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Dr. Anthony H. Dekker (Defence Science and Technology Organisation, Australia) 

Abstract 

This paper explores Operations Research issues in the response to Improvised Explosive 

Devices (IEDs), using the concept of a “fitness landscape.”  In particular, we examine 

optimisation approaches that assume a fixed fitness landscape for Blue actions; game-

theoretic approaches where fitness is associated with the combination of Red and Blue 

actions; and approaches that assume fitness landscapes are constantly changing as a result of 

Red and Blue adaptivity.  In particular, we examine the use of genetic programming.  We 

discuss the strengths and weaknesses of these approaches with respect to an illustrative 

simulation model, and present experiments suggesting that genetic programming is a 

promising mechanism for exploring adaptivity in such simulation models. 

1. Introduction: IEDs 

Improvised Explosive Devices (IEDs) have had a significant impact on recent military 

operations by a number of countries (JIEDDO, 2008; Zorpette, 2008a, 2008b).  For example, 

Figure 1 shows the impact of an IED blast.
1
  As well as causing deaths, IEDs are also 

responsible for many injuries.  They remain an issue in several ongoing conflicts. 

Insurgents may construct and place IEDs in a number of different ways, and may trigger them 

either directly (by using a radio or command wire), or indirectly (when the victim activates a 

pressure plate or infrared sensor). 

The ongoing IED problem leads to a need for effective Counter-IED Operations Research 

(OR).  In this paper we use a simple agent-based simulation, written in Java, to illustrate the 

strengths and weaknesses of OR approaches based on optimisation, on game theory, and on 

adaptation.  An important case of the latter is the use of genetic programming. 

 
Figure 1: IED aftermath: a Stryker vehicle overturned by a buried IED blast (photo from www.army.mil) 

2. A Simple Simulation Model 

As an illustration of some of the Operations Research (OR) issues involved in analysing 

Counter-IED operations, we have constructed the very simple agent-based simulation shown 

in Figure 2. 

                                                 
1 All data in this paper is taken from open sources, such as books, journals and the Internet. 
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This simulation is not intended to accurately represent real-world IEDs or Counter-IED 

activities, but rather to illuminate the Operations Research issues they raise. 

In this simple model, Blue agents must traverse a 20×20 grid from left to right.  The grid 

contains four kinds of terrain: a gently curving road, a meandering path, a large expanse of 

sand, and randomly-placed rocky areas. 

 
Figure 2: Our simple agent-based simulation.  Grid cells are coloured yellow (sand), grey (the curving road), 

light brown (the meandering path), or dark brown (rocky areas).  Red circles show IEDs, which are invisible to 

the Blue agents.  The Blue agents begin at the middle left, and must travel to the right-hand side of the region, 

while avoiding the IEDs. 

3. Optimisation 

Although the simulation shown in Figure 2 is very simple, it illustrates the basic dilemma 

faced by Blue forces in a Counter-IED context: which Blue strategy gives the best chance of 

survival?  For experimental purposes, we began by considering four Blue strategies: a direct 

strategy of moving only to the right, and three terrain-based strategies (sand, path, and road) 

where Blue agents prefer to move along a specific kind of terrain, leaving it only when they 

are forced to. 

In real life, Blue strategies include the selection of IED-resistant vehicles (JIEDDO, 2008; 

Zorpette, 2008a).  They also include countermeasures to prevent the operation of infrared 

(Zorpette 2008a, p 27) or radio triggers.  An example radio countermeasure is the US CREW 

(Counter Radio-controlled-IED EW) system (JIEDDO 2008, p 11). 

Culvert denial systems such as the US Terrapin (JIEDDO 2008, p 10) can also form part of a 

Blue strategy, as can detection devices, such as the US Fido (Zorpette 2008a, p 29), or ground 

penetrating radar systems such as the US Husky (JIEDDO 2008, p 10). 

Less concrete Blue strategies include route planning; Standard Operating Procedures (SOPs), 

such as IED disposal techniques; intelligence-gathering activities for locating IEDS; and the 

full range of counterinsurgency (COIN) operations (US Army, 2006) which help to prevent 

IEDs from being placed. 

Although our simple agent-based simulation does not capture the complexity of the full range 

of real-world strategies, it is sufficient to illustrate the basic optimisation approach to 
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Operations Research.  A range of Blue strategies is simulated (four in this case), and results 

are plotted as in Figure 3. 

