
1 
 

16th ICCRTS 
“Collective C2 in Multinational Civil-Military Operations

Topic 7: Modeling and Simulation 
Topic 1: Concepts, Theory, and Policy 

” 
Title: Organizational Agility Model and Simulation 

Topic 2: Approaches and Organization 

Authors: Philip S. E. Farrell, Ph.D. 
Defence R&D Canada 
Constitution Building 
305 Rideau Street 

Ottawa, Ontario, Canada, K1A 0K2 
(613) 995 9791 

philip.farrell@drdc-rddc.gc.ca  
 
Multiple Governance and Management (GM) approaches such as de-conflicted, coordinated, 
collaborative, and “edge” may all be required during complex endeavours in order to meet 
mission objectives effectively and efficiently.  GM Approach agility is defined as an entity’s 
(individual, team, organization, or collective) ability to transition between one GM Approach 
and another and to maintain that approach in the presence of disturbances, uncertainty, and self-
damage.  A conceptual model for GM Approach transitions is programmed into a computer 
simulation, demonstrating the dynamic nature of the agility concept. The model is refined using 
simulation, yielding a logical and internally consistent dynamic model that obeys a GM 
Approach Space “Law of Motion”, and employs behaviours improve the transition response. 
 
The model and simulation was not developed to find numerical equivalents for socio-technical-
organizational complexities.  Rather this study provides a means to visualize the transition 
yielding key insights into GM Approach agility.  For instance, entity size, resistance to transition, 
and stiffness (comfort level at a particular approach) determine the transition system’s stability 
and response profile.  Also, compensatory, anticipatory, adaptive, and learning behaviours 
(methods) are employed to modify stiffness and resistance, stabilize naturally unstable systems, 
improve responsiveness, provide resilience and known and unknown disturbance rejection, as 
well as optimize transition effectiveness and efficiency.  Eventually, the model and simulation 
may be used to formulate recommendations for GM Approach agility strategic investments as 
part of comprehensive approaches to complex endeavours. 
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Introduction 
 
In 2010 the world experienced major natural disasters (Haiti and Pakistan Floods), major 
conflicts (Afghanistan, Iraq), and major events (Olympics, G8 and G20 summits).  These events 
have been characterised as complex endeavours: both complex in the environment and in “self” 
(SAS-065, 2010)1.  The response to these events involved multiple organizations forming a 
collective whose overall objective was to minimize disruptions and return to or maintain social 
stability.  The collective govern and manage themselves so that they work together to achieve the 
desired outcomes.  However, different Governance and Management (GM) Approaches2

 

 or 
styles may be required at different points in time depending on the level of situation complexity.  
That is, no single GM Approach may be effective or efficient for all phases of the endeavour. 

 
a)          b) 

 
c) 

Figure 1: Hypothetical Complexity Profiles for Three Different Complex Endeavours 
 
For example, if an event’s complexity level could be measured over time, a high intensity 
conflict may look like Figure 1a with four lines of operation, Defence, Diplomacy, Development, 
and Commerce (Government_of_Canada, 2005) and overlapping complexity profiles.  The 
hypothetical profile in Figure 1b shows some complexity changes for a major sporting event or 

                                                 
1 Environment complexity involves the stability and predictability of the situation (to name a few from the 
reference) while “self” complexity includes the number of entities within a collective that have different values, 
cultures, languages, and levels of trust (to name a few from the reference). 
2 Governance and Management (GM) is meant to be a more generic term than Command and Control (C2), which 
would resonate with collectives comprising both non-military and military partners. 
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heads of state meeting where the hope is to conduct an event that is well under control with 
minimal disturbances requiring a de-conflicted GM Approach.  GM Approach agility suggests 
that a collective would need to transition to a collaborative GM Approach to successfully cope 
with any significant disturbances that cause an increase in complexity, in order to reduce the 
situation complexity. 
 
Figure 1c shows a hypothetical Natural Disaster complexity profile.  Superimposed are plausible 
GM Approaches required as the event unfolds.  At the beginning of the event (tsunami, 
earthquake, etc.) there may be total chaos with no GM coordination within the collective at all 
(conflicted approach).  However, edge-like approaches may be required to deal with the chaos.  
Over time a collective moves from edge to collaborative, coordinated, and finally de-conflicted, 
which is the most effective and efficient approach particularly in stable situations.  A complete 
discussion of the various approaches and their definitions are found in (SAS-065, 2010). 
 
Why introduce the notion of GM Approach agility?  Why is it necessary to transition from one 
approach to another?  Why not operate at an edge GM Approach all the time?  While operating 
at edge may be effective in high complexity situations they require significant strategic and long-
term investments in policies, processes, human resources, technologies, infrastructure, and 
training in order for the organizations to work together.  Also, edge approaches are excessive for 
simpler situations that only require de-conflicted, for example.  Thus, GM Approach agility 
provides the means to select a GM Approach commensurate with situation complexity, thus 
maximizing effectiveness and efficiency. 
 
This notion of agility involves motion in the GM Approach space over time and therefore lends 
itself to modelling and simulation.  Modelling and simulation forces us to develop a logical 
concept in terms of variables as a function of time.   It helps us visualize the relationships 
between GM Approaches and their dimensions, organizational forces involved in transitioning in 
the GM Approach space, key organizational parameters and parameter modifiers (entity 
behaviours or methods) related to the transition, and GM Approach effectiveness and efficiency.  
It helps us articulate those parameters and modifiers that make the collective more or less agile. 
 
This paper reports on the development of a model and simulation for GM Approach agility 
defined as the ability to transition from one GM Approach to another as required by situation 
complexity.  The paper begins with defining GM Approach agility and introducing the GM 
Approach space.  The second section provides an analogy between transitions in the GM 
Approach space to motion in Physical space.  This description leads to identifying entity size, 
stiffness, and resistance as key parameters that determine the entity’s stability and 
responsiveness as it moves through the GM Approach space.  The third section employs Control 
Theory to solve a classical motion tracking problem using compensatory, anticipatory, adaptive, 
and learning behaviours.  These behaviours modify the size, resistance, and stiffness parameters 
that lead to improved robustness and responsiveness as well as resilience and disturbance 
rejection.  The final section discusses GM Approach effectiveness and efficiency. 
 
GM Approach Agility Definition and GM Approach Space 
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The first paper of the Organizational Agility series used a spring-mass-damper motion system as 
a metaphor for the organization’s dynamic response, and identified twelve organizational 
attributes related to agility: configuration potential, robustness, resilience, responsiveness, 
innovation, flexibility, size, resistance/willingness to change, compensatory, anticipatory, 
adaptive, and learning methods (Farrell & Connell, 2010).  We know instinctively that these 
attributes are related to the transition dynamics from one Approach to another in the GM 
Approach space.  However, in this paper these relationships are developed further from first 
principles based on laws of motion and Control Theory.  The resultant model is logical, 
internally consistent, brings clarity to the attributes as they relate to the transition and each other, 
and allows us to simulate the Approach transition dynamics. 
 
The simulation model development begins with defining agility.  NATO Research Task Group 
SAS-065 entitled “NNEC C2 Maturity Model” defined agility as the ability to transition between 
GM Approaches as well as “Being able to choose among a larger set of C2 approaches” (SAS-
065, 2010).  SAS-085 entitled “C2 Agility and Requisite Maturity” provided a working 
definition for agility as the ability to successfully cope with changes in the environment3

 

.  
“Changes in the environment” refers to different complexity levels requiring different coping 
strategies.  “Ability to cope” means those organizational attributes (such as a GM Approach) that 
help an organization deal with situation complexities.  “Successfully cope” involves 
effectiveness and efficiency at all levels – from GM Approach transitions to mission success. 

This paper’s working definition retains the essence of the SAS-065 and SAS-085 definitions as 
follows: GM Approach agility is the ability to transition from one GM Approach to another as 
required by situation complexity, in a manner that optimizes GM Approach effectiveness and 
efficiency.  This paper focuses only on the agility associated with transitioning from one GM 
Approach to another, while SAS-085 considers all aspects of agility and successfully coping in a 
changing environment. 
 
This definition resembles a classical motion tracking problem commonly described by Newton’s 
laws of motion for an object moving in physical space.  Control Theory provides methods to the 
tracking problem that modify key parameters and optimize effectiveness and efficiency.  The key 
GM Approach agility concepts are: 

• GM Approach Space 
• GM Approach Law of Motion 
• GM Approach Transition Methods 
• GM Approach Transition Effectiveness and Efficiency 

 
As mentioned, GM Approach agility involves moving from one position to another in the GM 
Approach space.  The GM approach space involves three dimensions (Figure 2): 

• Allocation of Decision Rights (ADR) extends from none to broad, 
• Distribution of Information (DI) extends from none to broad, and 
• Patterns of Interaction (PI) extends from tightly4

                                                 
3 This working definition was formulated in Paris, 2010 and continues to morph, but retains the idea of transitioning 
from one approach to another. 

 constrained to unconstrained. 

