoven i -
plan name="f+" description="return to ho Start: 11:00:00
plan name="f+1" description="rescue End: 114500

plan name="f+2" description="escort
goal name="Echo at Home Base"

plan name="f+2" description="escort
goal name="rescue at Home Base"

Duration: 00:45:.00
Assigned to: Mone

plan name="f+1" description="rescue Implements
goal name="CSAR Exraction’ - Method:
goal name="Crew Evacuated" descriptio
plan name="f+1" description="rescue Parent Plan(s)
plan name="f" description="rescue down
plan name="f1" Sub-plans: % }
Attains Goal(s)
Status
Predicted at end:

Resources used:
56:50:00.000N to 58:00:00.001N
27:40:00.006W to 23:50:00.001W
Preconditions: None
Precedences: starts at least 00:00:00 after and at most 20:00:00 after starts
Effects:

ROI:

Recognized Air Picture - Dynamic Multi-Plan Management

Figure 9 The Browser View, Showing a Plan and its HTN Task and Method
The browser view allows viewing plan elements with all their attributes. Any attributes that are

themselves plan elements—such as subgoals, plans, resources, tasks—can be clicked upon, which
updates the browser view to show this plan element. Thus it is possible to browse all information in a
number of hierarchies, notably the goal, plan, and resource hierarchies. Unlike the other views, the
browser view allows following the links between elements “across” the different hierarchies. Finally,
this is the view in which the HTN task of a plan can be viewed.

Figure 9 shows a plan in the browser view. It reveals that this plan instantiates the task

“escorted_fly” and that the hierarchical task network underlying the plan is given by the method
“escorted_fly_decomposition”. One can also see that the two subplans of f+ each instantiate one of the
“fly” subtasks. The complete browser view includes other information about goals and plans as well,
such as the current and the predicted plan status. Any highlighted (underlined) plan element is a
hyperlink, which provides the mentioned navigation capabilities. The view has standard browser
features such as a back and forward button to aid navigation; a history and bookmarks list could also be
implemented.

4.3. Plan adaptation

The system provides a simple functionality to edit elements of a plan. All plan and situation
elements can be edited by right-clicking on the desired element—whether in the hierarchy, map,
schedule or browser view. Whenever a suitable element is selected, the context menu will show an
option to edit it. Thus, the user can edit a plan element “on the spot”, for instance to repair a resource
conflict or adjust a plan whose execution is running late.

Edit Plan

Plan Hame: Echo 2 push

Parent:

Level of Abstraction: |7

Template: |mwe(r,|1,l2) | - |

Instantiates

Method: |move_action(r,I1,2) |~ |

Assigned to: | | - |

Start Time: |12:00:00

|
Duration: |o0:10:00 |
End Time: [12:10:00 |
Priority: o |

Parameter instances:

r AllocatableResource: |echu 2 | - |
11 lat: aE.833 lon: |27 BRY
12 lat: a6.4 lon: -28
Subplans:
Flan | Implements
-
[ox | [concer |

Figure 10 Editing a Plan

4.4. Plan failure analysis in the CSAR vignette

The most important aspect of plan analysis is analyzing the causes of plan failures, so a targeted
effort can be made to repair the plans. We distinguish several types of plan failures:
e Plan not expandable: the plan is unspecified, i.e. it does not yet implement any method

e Plan inconsistent: the plan hierarchy is invalid in some way. For instance, a plan might be a subplan
of another plan at the same or lower level of abstraction
e Plan incompletely expanded: the plan instantiates a method that has subtasks which are not yet
instantiated by subplans. To repair this failure, the commander must specify these subplans (or
delegate this task to a commander at the subtasks' level of abstraction)
e Plan cannot execute: usually because a constraint is violated or because the parent plan is blocked
e Plan unsuccessful: The plan executes, but one or more of the anticipated goals are not (expected to
be) attained
We obtain a notion of the status of a plan recursively from the status of its failure-free subplans (not
started, executing, successfully completed)..
For goals, we have the following reasons for failure:
e Goal not specified: no plan has been assigned to this goal or any of its subgoals
e Goal inconsistent: the goal hierarchy is invalid in some way. For instance, a subgoal might have a
predicate at the same or higher level of abstraction than the goal itself
e Goal incompletely expanded: this goal instantiates a method with subtasks which are not yet
specified. Repair of this failure is analogous to tasks
e Goal not attained: Some expectation involving the goal itself or some subgoal fails to be true

5. Conclusion and Discussion

This paper reports on an underlying theory for planning and plan representation and on a new
approach and a human-computer interface for managing of multiple distributed plans at multiple levels
of abstraction. At this point, it was not our goal to produce a full-fledged operational distributed plan
management system, but rather to investigate how the new approach can address the requirements of
military planning. In particular, we implemented a prototype that represents multiple, possibly
conflicting plans, and identifies sources of conflicts or dependencies between plans. It offers new
perspectives for military users and showcases the benefits of different representations of plans at
multiple levels of abstraction.

The proposed plan representation structure is hierarchical and based on a combination of
Hierarchical Task Networks and Hierarchical Goal Analysis. It is sufficiently generic and flexible to
represent plans in many domains, and at all levels of abstraction.. The domain-specific knowledge
really resides in the goal and task decomposition methods and can be instantiated by, say, land-based or
joint domains, or even non-military planning applications. The results of this paper and the benefits of
the system are applicable, as long as there is a need for hierarchical (rather than linear procedural)
planning and a mix of levels of abstraction for representing plans.