 

Figure 3: Performance of 4 Blue strategies against randomly-placed IEDs (averaged over 100,000 simulated 

Blue trips, each on a grid like Figure 2, but with different randomly-placed IEDs and rocky areas). 

Where the space of Blue strategies is conceived of as two-dimensional, such a plot is called a 

“fitness landscape” (Ilachinski, 2004, p 503).  If the range of possible Blue strategies is large, 

finding the optimum point on the fitness landscape may require sophisticated search 

techniques (Goldberg, 1989; Hecht-Nielsen, 1990). 

In the case of Figure 3, however, it is clear that travelling along the meandering path is the 

worst strategy, with only 27.4% of Blue vehicles getting through, and the direct route is the 

best strategy, with 59.5% of vehicles getting through.  These results are explained by the fact 

that, for this simple simulation, the shortest route is least likely to encounter an IED. 

3.1. Weaknesses of the Optimisation Approach 

The main weakness of this naive optimisation approach is that it assumes a single fixed 

strategy for the Red (insurgent) side.  IEDs are, by definition, improvised and ever-changing, 

at least over the longer term.  Insurgents placing IEDs deliberately choose the strategies 

which they believe will be most destructive.  The simplistic answers suggested by plots like 

Figure 3 are therefore inadequate, because they ignore the mind of the enemy. 

4. Game Theory 

Incorporating the enemy’s ability to choose brings the problem into the domain of game 

theory.  For experimental purposes, we provide six possible Red strategies: four terrain-based 

strategies (where IEDs are placed preferentially on sand, path, road, or rocky squares), one 

strategy where IEDs are placed preferentially in the central region of the grid, and one 

strategy where IEDs are placed randomly as they were in Section 3. 

In real life, Red strategies include the choice of IED type (buried, explosively formed 

penetrator, etc.), of triggering device (radio, mobile phone, command wire, pressure plate, 

infrared sensor, etc.), of placement options, of camouflage options, and of possible decoy 

devices. 

In our simulated region, as in real life, the outcome of a Blue trip is a combination of the 

chosen Blue strategy for driving and the chosen Red strategy for IED placement.  Table 1 

shows the percentage of Blue vehicles getting through, averaged over 100,000 simulated 
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trips.  The row corresponding to Red’s “random” strategy contains precisely the numbers in 

Figure 3. 

Some of the combinations in Table 1 are particularly good for Blue.  If Blue takes the road, 

for example, and Red places IEDs on the path, on the sand, or in the central region, then at 

least 93% of the vehicles will get through, with the exceptions resulting from cases where 

Blue strays off the road to avoid a rocky area.  However, Blue cannot count on such a 

felicitous combination.  If Blue and Red make the same choice of the path or the road, for 

example, then less than 1% of the vehicles will get through. 

Table 1: Percentage of vehicles getting through for combinations of Red and Blue strategies (averaged over 

100,000 simulated Blue trips). 

 Blue Strategies 

Sand Path Road Direct 

R
ed

 S
tr

a
te

g
ie

s 

Sand 37% 87% 93% 63% 

Path 70% 0% 94% 41% 

Road 66% 65% 1% 49% 

Rock 81% 54% 66% 59% 

Central 26% 10% 94% 19% 

Random 44% 27% 41% 60% 

Game theory assumes that Red and Blue choose their strategies independently, and takes 

account of the intelligence of both sides.  Linear programming can be used to find a strategy 

(or probabilistic choice of strategies) yielding the best possible result against a totally rational 

opponent (Taha, 1992).  Game theory was used in World War II for planning anti-submarine 

operations (Leonard, 1992), and in recent times has also been applied to the IED problem 

(Washburn, 2006). 

Applying the standard linear programming techniques to Table 1 yields the solution shown in 

Table 2.  The optimal solution for both sides is a probabilistic choice of strategies (or “mixed 

strategy”).  The Blue strategy guarantees an expected chance of getting through of at least 

45.0%.  The Red strategy guarantees an expected chance of getting through of at most 45.0%.   

Table 2: Optimal solution for the game in Table 1, with each side making a probabilistic choice amongst three 

strategies.  An expected 45.0% chance of vehicles getting through is the best that both sides can hope for against 

a totally rational opponent. 