4 It is recommended that this anchor be changed from “tightly constrained” to “completely constrained” to reflect the 
exact opposite of “unconstrained”. 
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Figure 2: C2 Approaches and the C2 Approach Space (SAS-065, 2010) 

 
A position in this space represents a GM Approach.  For example, at the origin ADR is none, DI 
is none and PI is tightly constrained, or (none, none, tightly constrained), which defines a 
conflicted GM Approach.  Table 1 is a categorical table that provides five representative GM 
Approaches in terms of ADR, DI, and PI values.  These approaches lie along the diagonal of the 
GM Approach space: Conflicted5

 

 (Independent), De-conflicted, Coordinated, Collaborative, and 
Edge approaches. 

C2 Approach 
Allocation of  
Decision Rights 
to the Collective 

Patterns of 
Interaction Among 
Participating Entities  

Distribution  
of Information (Entity 
Information Positions)  

Edge C2  
Not Explicit, Self- 
Allocated (Emergent, 
Tailored, and Dynamic) 

Unlimited  
As Required 

All Available  
and Relevant 
Information Accessible 

    

Collaborative C2  
Collaborative Process 
and Shared Plan 

Significant  
Broad 

Additional Information 
Across Collaborative 
Areas/Functions 

Coordinated C2  Coordination Process  
and Linked Plans Limited and Focused 

Additional Information 
About Coordinated 
Areas/Functions 

De-Conflicted C2  Establish Constraints Very Limited  
Sharply Focused 

Additional Information 
About Constraints  
and Seams 

    

Conflicted C2  None None Organic Information 

Table 1: Variables Defining Collective C2 Approach (SAS-065, 2010) 

                                                 
5 It is recommended that Conflicted GM Approach be changed to Independent GM Approach.  It was observed in 
the Olympics case study that collectives were at the origin (none, none, tightly constrained) and exhibited non-
conflicting, conflicting, and anarchical behaviours. 
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Although SAS-065 and SAS-085 focus primarily on these five approaches, the model developed 
herein can be extended to include the entire GM Approach Space. 
 
Note well from Table 1 that the GM Approach Space has gaps where, theoretically an approach 
does not exist: between Conflicted and De-Conflicted GM Approach, and between Collaborative 
and Edge GM Approach.  This means that the dimensions are discontinuous.  These 
discontinuities are modelled by using a filter that converts smooth and continuous transitions into 
discrete transitions according to Table 1. 
 
GM Approach Space Law of Motion 
 
Transitioning from one GM Approach to another means that an entity must broaden or narrow 
their allocation of decision rights, broaden or narrow their distribution of information, or loosen 
or constrain their patterns of interaction.  For this initial modelling and simulation development, 
the entity moves along all three dimensions at the same time, and generally along the diagonal of 
the space.  However, it takes time to broaden and narrow, or loosen and constrain when moving 
from one GM Approach.  The transition is not instantaneous rather it involves transient and 
steady state responses. 
 
It is postulated that motion in the GM Approach space is governed by organizational forces that 
enable or oppose the entity from moving from one approach to another.  The enabling force, or 
the forcing function6

 

, is the required GM Approach as determined by situation complexity.  Once 
the entity begins to change its ADR, DI, and PI states, it starts to gather momentum and move 
towards the required GM Approach.  However, organizational forces – both internal and external 
to the entity (e.g., trust, slow internet services, comfort level with approach, etc.) – resist the 
motion and act to restore the entity to a more familiar approach.  Thus, it is postulated that an 
entity has a Forcing Function, and Resisting and Restoring Forces acting on it as it moves from 
one position to another in the GM Approach space. 

Newton’s 2nd

 

 law of motion states that the time rate of change of an object’s momentum (mass × 
speed) is equal to the sum of forces acting on the object.  The equivalent law of motion in the 
GM Approach space is that the time rate of change of an entity’s momentum (size × speed) is 
equal to the sum of forces acting on the entity.  Given this law of motion, a conceptual equation 
can be generated that governs the transient and steady state position of a GM Approach as it 
moves in the GM Approach space.  But before presenting the governing equation, a few ideas 
need to be defined that have equivalent concepts of an object moving through physical space: 

Position, speed, and acceleration 
• x(t) is the current or actual position in the GM approach space as a function of time. 
• xo

• v(t) is the speed, or rate of change of position in the GM approach space, 
(t) represents the entity’s most comfortable GM Approach at minimum internal stress. 

. 
• a(t) is the acceleration, or rate of change of the speed in the GM approach space, . 
 

                                                 
6 Case studies show that the entity’s leader compels the collective to adopt their desired GM Approach, which may 
override the required GM Approach if the leader has not taken into consideration the changing situation complexity. 
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Size, momentum, and rate of change of momentum 
• m is defined as entity size.  This parameter represents the number of people, resources, 

equipment, infrastructure, funds, etc., that the entity possesses. 
• mv(t) =  is the entity momentum. 

• ma(t)  is the time rate of change of entity momentum. 
 

Required position and Forcing Function 
• r(t) is the required position in the GM approach space as a function of time (see Annex A).7

• k(r – x
 

o
 

)  represents the Forcing Function. 

Stiffness and Restoring Force 
• k is defined as entity stiffness.  This parameter represents the restoring strength.  That is, if 

the entity very comfortable with, say, a Coordinated approach but not at all comfortable with 
all other approaches, then k is high.  If the entity is equally comfortable with all approaches, 
then k is low.  Most organizations have a high k because they operate only at one approach. 

• –k(x – xo

 

) is a Restoring Force that exerts an opposing force as a function of position away 
from the comfortable position.  The larger the k, the larger the force like a stiff spring. 

Resistance and Resisting Force 
• c is defined as entity resistance. This parameter represents external resistors, such as slow 

internet services, lots of bureaucracy, intermittent power outages, etc., and internal

• –c

 entity 
resistors, such as culture, values, interaction preferences, (lack of) trust, experience with GM 
Approaches, etc., that resist the entity motion through the space. 

(t) is a Resisting Force that exerts an opposing force when moving through the GM 
Approach space (  ≠ 0).  The larger the c, the larger the force like moving through molasses. 

 

Independent
(e.g., initial position)

x = 0
v = 0
a > 0

de-conflicted

coordinated
(e.g., neutral position)

collaborative

edge
(e.g., required position)

Forcing
Function

x = r
v = 0
a = 0

GM Approach Space (2D)

ADR

DI

none
none

broad

broad

Resisting
Force

Force due to speed changes
(change in momentum)

Restoring
Force

x = xo
v = max

a = 0

t1 = 0

t2 > t1

t3 > t2

t4 > t3

t5 > t4

a < 0

 
                                                 
7 There is no attempt to determine the transfer function between situation complexity and r(t) in this paper.  
However, the simulation allows the user to generate r(t) profiles that reflect changes in situation complexity. 
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Figure 3: Forces acting on entity as it transitions from independent to edge GM Approaches. 
Figure 3 summarizes and illustrates these concepts by showing the magnitude and direction of 
the forces on the entity that has a neutral position of Coordinated, as it transitions from 
Independent to Edge positions at five snapshots in time.  Applying the 2nd

 

 law of motion yields 
the following governing equation for an entity as it moves through the GM Approach space: 

 (1) 
 (2) 

 (3) 
 
Equation 3 represents the time varying dynamics as an entity transitions from one GM Approach 
to another.  Assuming that the entity size does not change (  = 0)8, the variables involved in this 
transition include the actual position, speed, and acceleration in the GM Approach space, the 
entity size, resistance, and stiffness associated with entity momentum changes, resisting and 
restoring forces, and the required position and resultant forcing function.  Note that when the 
position is not moving ( ), x = r and the Restoring Force is equal and opposite to the 
Forcing Function (i.e., force equilibrium is achieved).  Also note that xo = xo

 

(t) may migrate 
over time, however, this does not factor into the governing equation. 

Natural Frequency and Damping Ratio 
The governing equation contains all information regarding the dynamics, that is the position time 
profile x(t), as the entity transitions from one position to another.  The parameters, m, c, and k 
fully determine the stability of the transition as well as whether the response will be under-
damped (converges onto r(t) in an oscillatory fashion) or over-damped (exponentially converges 
onto  r(t)). 
 