The proposed concept and system naturally support a distributed planning process, in which high-
level goals and plans can be specified first and then validated and projected on a high level. The
components of the high-level plans can be distributed to other planners at a later time, who fill in plan
details at lower levels. This process can proceed in parallel, with all users immediately seeing the
results and possible conflicts caused by other users changing plans.

As future work, we would suggest more research on suitable visual concepts to support planning and
to automatically propose suitable plans for given planning problems. Intuitive functionality is key to
obtaining acceptance among military users, who are used to a graphical, drawing-board-style plan
development environment.

References

Ambite, J. L. (2003). "Hierarchical Task Network (HTN) Planning.” Course Presentation, from
http://www.isi.edu/~blythe/cs541/2003-9-18-htn.pdf.

http://www.isi.edu/~blythe/cs541/2003-9-18-htn.pdf�

Chow, R., R. Kobierski, C. Coates, J. Crebolder (2006). Applied Comparison Between Hierarchical
Goal Analysis and Mission, Function and Task Analysis. Proceedings of the Human Factors and
Ergonomics Society 50th Annual Meeting.

COPIlanS (2007) — Collaborative Operations Planning System. Fact Sheet 1S-228-A, DRDC Valcartier.
http://www.valcartier.drdc-rddc.gc.ca/sciences/coplans-ft-fs-eng.asp.

Erol, K., D. Nau, J. Hendler (1994). UMCP: A Sound and Complete Planning Procedure for
Hierarchical Task-Network Planning. Proceedings of The International Conference on Al Planning
Systems (AIPS), Chicago, IL.

Erol, K., J. Hendler, D. Nau (1994). Semantics for Hierarchical Task-Network Planning. College Park,
Maryland, University of Maryland at College Park: 28.

Farrell, P. S. E. (2007). Control Theory Perspective of Effects-Based Thinking and Operations:
Modelling “Operations” as a Feedback Control System Tech. Report TR 2007-168, DRDC Ottawa,
Canada.

Hales, D. and Scipione, A. (2008), Joint Command Decision Support for the 21st Century (JCDS21)
Technology Demonstration Project - Concept of Operations (CONOPs), DRDC. CRDC-CR-2008-02.

Hartmann, L. (2004). A VHDL Implementation of an Onboard Autonomy Solution, Canadian Space
Agency.

Hendy, K. C., Beevis, D., Lichacz, F., & Edwards, J. L. (2002). Analyzing the cognitive system from a
perceptual control theory point of view. In M. D. McNeese & M. A. Vidulich (Eds.), Cognitive systems
engineering in military aviation environments: Avoiding cogminutia fragmentosa! (pp. 201-250).
Dayton, OH: Wright-Patterson AFB.

Hunter, A., J. Happe, M. Dutkiewicz (2007). Dynamic Plan Management in the Context of a
Recognized Air Picture, Contract Report CR 2007-446, DRDC Valcartier, Canada.

Hunter, A., J. Happe et al. (2008). Execution Management and Plan Adaptation. Tech. Report, DRDC
Valcartier, Canada.

Kobierski, R. (2004). Hierarchical Goal Analysis and Performance Modelling for the Control of
Multiple UAVS/UCAVs from an Airborne Platform, DRDC Toronto.

Mufioz-Avila, H., F. Weberskirch (1996). A Specification of the Domain of Process Planning:
Properties, Problems and Solutions. Technical Report, Centre for Learning Systems and Applications,
University of Kaiserslautern, Germany.

Nau, D., M. Ghallab, P. Traverso (2004). Automated Planning: Theory and Practice, Elsevier Science &
Technology.

Nau, D. (2005). May all your plans succeed! Invited talk. National Conference on Artificial Intelligence

(AAAI 2005).

Sacerdoti, E. D. (1975). The Nonlinear Nature of Plans. Fourth International Joint Conference on
Artificial Intelligence (IJCAI).

Strategic Joint Staff (SJS). (2008). The Canadian Forces Operational Planning Process (OPP).
Department of National Defence. Government of Canada. B-GJ-005-500/FP-000.

Tate, A. (1975). Project Planning Using a Hierarchic Non-Linear Planner. Research Report, Dept. of
Artificial Intelligence, University of Edinburgh.

	Introduction
	The Military Campaign Planning Process
	Plan representation
	Plan Analysis
	Plan Forecasting
	Plan Monitoring

	How HTN can Support the Planning Process
	What are Hierarchical Task Networks?
	3.1.3. Tasks
	3.1.1 States
	3.1.2. Operators and Actions
	3.1.4. Constraints
	3.1.5. Task Networks
	3.1.6. Methods

	Why are HTN superior to Classical Planning?
	Hierarchical Goal Analysis
	Proposed Approach
	3.4.1. Development of a Plan Hierarchy from a Task Network
	3.4.2. Scheduling, Plan Execution and Monitoring
	3.4.3. Adding goals to the plan hierarchy

	Prototype System
	Architecture
	Graphical User Interface
	Plan adaptation
	Plan failure analysis in the CSAR vignette

	5. Conclusion and Discussion