 

Blue Strategies 

and probabilities 

Sand 

0.58 
Road 

0.29 
Direct 

0.12 

R
ed

 

Road 0.28 66% 1% 49% 

Central 0.29 26% 94% 19% 

Random 0.44 44% 41% 60% 

4.1. Weaknesses of the Game Theory Approach 

One weakness of the kind of analysis presented in Table 1 is that it assumes that the full 

range of possible Red and Blue strategies is known a priori, and that the percentages in the 

table are also known to both sides.  In fact, being improvised, Red IED strategies are 
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constantly being developed, as are Blue countermeasures against them and Red counter-

countermeasures.  Furthermore, the real-world equivalent of the percentages in Table 1 may 

be estimated ahead of time, but can only be known with certainty by experience.  A solution 

like the one in Table 2 is therefore difficult to achieve in practice. 

In addition, although the “mixed strategy” in Table 2 is expressed in probabilistic terms, it in 

fact applies only to a single trip, where neither side has any idea of the opponent’s strategy.  

However, the counter-IED problem is an iterated game, involving a sequence of multiple 

trips.  Information about the opponent’s past strategies provides significant information about 

their future actions (even if the information is not totally certain).  This is particularly true 

because neither side can switch strategies instantaneously.  It takes time to develop and 

disseminate new Standard Operating Procedures (SOPs), and it also takes time to develop 

new equipment, such as new vehicles.  We will examine the issue of iterated strategies 

further in Section 5. 

4.2. Counterinsurgency and Nonzero-Sum Games 

The analysis in Table 1 presents the counter-IED problem as a zero-sum game, where Blue is 

trying to minimise losses and Red to maximise them.  While this may be adequate in the short 

term, in the long term counter-IED operations are part of the larger arena of 

counterinsurgency (COIN) operations, which are decidedly nonzero-sum. 

The goal of counterinsurgency operations is a win/win solution where the insurgency 

diminishes because the concerns of potential insurgents are met.  For example, during the 

Philippine communist insurgency of the 1950s, Defence Secretary (and later President) 

Ramon Magsaysay shrank support for the communist guerrillas by instructing Blue forces to 

provide aid, medical assistance, and legal advice to villagers (Joes, 2008).  Conversely, as the 

US Army/Marine Corps counterinsurgency field manual indicates, an aggressively zero-sum 

approach may be ineffective (US Army, 2006: 1-45), in that individuals who have been 

negatively impacted by counterinsurgency operations may join the insurgency, rather than 

support government forces (Chiarelli and Michaelis 2005, p 6). 

For nonzero-sum games, the equivalent of the optimal “mixed strategy” in Table 2 is a Nash 

equilibrium.  However, as is well-known, a Nash equilibrium may not be Pareto optimal, that 

is, it may miss win/win solutions which are better for both sides (Poundstone, 1992; Morris, 

1994, p. 127).  Within nonzero-sum games such as counterinsurgency, mathematical analysis 

is often less important than developing an understanding of the social concerns of both sides, 

and creating an atmosphere of mutual trust in which a win/win solution can be accepted by a 

large majority of the participants.  This may involve Operations Research focussed on 

network analysis and course-of-action ontologies (Darr et al., 2010). 

5. Adaptation 

An important aspect of IEDs is that they are, as we have said, improvised and (in the long 

term) constantly changing.  In response to Blue countermeasures, Red counter-

countermeasures will be developed. 

Even very sophisticated countermeasures may be negated by inexpensive or improvised 

counter-countermeasures (Zorpette 2008a, p 30).  Insurgents also adapt the design and 

placement of IEDs in response to Blue tactics (Zorpette 2008b, p 38).  Consequently, as the 

US Army/Marine Corps counterinsurgency field manual notes: 

“Competent insurgents are adaptive. … Insurgents quickly adjust to successful COIN 

practices and rapidly disseminate information throughout the insurgency. … Effective 
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leaders at all levels avoid complacency and are at least as adaptive as their enemies. 

… Constantly developing new practices is essential.”  (US Army, 2006: 1-155) 

Carley & Svoboda  (1996) note the value of formal computational models for studying 

organisational behaviour and, more specifically, organisational adaptation.  It is difficult to 

explore innovation and adaptation in detail within a simulation model as simple as the one in 

Figure 2, but we begin by constructing a variation of the game-theoretic approach presented 

in Section 4, suitable for preliminary investigation.  In this model, Blue chooses from the four 

strategies in Table 1, with a bias towards strategies that have worked well in the last 20 trips.  