Equation 3 is normalized with respect to size as follows: 
 

 (4) 
 

where ωn =  and  = , are the entity’s natural frequency and damping ratio.  
The natural frequency characterizes how well the system tracks a sinusoidal path, r(ωt).  For 

, the system tracks the required path as shown in Figure 4 with bounded steady state 
error (under-damped:  = 0.35 < 1).  For , k is reduced 100 times and the system 
cannot track the forcing function (over-damped:  = 7.1 > 1). 
 
The damping ratio ( ) represents a ratio of Resisting and Restoring forces.  The damping ratio is 
directly related to the Resisting Force, where more resistance (c) means slower movement 
through the GM Approach space.  It is also inversely related to the square root of the Restoring 
                                                 
8 Although the modelling and simulation runs assumed that the entity size did not change, a case study of the 
Munich Olympics reported that the collective size did expand which contributed to the Resisting Force.  Future 
software versions may relax the assumption and include this nuance in the modelling and simulation code. 
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Force, where more stiffness (k) means less damping.  That is, the Restoring Force may be so 
great (high k) that it easily overcomes any resistance in returning to a more comfortable position, 
while an overly non-stiff organization (low k) cannot overcome large resisting forces.   
 

0

0.5

1

1.5

2

0 20 40 60 80 100
time (months)

r(t)

x(t) [wn = 20 w]

x(t)  [wn = w]

independent

de-conflicted

coordinated

collaborative

edge

 
Figure 4: Response to r( t) = sin t for  and  

 
Filters for realistic response 
Readers who are familiar with differential equations will recognize that Equation 4 produces 
smooth9 and continuous10

 

 time profiles.  Realistically, however, only the initial and final steady 
state GM Approaches are observable and not necessarily every intermediate transient state.  
Thus, two filters are applied to the x(t) profile derived from integrating the differential equation.  
The steady state filter retains the steady state value of x(t) only and removes the steady state 
response.  The simulation pseudo code for this filter is given in Figure 5.  Alternatively, a 
‘representative’ filter has been developed such that if x(t) passes through or remains within any 
one of the 5 representative GM Approach regions, then it is set to the region’s centre position.  
The simulation pseudo code is shown in Figure 6. 

If x = within independent region Then 
xfilter = independent GM Approach 

 
Else If (de-conflicted ≤ x < collaborative) Then 
        If (xss ≈ rss

          xfilter = x
) Then  
ss

        End If 
 (steady state value of x)  

 
Else If x = within edge region Then 

xfilter = edge GM Approach 
 
End If 

                                                 
9 x(t) has only one value at any given time  and does not violate a vertical line test for mathematical functions. 
10 v(t) and a(t) have only one value at any given time: that is, the function derivatives are smooth. 
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Figure 5: Steady State Filter 
 
 
 

If x = within independent region Then 
xfilter = independent GM Approach 

 
Else If x = within de-conflicted region Then 

xfilter = de-conflicted GM Approach 
 
Else If x = within coordinated region Then 

xfilter = coordinated GM Approach 
 
Else If x = within collaborative region Then 

xfilter = collaborative GM Approach 
 
Else If x = within edge region Then 

xfilter = edge GM Approach 
 
End If 

Figure 6: Representative Filter 
 
Figure 7 shows the continuous (blue), steady state (purple) and representative (black) filter 
responses of x(t) to a required GM Approach time profile, r(t) (red), first introduced in (Farrell & 
Connell, 2010) and transcribed in Annex A.  Note that the regions between independent and de-
conflicted, and collaborative and edge are blanked out.  This part of the response space does not 
exist according to Table 1.  Note that r(t) peaks at edge between 60 < t < 63, however, the entity 
cannot change fast enough within the 3 months before a new approach is required. 
 
A critical difference between the two filters is that at t > 68 months the steady state filter 
response converges onto the required position exactly between De-conflicted and Coordinated 
(permitted in Table 1).  However the representative filter response oscillates between De-
conflicted and Coordinated, which is unlikely to occur in the real world.  On the other hand, 
between 60 < t < 63 the steady state filter response shows that the entity remained at De-
conflicted even though the demand was Edge.  Meanwhile the representative filter response 
shows plausible intermediate stages indicating that the entity attempted to move to Edge. 
 
Two important observations are 1), the simulation may incorporate any type of filter that helps 
visualize GM Approach changes in time, and 2) although the filter determines the final position, 
the timing of the transition between two positions is still governed by Equation 4.  For example, 
when 0 < t < 20, the entity moves from Independent to Coordinated in 4.7 months.  However, if 
the Resisting Force is increased by 1.5 (cnew

 

 = 1.5c) then the transition takes 15.3 months (not 
shown).  This model is a powerful tool for determining transition timings for a given size, 
stiffness, and resistance. 

Robustness 
“Robustness: the ability [for the entity] to maintain effectiveness across a range of tasks, 
situations, and conditions” (Alberts & Hayes, 2003).  In this context, “maintain effectiveness” 
means that the steady state error, ess = rss – xss is small and bounded: that is, the transition is 
stable.  “Across a range of tasks, situations, and conditions” means for all required positions, r(t), 
in the GM approach space. 
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Figure 7: Steady state and representative filters applied to x(t). 

 
A prerequisite for robustness is that the system must be stable.  That is, it must be capable of 
reaching an equilibrium position, x(t) = xss, v = 0, and a = 0.  If the forces acting on the position 
are unbalanced, then the position will move in the direction of the unbalanced force as shown in 
Figure 3.  Equation 4 is inherently stable for ωn > 0 and  > 0 when there are no disturbances or 
uncertainty.  See (Farrell & Connell, 2010; Van de Vegte, 1990) for full proof. 
 
Responsiveness 
“... the ability [for the entity] to react to a change in the environment in a timely manner” 
(Alberts & Hayes, 2003).  In the context of the model, the natural frequency and the damping 
ratio fully characterize the system’s responsiveness or response profile.  For example, in Figure 
7,  ωn ≈ 0.7 rad/month, which yields a time period (= ) of 8.8 months, while the demand 
frequency, .   Thus, at 0 < t < 20, the entity is able to transition from independent to de-
conflicted well within 20 months, but cannot transition from de-conflicted to edge in 3 months 
(60 < t < 63) where ω ≈ 0.5 rad/month ( ).  The entity is responsive to certain demand 
profiles but not others. 
 
To improve the responsiveness so that the entity has a chance of responding to the high demand 
requires that the stiffness is increased about 1.5 times, when the characteristic time period 
becomes 2.8 months (not shown).  However, increasing the stiffness means less damping that 
produces significant overshoot.  Getting the balance right between the Resisting and Restoring 
Forces is the key to optimizing responsiveness  as the entity moves from one GM Approach to 
another. 
 
GM Approach Transition Methods 
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Agile organizations change their GM approach as the situation complexity changes to ensure 
GM approach effectiveness; that is x(t) = r(t).  This statement is a classical motion tracking 
problem for the GM Approach space.  The discipline of Control Theory (Van de Vegte, 1990) 
provides methods that minimize error, e(t) = r(t) – x(t) → 0.  Short discussions of other methods 
that can be used are found in Annex B. 
 
Perceptual Control Theory (PCT) uses Control Theory as the basic framework for describing 
entity behaviour (Powers, 1973; Powers, Clark, & McFarland, 1960).  PCT would suggest that 
an entity employs feedback control methods that adjust or modify (ADR, DI, PI) and drive the 
actual GM Approach position, x(t) towards the required GM Approach position, r(t)11

 

.  These 
methods ensure robustness, responsiveness, resilience, disturbance rejection, and maintain 
effectiveness and efficiency despite self-damage, disturbances, and uncertainty.  See Figure 8 for 
a basic representation of feedback control and the major processes around the loop.  The 
comparator function compares the actual and required GM Approaches and generates an error 
value.  The control method (or the equivalent entity behaviour) generates appropriate actions 
based on the error.  Those actions impact on the environment (in this case, the GM Approach 
space) and influence state values, one of which is the actual GM Approach, thus closing the loop. 

 
Figure 8: PCT depiction of an entity using feedback control methods to drive x(t) towards r(t). 

 
All types of natural and man-made systems employ feedback control methods to cope with and 
track required paths through physical and non-physical complex environments (e.g., humans, 
plants, robots, power plants, complex endeavours, etc.).  For example with Figure 8 in mind, a 
child may be required to stay beside their parent as they walk together for the first time in a busy 
mall (a classical motion tracking problem).  The situation is complex certainly from the child’s 
perspective.  The child continually gathers feedback about their surroundings (states), integrates 
them and generates a perception of the distance between them and their parent, and compares 
their actual position to the required position – beside their parent.  If a position error is greater 
than zero and the child is behind the parent, the child may compensate

                                                 
11 Note well that the error can also be minimized by keeping x(t) steady and modifying r(t). 

 (a method or behaviour) 
for the error and speed up (action) so that they reduce the error.   

Control Method 
Entity Behaviour 

feedback 

GM Approach 

g overning 

equation 

(m, c, k) 

error 

states 

Required 
GM Approach 

r(t) 

x(t) 
Actual GM Approach 

Disturbances 

actions 

Comparator 
Function 
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Note that the child does not need to have any knowledge of the complex environment with all of 
its constraints, uncertainty, and disturbances in order to apply this simple method.  The more 
complex the environment, the simpler the control methods become.  However, more 
sophisticated methods can be used to improve effectiveness but often at a cost.  The child might 
anticipate the parent’s next few footsteps and walk just in front of them.  The child might adapt 
and climb into the stroller the parent is pushing.  The child might learn,

 

 for the next time, that 
holding hands achieves the goal.  Compensatory, Anticipatory, Adaptive, and Learning methods 
are well-documented control algorithms (Slotine & Li, 1991; Van de Vegte, 1990) that minimize 
the error between actual and required positions and solve the tracking problem despite 
uncertainty and disturbances.  Note well that the control methods mentioned above are derived 
primarily from observing human behaviour and their response to complex situations. 

Compensatory Method 
Compensatory control methods involve making decisions based on the error magnitude and 
direction, Kpe(t), where Kp is a positive gain that proportionally amplifies the error magnitude.  
This method is called proportional (P) control.  In the above example, the child used P control to 
compensate for the error: that is, the error was positive (lagging behind the parent) and they sped 
up proportionally to the error.  If the error were negative (in front of the parent) they would slow 
down proportionally to the error.  The value of Kp

 

 determines the dynamic behaviour of moving 
from the current position to the required position: whether they would ever reach their parent at 
their slow pace (stability), how long it would take to reach their parent (settling time), and 
whether they might overshoot the parent by going too fast (under-damped response). 

Similarly, an entity can use feedback to generate an error, e(t) = x(t) – r(t), and employ P control 
to track r(t) in the GM Approach space.  If the actual GM approach lags the required GM 
Approach, e(t) > 0, then the entity would broaden and un-constrain (ADR, DI, PI) proportionally 
to Kp

 

.  If x(t) leads or overshoots r(t), e(t) < 0, then the entity would narrow and constrain (ADR, 
DI, PI). P control is simple and yet very effective for tracking r(t).  It requires no knowledge of 
disturbances or variable uncertainty to work.  The simulation incorporates four compensatory 
methods, and these methods are compared to open-loop (no control) response in Figure 9. 
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Figure 9:  Comparing x(t) response profiles without (no control) and with compensatory methods 
 = 5 

 
In Figure 9a, x(t) (blue line) with no control is compared to x(t) (black line) with P control.  The P 
control response exhibits a hunting behaviour (overshoot), but tracks r(t) (red line) with a nonzero 
steady state error.  P control may be extended to include information about the accumulated error 
history expressed as an integral, Ki∫e(t)dt (I control), and error trend expressed as a derivative, 
Kd (t) (D control). 
 
PI control drives the steady state error to zero, but induces oscillations (Figure 9b).  PD control 
decreases rise time from 4.7 months for the “no control” condition to 1.6 months, however, the 
steady state error is non-zero (Figure 9c).  PID control produces zero steady state error, no 
overshoot (critically damped,  = 1), and faster rise time (4.1 months) compared to the “no 
control” condition (Figure 9d).  PID control is the most common form of Compensatory methods 
used to optimize effectiveness and efficiency. 
 
Compensatory methods are used to stabilize unstable systems where a Resisting Force actually 
accelerates movement through the GM space rather than retards it (c < 0), or a Restoring Force 
actually repels movement away from a neutral position (k < 0).  With compensatory methods and 
proper choice of PID gains, an open loop unstable system can be stabilized (Van de Vegte, 
1990).  Stability is a precondition for robustness.  Stabilizing unstable systems is clearly 
demonstrated in the section on resilience. 
 
Compensatory methods are used to improve responsiveness. Kp, Ki, and Kd

 

 effectively set the 
closed-loop natural frequency and damping ratio to optimal values.  If the m, c, and k are known 
explicitly then Control Theory provides algorithms that yield optimal gain values.  Otherwise, 
sufficient gains can be found using trial and error as done for Figure 9.  PCT would argue that 
humans set “sufficient gains” through trial and error (e.g., a child learning to walk), and they 
“optimize gains” through learning and practice (e.g., a high performance speed walker). 

Resilience 
“Resilience: the ability [for the entity] to recover from or adjust to misfortune, damage [to itself], 
... ” (Alberts & Hayes, 2003).  In this context, resilience is the ability to continue to respond to 
the required GM Approach even when damage causes one or more of the organizational forces to 
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dominate.  For example, a power outage may cause all computer servers to fail and thus the 
Resisting Force dominates which greatly resists the entity from distributing information broadly. 
 
 “Damage”  Equation  Response  With Feedback  

Change in Momentum dominates k r ≈ m  Unstable Quadratic Stable Figure 10a 

Resisting Force dominates k r ≈ c  Unstable Linear Stable Figure 10b 

Restoring Force dominates k r ≈ k x Stable Oscillations Stable Figure 10c 

Change in Momentum and 
Resisting Force dominate 

k r ≈ m   + c 
 

Unstable Exponential Stable Figure 10d 

Change in Momentum and 
Restoring Forces dominate k r ≈ m  + k x Meta-stable Sinusoidal  Stable Figure 10e 

Resisting and Restoring Forces 
dominate k r ≈ c  + k x Stable Suboptimal   Stable Figure 10f 

Table 2: Damage caused by one or more Forces Dominating 
 
Six “damaged” states exist for a motion system (see Table 2).  These damaged systems are not 
resilient by themselves but compensatory methods provide resilience (stabilization and tracking 
the required GM approach) in the face of such extreme damage as shown in Figure 10. 
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e) Change in Momentum and Restoring Force Dominate f) Restoring and Resisting Force Dominate 

 
Figure 10: Response to “damage to self” without and with PID Control (Resilience) 

 
Disturbance Rejection 
The resilience definition also includes “the ability [for the entity] to recover from or adjust to… a 
destabilizing perturbation in the environment” (Alberts & Hayes, 2003).  This destabilizing 
perturbation in the environment is an external

 

 disturbance that causes changes in situation 
complexity. This external disturbance, in fact, determines the required GM Approach, r(t). 

At the same time, one could argue that there are internal disturbances, d(t), related to GM 
Approach transitions such as internal policies that prevent broader ADR, unexpected acquisition 
of new information systems that enable seamless distribution of all document types12

 

, or a 
dishonest incident leading to mistrust and overly-constrained Patterns of Interaction. 

PID control is a well-documented method for known and unknown disturbance rejection, which 
includes disturbances due to variable uncertainty (Van de Vegte, 1990).  Figure 11 shows the 
response of x(t) to an internal disturbance, d(t), with and without feedback.  Note that the 
functional form of the GM Approach space disturbance is not needed to use PID control. 
 
The simulation results show that without feedback, the GM Approach seems to track the 
disturbance with a significant offset.  Between 0 < t < 20, x(t) rises above edge due to a high 
disturbance (perhaps due to the new information system), even though only coordinated GM 
Approach is required.  This initial offset seems to persist for the duration of the scenario; almost 
as if the entity does has no idea that the disturbance is impacting their tracking performance.  
With feedback however, the entity monitors both the required GM Approach and the 
disturbance, and a PID control method provides disturbance rejection: that is, x(t) tracks r(t). 
 
Anticipatory Method 
Unlike PID control, Anticipatory methods require a model of the environment (in this case, the 
GM Approach space).  High fidelity models of the environment yield better anticipation and 
better control.  For example, it may be anticipated that the information system maintenance 
occurs monthly and is unavailable for use over that weekend.  The entity might anticipate and 

                                                 
12 Disturbances can be both constructive and destructive in reaching the required GM Approach position. 
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compensate for the maintenance schedule by incorporating a backup system, or distribute the 
information before the weekend.  Anticipatory control methods work poorly as model fidelity 
deteriorates, and must be used in conjunction with disturbance rejection methods (Farrell, 1992). 
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Figure 11: Response to disturbance without and with PID control (disturbance rejection) 

 
As an aside, militaries conduct mission analysis before conducting a major combat operation.  
This intense activity aims to collect information on strategic objectives, available resources, 
adversarial intent and resources, as well as political, military, economic, social, information, and 
infrastructure aspects of the environment.  In effect, they are building a model of the mission 
space.  As they build this model they plan and conduct “what-if” scenarios to anticipate the 
adversary’s reaction (red teaming).  The better the model, the more confidence they would have 
in their action-reaction predictions. 
 