Red makes a similar choice from the six Red strategies in Table 1. 

 
Figure 4: Results of Red and Blue adaptation over 10,000 trips (averages over groups of 50 trips). 

Figure 4 shows the results of this simple form of adaptivity.  The number of Blue vehicles 

getting through oscillates between 28% and 70%, with a mean of 48.8%.  Auto-correlation 

analysis (Figure 5) suggests that Figure 4 consists of a considerable amount of random noise 

overlaid on an irregular oscillation with a period of about 700 trips.  In other words, after 

about 350 trips Red (or Blue) is able to detect and exploit a pattern in the other party’s 

actions, and temporarily gain a slight upper hand.  After another 350 or so trips, Blue (or 

Red) will in turn find a successful counter-response.  The alternation between Red and Blue 

advantage continues throughout this iterated game. 

 
Figure 5: Autocorrelation plot for Figure 4, showing an initial trough at 350, corresponding to half of the 

underlying period. 

Figure 4 reflects a situation where Red and Blue are equally adaptive.  We varied this in a 

further experiment by giving Red and/or Blue a 100-trip delay in responding to past events.  

In other words, instead of using strategies that worked well for trips at time t–20 to t–1, the 
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delayed party responded to trips at time t–120 to t–101.  Figure 6 shows the results.  When 

both sides are equally adaptive, around 50% of vehicles get through, but this increases to 

55.5% when Blue is more adaptive, i.e. Blue is “inside the OODA loop” of Red (Brehmer 

2005).  It drops to 46.1% when Red is more adaptive. 

 

Figure 6: Results for reducing Red and/or Blue adaptivity by a delay factor.  The delayed party does 

significantly worse (differences between colours statistically significant by χ
2
 at the 10

–15
 level or better). 

6. Genetic Programming 

A somewhat more realistic simulation model allows Red and Blue to innovate new strategies 

using genetic programming (Koza et al. 2003).  This technique has had several applications.  

Angeline & Pollack (1993), for example, use it to evolve strategies for the simple game Tic-

Tac-Toe (Noughts and Crosses).  We have constructed a simple Java-based genetic 

programming system where Red and Blue can develop plans which generalise the strategies 

of Table 1.  Innovation is now possible: it results from a process of mutations and 

combinations of existing plans.  Learning results from eliminating unsuccessful plans. 

Blue strategies consist of rules for moving from a given square, and include the three simple 

strategies Move-up, Move-down, and Move-right.  Repeated, Move-right is the “Direct” 

strategy of Sections 3 and 4, while repeatedly executing Move-down results in travel along 

the bottom edge of the simulation region.  Given strategies S1, S2, S3, and S4, the following 

more complex strategies are possible: 

 Select S1 S2 S3 S4, choosing Si depending on whether the current square is sand, path, 

road, or rock; 

 Up S1 S2 S3 S4, choosing Si depending on whether the square up from current is sand, 

path, road, or rock; 

 Down S1 S2 S3 S4, choosing Si depending on whether the square below current is sand, 

path, road, or rock; 

 Right S1 S2 S3 S4, choosing Si depending on whether the square to the right of current is 

sand, path, road, or rock; 

 History S1 S2 S3, choosing Si depending on whether the last move was up, down, or right; 

 Prefer T, selecting movement onto terrain T (sand, path, road, or rock); 

 Avoid T, selecting movement not onto terrain T. 
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Red strategies consist of rules for deciding whether to plant an IED on a given square, and 

include the simple strategies Yes and No.  On their own, these have the effect of the 

“Random” strategy of Section 4, since they imply equal probabilities across the whole grid.  

Given strategies S1, S2, S3, and S4, the following more complex strategies are possible: 

 Select S1 S2 S3 S4, choosing Si depending on whether the current square is sand, path, 

road, or rock; 

 Up S1 S2 S3 S4, choosing Si depending on whether the square up from current is sand, 

path, road, or rock; 

 Down S1 S2 S3 S4, choosing Si depending on whether the square below current is sand, 

path, road, or rock; 

 Right S1 S2 S3 S4, choosing Si depending on whether the square to the right of current is 

sand, path, road, or rock; 

 Prefer R, preferring placement in a region R, such as the centre. 