Nevertheless, they do not rely solely on the mission analysis results because there are too many 
unknowns and no plan survives first contact, rather they close the loop by executing the plan, 
assessing outcomes (feedback), and they make decisions to re-plan if the endstate has not been 
achieved, or end the mission if the objectives are reached.  Military operations are a classical 
goal-tracking problem solved using anticipation in conjunction with feedback (Farrell, 2007). 
 
Figure 12 shows the open loop response (i.e., no feedback) to an anticipated disturbance (green) 
with (black) and without (blue) anticipation.  Without anticipation, the entity seems to track the 
disturbance with a significant offset.  With anticipation, the entity exactly cancels the known 
disturbance.  If a portion of the disturbance is unanticipated, then the entity must use feedback 
control to reject the disturbance (not shown but identical to Figure 11). 
 
In terms of responsiveness, anticipatory methods theoretically achieve perfect tracking, x(t) = 
r(t).  If the time to transition from one GM Approach to another (Tt), can be anticipated, then the 
entity may begin the transition Tt months before r(t) changes.  Of course this would mean that 
r(t) and situation complexity would need to be predicted as well.  For a major conflict or natural 
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disasters, this may not be possible.  However, most major sporting events or political summits 
have start and end dates determined years in advance. 
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Figure 12: Response to known disturbances with and without anticipation 

 
In terms of robustness and stability, anticipation works best with high fidelity models of the 
environment are available.  However, generating these models is expensive.  Anticipation with 
no feedback is likely to cause instability particularly with low fidelity models.  Anticipatory 
methods must work in concert with compensatory methods to ensure robustness.  Anticipatory 
methods are not applicable for resilience.  The entity must be prepared to react to a destabilizing 
perturbation using compensatory methods. 
 
This model and simulation can predict transition times, which would be useful for making 
strategic decisions and investments in advance of the event.   However, timing is critical: too far 
in advance and policies and technologies for the anticipated GM Approach may become outdated 
and expensive to maintain.  Too close to the event and the collective may miss the window of 
opportunity to move to the appropriate GM Approach. 
 
Adaptive Methods 
Adaptive control methods have a very specific meaning within the discipline of nonlinear control 
systems (Slotine & Li, 1991): that is the control gains adapt over time.  For example, if Kp 
adapts or changes as a function of error, then the nonlinear gain can be very large when the error 
is large producing very fast rise times, and it would be very small when the error is small 
avoiding overshoot.  For illustrative purposes, a nonlinear gain is simulated, 

.  On its own, this gain function produces oscillations (not shown).  
However, combined with D control, the oscillations are damped out.  The response to PD 
Adaptive control is compared to PD control in Figure 13.  The resultant x(t) almost completely 
overlaps r(t). 
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Figure 13: PD Adaptive control compared to PD control and no control responses. 

 
With PD Adaptive control, the effectiveness increases from 80% (no control) to 98% (PD 
Adaptive) compared to a “no control” response, but the efficiency drops from 80% (no control) 
to 70% (PD Adaptive) because this type of control is expensive13

 

.  The strategic investment 
question is, “is a 18% increase in effectiveness worth a 10% drop in efficiency?”  We begin to 
see how this simulation can be used to make decisions on which method(s) should the collective 
invest in. 
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Figure 14: Compensatory, Anticipatory, and Adaptive control methods as part of a control system. 
 
Learning Methods 
Figure 14 shows the relationships between the three control methods within a feedback loop, 
which can be applied during the transition from one approach to another.  However, the learning 
method does not appear in this figure because it is done typically between events (see Figure 15) 
with representative cases with a limited scenario or vignette.  It may take the form of education, 

                                                 
13 See sections on transition effectiveness and efficiency for how the percentages are calculated. 
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training, or mission rehearsal.  Learning is a process of direct parameter optimization and finding 
the right balance of m, c, and k that maximizes effectiveness and efficiency.  Learning is similar 
to adaptive methods in that parameters values are modified over time. 
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Figure 15: Learning typically occurs between events. 

 
Learning Methods are well documented for motion tracking problems in robotics (Arimoto, 
Kawamura, & Miyazaki, 1984; Arimoto, Kawamura, Miyazaki, & Tamaki, 1985).  Their 
algorithms are implemented in the simulation to demonstrate the dramatic increase in 
effectiveness as shown in Figure 16.  The first 10 months, going from independent to 
coordinated, are trained as a small vignette. After the fifth trial, there is no transient response.  
The entity may go into the operation instantly ready to employ a Coordinated GM Approach. 
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Figure 16: Independent to Coordinated GM Approach Transition Training vignette converges after 5 trials. 
 
Robustness is not guaranteed over the entire space with learning only, since it takes place 
typically with a limited number of vignettes.  However, learning the methods themselves lends 
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itself to robustness.  The governing equation parameters m, c, and k are modified through 
practice so to improve responsiveness to a representative set of GM approach transitions.  If the 
open loop response is optimized then less effort is needed from the “online” methods, thus 
increasing overall efficiency.  Finally, learning does have an impact on resilience in that the 
entity may practice their contingency plans if damage to self were to occur. 
 
GM Approach Transition Effectiveness and Efficiency 
 
Effectiveness and efficiency are ubiquitous metrics applied to every state and variable within a 
complex endeavour: mission effectiveness, planning efficiency, communications effectiveness, 
and so on.  For the purposes of this paper, this discussion is limited to GM Approach transition 
effectiveness and efficiency. 
 
Effectiveness 
In general, effectiveness is a calculation, rather than a measurement, which compares an actual 
value to a required value (although the actual value is obtained through measurement). The direct 
effectiveness calculation is the extent to which a state or variable value matches its required 
value14

 

 (Farrell, 2005).    For ratio and interval variables (e.g., position in 3D space) direct 
effectiveness is expressed as a percentage of the required value.  For ordinal and nominal 
variables (e.g., position in GM Approach space) direct effectiveness ratio is binary either 1 or 0: 
that is, the entity either reached the required GM Approach or not.  GM Approach Transition 
effectiveness metric is easily developed with the steady state or representative filters based on a 
binary ratio at every point in time and then averaged.  However, the model provides a continuous 
approximation of the GM Approach space where x(t) and r(t) are ratio variables.  Thus, a ratio 
can be formed as a good approximation of the filtered effectiveness calculation as follows: 

  (8) 

  (9) 
 
Figure 17 shows the effectiveness curves for “no control”, no control with “disturbance” and 
then “PID control” with disturbance (see Figure 11).  The first percentage is a time-weighted 
average of the effectiveness calculated at each point in time.  The bracketed percentage is the 
effectiveness calculation for a steady state filter.  “no control” = 92% (80%), no control with 
“disturbance” = 41% (20%), and “PID control” with disturbance = 95% (81%). 
 
The steady state effectiveness percentage will be lower than the continuous calculation because it 
does not include the transient response.  The effectiveness drops significantly because of the 
disturbance.  Conversely, effectiveness increases significantly when PID control is used to 
compensate for the disturbance.  The simulation is a powerful tool to calculate GM Approach 
transition effectiveness for a wide variety of GM Approach configurations (various r(t) profiles, 
control methods, disturbances, filtered responses, etc.). 
 
                                                 
14 The required value has other names such as goal, target, desired state, reference value, end state, objective, etc. 
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For nominal data that cannot be ordered, effectiveness can still be “calculated” as a logical sum 
of the effectiveness of lower level variables.  This is called an indirect effectiveness calculation.  
For instance, the indirect effectiveness of transitioning from one GM Approach to another may 
be the sum the direct effectiveness of ADR, PI, and DI compared to their ideal values or states. 
 

 
Figure 17: GM Approach transition Effectiveness as a function of time 

 
Efficiency 
For mechanical systems, efficiency is the ratio of usable energy out divided by the energy into a 
system.   The analogy for organizational systems is that efficiency is the value or worth of the 
activity compared to the resources (money, people, etc.) used to accomplish the activity.  Both 
values are difficult to compute.  Conceptually, the useful time at steady state divided by the total 
time could be a surrogate for worth. That is, efficiency can be calculated only when the actual 
GM Approach reaches the required steady state value.  Thus, the steady state filter is used to 
calculate this time ratio. 
 