The genetic programming process can mutate one strategy into another, or “cross” two 

strategies by replacing a substrategy of the first by the second.  Strategies are deemed “fitter” 

than others if they succeed more often against the enemy, and unfit strategies are 

progressively replaced by new “children” of the genetic programming process.  

One example run ended with the most popular out of a population of 40 Blue strategies being 

Move-down (with the effect of  “travel along the bottom edge”), and the most popular Red 

counter-strategy being Prefer not-centre (with the effect of “randomly, anywhere except the 

central region”).  In the long run, such simple strategies usually win out over specialised 

strategies such as Select Move-right Move-up Move-down Move-right, since the opposition 

strategy does not generally remain constant long enough for sophisticated counter-counter-

strategies to evolve.  In other words, the simple strategies are usually more robust.  However, 

various complex strategies do often “lead the pack” for limited periods of time. 

Figure 7 shows the result of the genetic programming model.  Blue vehicles getting through 

oscillate between 32% and 76%, with a mean of 52.8%.  Oscillations have a period similar to 

those of Figure 4, although with slightly less random noise.   

 
Figure 7: Results of Red and Blue adaptation over 10,000 trips using genetic programming (averages over 

groups of 50 trips). 

The similar behaviour indicates that the simpler adaptivity model was in fact adequate for 

drawing the conclusions that were made: that adaptivity leads to oscillations, as first one side 
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and then the other gains an edge; and that the side which adapts more rapidly has an overall 

advantage.  For more complex problems, we would expect the benefits of genetic 

programming’s greater realism to become apparent.  For example, Luke & Spector (1996), in 

their simulation of hunting lions, show that genetic programming can be used to study 

blue/blue or red/red cooperation in the context of a wider blue/red conflict. 

Genetic programming is a promising model of social and organisational adaptation, because 

such adaptation can be understood as a process of transmitting and modifying “memes” 

(Dawkins, 1989; Gabora, 1995; Boal & Schultz, 2007). As Weeks & Galunic (2003) point 

out: 

“Memes are the replicators in cultural evolution. They are modes of thought (ideas, 

assumptions, values, beliefs, and know-how) that when they are enacted (as language 

and behavior and other forms of expression) create the macro-level patterns of culture. 

… Memes are the genes of culture.” 

Because genetic programs express beliefs, decision procedures, etc. in a formal language, 

they can in particular represent memes, and genetic programming can therefore model, albeit 

at a coarse-grain level, the process of social and organisational adaptation through meme 

evolution.  It is a more general approach than the evolutionary adaptation of neural networks, 

which we have used in earlier work (Dekker, 2011). 

Returning to our experiment, Figure 8 shows the result of making one or other side less 

adaptive, using a smaller population in the genetic programming, and less frequent learning.  

As in Figure 6, the less adaptive side succeeds less often, overall.  However, the differences 

are greater than those of Figure 6, with a spread of 16.8%, rather than 9.4%, in the results. 

 

Figure 8: Results for reducing Red or Blue adaptivity using genetic programming (averages over 20 runs each).  

The less adaptive party does significantly worse (differences between colours are statistically significant by 

ANOVA at the 10
–3

 level or better). 

Investigating the extent of this advantage in the real world would, of course, require a more 

realistic model than the one in Figure 2.  However, our results suggest that genetic 

programming is a promising way of studying real-world adaptivity in such a more realistic 

model. 

7. Discussion 

In this paper, we have used the simple agent-based simulation in Figure 2 to briefly survey 

Operations Research issues associated with counter-IED activities. 
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While it is possible to assume a fixed Red strategy and optimise against it, as in Section 3, 

this fails to capture the improvised nature of IEDs.  The game-theoretic approach in Section 4 

captures the fact that Red is an intelligent opponent, but it still does not recognize the ever-

changing nature of the IED threat, and the nonzero-sum aspect of counterinsurgency 

operations. 

Doing justice to the IED threat requires incorporating adaptivity into the model, so that Red 

and Blue are, in a sense, optimising on a fitness landscape which constantly changes as the 

opponent adapts.  Figure 6 and Figure 8 highlight the fact that in such a contest, the most 

rapidly adapting side has an advantage.  This conclusion reinforces other work on adaptive 

learning (Spaans et al. 2009).  Our results also suggest that genetic programming is a 

promising way of studying real-world adaptivity, because of its ability to simulate the 

innovation and evolution of organisational “memes.” 
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