The transition cost could be a surrogate for resources, which is assumed to be proportional to the 
control method used.  Learning methods are likely the most expensive, followed by anticipatory, 
then adaptive, and finally compensatory methods being the least expensive.  PID control would 
be more expensive than PI or PD control, followed by P and “no control” being the least 
expensive.  The transition cost is normalized with respect to the “no control” cost such that the 
efficiency calculation is always equal to or less than 100% as follows: 
 

     (9) 
 

  (10) 
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For illustrative purposes, we assume that “PID control” cost is 10% more than the “no control” 
cost.  Thus the corresponding efficiency results for “no control”, “disturbances”, and “PID 
control” in Figure 17 is 80%, 3%, and 74% (81% ÷1.1), respectively.  Thus, PID control is more 
effective but less efficient.  Thus, strategic decisions can be made with this simulation regarding 
which methods (behaviours) to invest in, using effectiveness and efficiency as key metrics. 
 
Conclusions 
 
GM Approach agility is the ability to transition from the actual GM Approach to the required 
GM Approach as the situation complexity level changes over the course of a major event.  The 
model and simulation developed in this paper showed that agility includes all the elements 
involved in the transition system namely, GM Approach Space and Dimensions, GM Approach 
laws of motion that yield key entity parameters namely size, stiffness, and resistance, and GM 
Approach transition methods namely compensatory, anticipatory, adaptive, and learning.  The 
transition system, in turn, produces robustness, responsiveness, resilience, and disturbance 
rejection.  Transition effectiveness and efficiency are key metrics for deciding on which control 
methods to invest in to get the most agility at the least cost.  Figure 18 is a summary of all the 
relationships discussed in the paper. 
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Figure 18: Key parameters and their relationships in the GM Approach transition model 

 
Entity size includes the entity’s resources.  Entity resistance involves those factors that resist 
transition from one approach to another such as broken information technology and heavy 
bureaucracy, culture, tradition, trust and experience.  Entity stiffness is related to how 
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comfortable an entity is with a particular GM approach.  Together, these three key parameters 
determine the damping ratio and natural frequency which in turn dictate the stability, robustness, 
and responsiveness of the transition system. 
Transition methods (entity behaviours) were introduced from Control Theory as a means to drive 
the actual GM Approach to the required GM Approach.  Compensatory methods provide 
resilience and disturbance rejection, and are arguably the simplest and least expensive to use.  
They also stabilize unstable systems and improve responsiveness.  Anticipatory methods 
anticipate known disturbances and can act just before the onset of the required approach.  
Adaptive methods provide near-perfect tracking of the required GM Approach but are costly.  
Learning methods optimize the system parameters typically between events, and are likely the 
most expensive. 
 
GM Approach transition effectiveness was defined as a ratio between the actual and required 
GM Approaches, while efficiency was defined as the steady state time normalized with the total 
time divided by the transition cost normalized with respect to the “no control” cost.  Both 
effectiveness and efficiency varied depending on the control method employed.  The model and 
simulation becomes a powerful way of understanding and visualizing the transition between 
approaches and, when validated, may be a useful decision-making tool for strategic investments. 
 
The next step is to evaluate the model using real world data.  Work is underway to look for 
evidence of agility (and the concepts instantiated in this model) for major sporting events.  This 
will be the theme for the final paper on Organizational Agility.
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Annex A 
Required GM Approach profile used for Simulation Runs, r(t). 
 
The following is an excerpt from (Farrell & Connell, 2010). 
The transition from one C2 approach to another can be traced in the C2 approach space.  Figure 
2 shows a notional trajectory in the C2 approach space that represents the C2 approach position 
at various times throughout the complex endeavour.  For illustrative purposes, consider the time 
units to be in months.  At the beginning of the endeavour (t = 0), organizations bring their own 
version of governance and management to complex endeavour and conflicts arise.  It quickly 
becomes obvious that some type of interaction coordination is needed.  Sometime later (t > 8) 
coordination exists, business rules are developed and agreed upon, and areas of responsibility 
and interest are established. At t = 20 months, the situation is stable and each entity works 
effectively within its designated area of responsibility.  The collective adopts a De-conflicted 
approach to governance and management (note that the trajectory retraces itself). 
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Figure 2: Notional Trajectory within the GM approach space 

 
Five years from the start (t =60, not displayed) an unanticipated catastrophic event significantly 
increases the overall complexity and a De-conflicted approach no longer works.  The collective 
must dynamically re-assess the governance and management structures to the point where ADR 
and DI are very broad and PI is unconstrained and the collective passes through a Collaborative 
approach a few months later (t = 62.4) but the trajectory never quite reaches the required Edge 
approach.  Three months later (t = 63 not displayed), the event subsides and the GM approach 
settles somewhere between De-conflicted and Coordinated (t > 80).  This fictitious vignette 
illustrates explicitly the SAS-065 Organizational Agility definition.  However, it has elements of 
Kaplan’s definition by the collective possessing multiple GM approaches, Alberts and Hayes’ 
definition by the collective being responsive and flexible, and Spaans et al’s definition by the 
collective having an adaptive stance and choosing appropriate approaches as the situation changes. 
This notional scenario is mocked up in the simulation as r(t). 



27 
 

Annex B 
Other Theories applied to Motion Tracking Problems 
 
Control Theory is not the only paradigm one might consider.  The following paragraphs present 
some of the pros and cons of other paradigms that could be used for this model. 
 
Stimulus-Response 
A Stimulus-Response paradigm (Skinner and Watson in (Meyers, 1989)) pre-supposes that for 
every possible required GM Approach profile (stimulus) there is a corresponding response that is 
stored the equivalent of a corporate memory, and retrieved as needed.  For complex situations, 
there would be endless required profile permutations and a number of those that will not be 
known a priori.  A stimulus-response paradigm has no means of dealing with uncertainty or 
unknown disturbances common in highly complex situations.  Stimulus-response is open-loop 
control with no way of ensuring stability. However, a clear advantage of stimulus-response is 
potentially very fast. 
 
Anticipatory behaviour on its own is a type of stimulus-response where the stimulus is an 
internal mental model of the situation.  The advantage of this paradigm is that responses are 
seemingly instantaneous if the timing is right.  The disadvantage is that poor implementation of 
anticipation may cause unrecoverable instabilities.  If the child anticipates that their parent is 
going to the toy store and confidently struts in that direction without looking back (i.e., feedback) 
and the parent changes their mind and goes to a clothing store at the opposite end of the mall, 
then anticipatory behaviour without feedback would cause the separation distance to grow. 
 
Ecological Psychology 
Gibson and others would suggest Ecological Psychology (Gibson, 1979) where the environment 
shapes human behaviour.  For example, a mall built as a three-story spiral that has one single 
corridor constrains movement to forwards and backwards thus reducing the opportunities for 
children to be separated from their parents.  This mall design also affords potential costumers 
passing by a majority of stores, compared to a traditional three-story mall design with multiple 
corridors intersecting at right angles. Complex environments have so many constraints 
(obstructions, uncertainty, disturbances) that humans often cannot see the affordances and tend to 
do nothing if there is no safe path.  Interestingly, as an entity grows and matures they may view 
constraints as affordances or opportunities for success. 
 
1st and 3rd

If the GM Approach space obeys an equivalent Newtonian 2
 Laws of Motion 

nd law of motion, is there an 
equivalent for the 1st and 3rd

 
 law of motion? 

Newton’s first law of motion states that an object at rest remains at rest, and an object in motion 
remains in motion.  This is a theoretical axiom where the closest real example would be an object 
moving through out space.  The equivalent 1st law of motion in the GM Approach space is that 
an entity at rest at a specific (ADR, DI, PI) position will remain at that position (or at rest), 
unless a forcing function moves it away from that position, and an entity in motion (i.e., 
changing their GM Approach) remains in motion, unless opposing forces act to slow it down.  
However, it is difficult, if not impossible to imagine a case where there are no opposing forces to 
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slow down the transition, and it continues on past edge.  Thus, the equivalent of Newton’s 1st

 

 law 
of motion in the GM Approach space is only a theoretical equivalent. 

Newton’s 3rd law is that for every action there is an equal and opposite reaction.  This law 
applies when two objects are in contact with each other.  The situation described in this paper 
only follows one position in the GM Approach space as it moves through time, x(t).  Thus, the 
3rd

 
 law does not apply. 
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Annex C 
Computer Code for GM Approach Transition Model and Simulation 
 
The following pages archive one of the later versions of the computer code used to build the 
simulation.  The code itself was developed in an iterative fashion.  That is, the conceptual model 
dictated the simulation, and the simulation results help to refine the model.  The programming 
language used was Visual Basic in Excel 2007.  Solving the differential equations was done 
using simple numerical methods, which come with sampling time challenges.  However, these 
challenges were avoided by keeping the integration interval at 0.0001 seconds. 
 
Dim t As Single 'time 
Dim dt As Double 'time step 
Dim pt As Single 'print time interval 
Dim delay As Single, switch As Integer, disturbance As Double 'feedforward time delay and anticipatory 
switch and resultant disturbance 
Dim starttime As Single, stoptime As Single 'start and stop time for simulation 
Dim rt(5) As Single, A(4) As Single, B(4) As Single, D(4) As Single, w(4) As Single, ph(4) As Single 
'parameter values for reference 
Dim rtd(5) As Single, Ad(4) As Single, Bd(4) As Single, Dd(4) As Single, wd(4) As Single, phd(4) As Single 
'parameter values for unknown disturbances 
Dim frt(5) As Single, Af(4) As Single, Bf(4) As Single, Df(4) As Single, wf(4) As Single, phf(4) As Single 
'parameter values for known disturbances 
Dim rn As Double, rn1 As Double, rn2 As Double, rn3 As Double 'n, n-1, n-2, n-3 r values (reference) 
Dim fn As Double, fn1 As Double ', fn2 As Double, fn3 As Double n, n-1, n-2, n-3 f values (feedforward) 
Dim dn As Double, dn1 As Double ', dn2 As Double, dn3 As Double n, n-1, n-2, n-3 d values (disturbance) 
Dim un As Double, un1 As Double, un2 As Double, un3 As Double 'n, n-1, n-2, n-3 u values 
Dim xn As Double, xn1 As Double, xn2 As Double, xn3 As Double 'n, n-1, n-2, n-3 x values 
Dim xfilter As Double, toler As Double 'converts continuous to discrete profile, toler sets closeness 
values 
Dim filter As String, stay As String 'flag for filter type, and flag for steady state filter 
Dim en As Double, en1 As Double, en2 As Double, en3 As Double 'n, n-1, n-2, n-3 e values 
Dim m As Single, c As Single, k As Single 'organizational size, resistance to change, flexibility 
Dim c1 As Single, c2 As Single, c3 As Single, c4 As Single 'derived constants 
Dim wn As Single, z As Single 'organizational natural frequency and damping ratio 
Dim Kp As Single, Ki As Single, Kd As Single 'Proportional, Integral, Derivative controller gains 
Dim Gp As Single, Gi As Single, Gd As Single 'Proportional, Integral, Derivative controller constant gains 
Dim lower As Double, upper As Double 'lower and upper bounds of the random function generator for the 
disturbance 
Dim differ As String, compensatory As String, feedfoward As String, adaptive As String 'integration 
method, on/off compensatory, feedforward, and adaptive switches 
Dim gain As Double 'gain for adaptive 
Dim knowndisturbance As String, unknowndisturbance As String 'these values turn on and off the disturbance 
calculation 
Dim pii As Double '3.14159265358979 
Dim j As Long, i As Integer, f As Integer 'counter for print time interval, reference  values, feedforward 
values 
 
Sub integrate() 
'remove old numbers and print out headers 
Worksheets("Sheet1").Range("H:M").Value = "" 
Worksheets("Sheet1").Range("H" & 1).Value = "time" 
Worksheets("Sheet1").Range("I" & 1).Value = "r(t)" 
Worksheets("Sheet1").Range("J" & 1).Value = "x(t)" 
Worksheets("Sheet1").Range("K" & 1).Value = "d(t)" 
Worksheets("Sheet1").Range("L" & 1).Value = "x(t) filtered" 
Worksheets("Sheet1").Range("M" & 1).Value = "xneff" 
 
'get reference parameters 
i = 1 
pii = 3.14159265358979 
Do While i <= 4 
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    rt(i) = Worksheets("Sheet1").Range("A" & 16 + i).Value 
    A(i) = Worksheets("Sheet1").Range("B" & 16 + i).Value 
    B(i) = Worksheets("Sheet1").Range("C" & 16 + i).Value 
    D(i) = Worksheets("Sheet1").Range("D" & 16 + i).Value 
    w(i) = Worksheets("Sheet1").Range("E" & 16 + i).Value * 2 * pii 
    ph(i) = Worksheets("Sheet1").Range("F" & 16 + i).Value * pii / 180 
    frt(i) = Worksheets("Sheet1").Range("A" & 37 + i).Value 
    Af(i) = Worksheets("Sheet1").Range("B" & 37 + i).Value 
    Bf(i) = Worksheets("Sheet1").Range("C" & 37 + i).Value 
    Df(i) = Worksheets("Sheet1").Range("D" & 37 + i).Value 
    wf(i) = Worksheets("Sheet1").Range("E" & 37 + i).Value * 2 * pii 
    phf(i) = Worksheets("Sheet1").Range("F" & 37 + i).Value * pii / 180 
    rtd(i) = Worksheets("Sheet1").Range("A" & 47 + i).Value 
    Ad(i) = Worksheets("Sheet1").Range("B" & 47 + i).Value 
    Bd(i) = Worksheets("Sheet1").Range("C" & 47 + i).Value 
    Dd(i) = Worksheets("Sheet1").Range("D" & 47 + i).Value 
    wd(i) = Worksheets("Sheet1").Range("E" & 47 + i).Value * 2 * pii 
    phd(i) = Worksheets("Sheet1").Range("F" & 47 + i).Value * pii / 180 
    
    i = i + 1 
Loop 
 
'get time variables, integration method, controller gains, and organizational attributes 
m = Worksheets("Sheet1").Range("B4").Value 
c = Worksheets("Sheet1").Range("B5").Value 
k = Worksheets("Sheet1").Range("B6").Value 
dt = Worksheets("Sheet1").Range("B22").Value 
starttime = Worksheets("Sheet1").Range("B23").Value 
stoptime = Worksheets("Sheet1").Range("B24").Value 
pt = Worksheets("Sheet1").Range("B25").Value 
differ = Worksheets("Sheet1").Range("B26").Value 
adaptive = Worksheets("Sheet1").Range("B8").Value 
gain = Worksheets("Sheet1").Range("C9").Value 
compensatory = Worksheets("Sheet1").Range("B9").Value 
knowndisturbance = Worksheets("Sheet1").Range("F36").Value 
unknowndisturbance = Worksheets("Sheet1").Range("F46").Value 
feedforward = Worksheets("Sheet1").Range("B13").Value 
Gp = Worksheets("Sheet1").Range("B10").Value 
Gi = Worksheets("Sheet1").Range("B11").Value 
Gd = Worksheets("Sheet1").Range("B12").Value 
delay = Worksheets("Sheet1").Range("C13").Value 
rt(5) = stoptime + dt 'rt(5) must be defined in terms of stoptime 
frt(5) = stoptime + dt 'frt(5) must be defined in terms of stoptime 
rtd(5) = stoptime + dt 'rtd(5) must be defined in terms of stoptime 
lower = Worksheets("Sheet1").Range("B44").Value 
upper = Worksheets("Sheet1").Range("C44").Value 
toler = Worksheets("Sheet1").Range("E4").Value 
filter = Worksheets("Sheet1").Range("E5").Value 
 
'set initial values, constants, and counters 
xn = Worksheets("Sheet1").Range("B27").Value 
xn1 = xn: xn2 = xn: xn3 = xn: xfilter = xn 
un1 = 0: un2 = 0 
fn = 0: fn1 = fn 
dn = 0: dn1 = dn 
stay = "off" 
If (k <> 0) Or (m <> 0) Then 
    If k <> 0 Then 
        If m <> 0 Then 
            wn = (k / m) ^ 0.5 
            z = (c / m / 2 / wn) 
        Else 
            If c = 0 Then 
                differ = "no resisting force or size" 
            Else 
                wn = k / c 
                z = 1 
                differ = "no size" 
            End If 
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        End If 
        c1 = 1 - 2 * z * wn * dt 
        c2 = (wn * dt) ^ 2 
    Else 
        c3 = 1 - 2 * c / m * dt 
        c4 = dt ^ 2 
        differ = "no restoring force" 
    End If 
Else 
    differ = "no restoring force or size" 
End If 
 
i = 0: j = 1: f = 1 
t = starttime 
If feedforward = "off" Then switch = 1 Else switch = 0 
 
Worksheets("Sheet1").Range("B14").Value = switch 
 
Do Until t > stoptime 
    'update reference and disturbance counter 
    If t >= rt(i + 1) Then 
        i = i + 1 
    End If 
   
    'calculate r(n) 
    rn3 = A(i) + B(i) * (t - rt(i) - 3 * dt) + D(i) * Sin(w(i) * (t - rt(i) - 3 * dt) + ph(i)) 
    rn2 = A(i) + B(i) * (t - rt(i) - 2 * dt) + D(i) * Sin(w(i) * (t - rt(i) - 2 * dt) + ph(i)) 
    rn1 = A(i) + B(i) * (t - rt(i) - dt) + D(i) * Sin(w(i) * (t - rt(i) - dt) + ph(i)) 
     rn = A(i) + B(i) * (t - rt(i)) + D(i) * Sin(w(i) * (t - rt(i)) + ph(i)) 
   
    'update feedforward counter 
    If t >= (rtd(f + 1) + delay) Then 
        f = f + 1 
    End If 
     
    'calculate f(n) known disturbance, rectified time delayed 
    Select Case knowndisturbance 
    Case "off" 
        fn = 0 
    Case "on" 
        If t < delay Then 
          fn1 = 0: fn = 0 
        Else 
          fn1 = Af(i) + Bf(i) * (t - frt(i) - dt) + Df(i) * Sin(wf(i) * (t - frt(i) - dt) + phf(i)) 
           fn = Af(i) + Bf(i) * (t - frt(i)) + Df(i) * Sin(wf(i) * (t - frt(i)) + phf(i)) 
        End If 
        If fn > 2 Then fn = 2 'these two lines of code should not be needed if this disturbance is known! 
        If fn < 0 Then fn = 0 
    End Select 
     
    'calculate d(n) unknown disturbance 
    Select Case unknowndisturbance 
    Case "off" 
        dn1 = 0: dn = 0 
    Case "on" 
        dn1 = dn 
         dn = Ad(f) + Bd(f) * (t - rtd(f)) + Dd(f) * Sin(wd(f) * (t - rtd(f)) + phd(f)) + (upper - lower) 
* Rnd + lower 
        If dn > 2 Then dn = 2 
        If dn < 0 Then dn = 0 
    End Select 
  
    disturbance = dn1 + fn1 * switch 
    If disturbance > 2 Then disturbance = 2 - (disturbance - 2) / 2 
    If disturbance < 0 Then disturbance = -(disturbance - 0) / 2 
      
     'calculate e(n) 
    en3 = rn3 - xn3: en2 = rn2 - xn2: en1 = rn1 - xn1: en = rn - xn 
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'calculate u(n-1) 
    Select Case compensatory 
    Case "off" 
        un1 = rn1 
    Case "P" 
          un1 = Kp * en1 '+ un2 - Kp * en2 
    Case "PI" 
        un1 = un2 + Kp * (en1 - en2) + 0.5 * Ki * (en1 + en2) * dt 
    Case "PD" 
        un1 = Kp * en1 + Kd * (en1 - en2) / dt 
    Case "PD Adaptive" 
        un1 = Kp * Kp * Abs(en1) * en1 + Kd * (en1 - en2) / dt 'Kp Adaptive 
    Case "PID" 
        un1 = un2 + Kp * (en1 - en2) + 0.5 * Ki * (en1 + en2) * dt + Kd * (en1 - 2 * en2 + en3) / dt 
    End Select 
         
    'calculate the nth value for x(t) GM Approach over time 
    Select Case differ 
    Case "backwards" 
        xn = xn1 + c1 * (xn1 - xn2) + c2 * (un1 + disturbance - xn1) 'backwards difference 
    Case "central" 
    xn = xn2 + c1 * (xn1 - xn3) + 2 * c2 * (un1 + disturbance - xn1) 'central difference 
    Case "no restoring force" 
        xn = xn1 + c3 * (xn1 - xn2) + c4 * (un1 + disturbance) 'backwards difference 
    Case "no size" 
        xn = xn1 + k / c * dt * (un1 + disturbance - xn1) 'backwards difference 
    Case "no restoring force or size" 
        xn = xn1 + dt / c * (un1 + disturbance) 'backwards difference 
    Case "no resisting force or size" 
        xn = un1 + disturbance 'backwards difference 
    End Select 
     
    un2 = un1 
    xn3 = xn2: xn2 = xn1: xn1 = xn 
     
    'Map continuous GM Approach to the GM Approach Space regions. 
    Select Case filter 
    Case "representative" 
        'note that xn represents the magnitude of a vector originating from the origin to 
        'a point in the GM Approach space.  xfilter represents the centroid of each of the five 
        'cubes within the space. 
        If xn < 0.01 Then 
            xfilter = 0.001 'conflicted GM Approach 
        ElseIf (xn > 0.01) And (xn < 0.1) Then 
            xfilter = (0.1 - 0.01) / 2 'this is part of the space that does not exist 
        ElseIf (xn >= 0.1) And (xn < 0.5 + 0.25) Then 
            xfilter = 0.5 'de-conflicted GM Approach 
        ElseIf (xn >= 1 - 0.25) And (xn < 1 + 0.25) Then 
            xfilter = 1 'co-ordinated GM Approach 
        ElseIf (xn >= 1.5 - 0.25) And (xn < 1.5 + 0.1) Then 
            xfilter = 1.5 'collaborative GM Approach 
        ElseIf (xn >= 1.6) And (xn < 1.9) Then 
            xfilter = (1.9 - 1.6) / 2 + 1.6 'this part of the space does not exist. 
        ElseIf xn >= 1.9 Then 
            xfilter = 2 'edge GM Approach 
        End If 
    Case "steady state" 
        '   This filter assumes it is possible to reach any point between de-conflicted and collaborative 
GM approaches 
            If xn <= 0.01 Then 
                xfilter = 0.001 'independent GM Approach close to zero 
        '   ElseIf (xn > 0.01) And (xn < 0.1) Then 'do nothing - this is part of the space that does not 
exist 
            ElseIf (xn >= 0.1) And (xn < 1.6) Then 'between de-conflicted and collaborative 
                If (Abs(rn - xn) <= toler) And (stay = "off") Then 'filter transient response, only output 
steady state response 
                    xfilter = xn 
                    stay = "on" 
                ElseIf (Abs(rn - xn) > toler) And (stay = "on") Then 
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                    stay = "off" 
                End If 
        '   ElseIf (xn >= 1.6) And (xn < 1.9) Then 'do nothing - this is part of the space that does not 
exist 
            ElseIf xn >= 1.9 Then 
                xfilter = 2 'edge GM Approach 
            End If 
    End Select 
     
    'print every pt interval 
    If t >= j * pt Then 
        Worksheets("Sheet1").Range("H" & j + 1).Value = t 
        Worksheets("Sheet1").Range("I" & j + 1).Value = rn 
        Worksheets("Sheet1").Range("J" & j + 1).Value = xn 
        Worksheets("Sheet1").Range("K" & j + 1).Value = disturbance 
        Worksheets("Sheet1").Range("L" & j + 1).Value = xfilter 
        If xn > 2 Then xneff = 2 Else xneff = xn 
        Worksheets("Sheet1").Range("M" & j + 1).Value = xneff 
      j = j + 1 
    End If 
    t = t + dt 
Loop 
        Worksheets("Sheet1").Range("e9").Value = en1 
End Sub 
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Annex D 
GM Approach in context of an Operation 
 
The following diagram shows how GM Approach shapes
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peration (Farrell, 2007). A

lso includes

D
ecision-M

aking
and A

nalysisfunctions

Planning
Execution

Situation

A
ssessm

ent
actual

states

observed

states

required

states

other

perform
ance

shaping factors

planned

actions
actual

actions

C
om

plexity/

A
pproach

C
onverter

A
nticipatory

(Feedforw
ard)

A
daptive

C
om

pensatory

C
om

pensatory

(Feedback)

G
M

 A
pproach

D
ynam

ics

(m
, c, k, etc.)

error
actual

approach
required

approach

observed

approach

Internal
D

isturbancesto
G

M
 A

pproach

E
xternal

D
isturbance

(A
dversarial,

N
atural, etc.)

required

approach

Strategic

objectives

 the operation. It is not part of the main 
operational loop but it does influence planning, execution, assessment, decision-making, and 
analysis.  Ultimately it impacts the mission effectiveness and efficiency.  Note well that r(t) is 
generated from the states of the environment. 


