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Managing Complex Interoperability Solutions
using Model-Driven Architecture

Michael Gerz, Nico Bau, Francisco Loaiza, Steve Wartik

Abstract

The increasing need to exchange information in joint operations has resulted in interoper-

ability standards of significant complexity. For instance, the Joint Consultation, Command,

and Control Information Exchange Data Model (JC3IEDM ) that is part of the MIP inter-

operability solution has almost doubled in size since 2002.

The configuration management of complex data models, especially in the context of in-

ternational standardization activities, is a challenging task, because many different artifacts

(examples, documentation, etc.) must be kept synchronized as the model evolves.

Ideally, data models are expressed at several levels of abstraction in the form of computa-

tion-independent (business) models, platform-independent models (PIM), and platform-

specific models (PSM). Efficient transformation tools are desirable to automate the gener-

ation of PSMs from a PIM.

Another important aspect concerns the collaboration of different Communities of Interest

(COIs). Diverging information exchange requirements call for a modular or even federated

data model rather than a monolithic, indivisible one.

In this paper, we demonstrate how the use of formal languages and the concepts of

Model-Driven Architecture (MDA) can be applied to the JC3IEDM in order to improve the

maintenance, consistency, and comprehension of the model and to provide implementers

with products that allow them to build interoperability solutions for their C2 systems more

easily.

1 Introduction

The increasing need to exchange information in joint operations has resulted in interoperabil-

ity standards of significant complexity. The configuration management of large data models,

especially in the context of international standardization activities, is a challenging task. There

are several reasons why:

• Consistency of Products. Data models are delivered with several artifacts such as for-

mal definitions, business rules, model diagrams, examples, and free-text documenta-

tion. The data model itself is typically expressed at several levels of abstraction in

the form of computation-independent (business) models, platform-independent models

(PIM), and platform-specific models (PSM). Furthermore, it is ideally complemented by
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1 Introduction

implementation-specific products such as XML schemas, ontologies, database schemas,

and source code.

• Traceability. Whenever the specification is updated, it is important that all changes can

be identified easily by all interested parties. Furthermore, the rationale for each change

should be documented to make the new specification more accessible. Unfortunately,

known modeling tools do not have an integrated change tracking capability that fulfills

the requirements of an international standardization group, such as proposing and voting

on changes prior to applying them to the model.

• Harmonization of Different Communities of Interest (COIs). Multiple parties are inter-

ested in the standardization and would like to see their specific requirements and concerns

covered by the specification.

In this paper, we demonstrate how the use of formal languages, management tools, and the con-

cepts of Model-Driven Architecture (MDA) can be applied to data models in order to improve

their maintenance, consistency, and comprehension and to provide implementers with artifacts

that allow them to build interoperability solutions for their C2 systems more easily. We will

also look briefly at the collaboration of different Communities of Interest (COIs). Diverging

information exchange requirements ask for a modular or even federated data model rather than

a monolithic and indivisible one.

Case study – MIP JC3IEDM The concepts have been applied to the Joint Consultation,

Command and Control Information Exchange Data Model (JC3IEDM ) [2] that is a core prod-

uct of the Multilateral Interoperability Programme (MIP) [4]. MIP is an international standard-

ization program consisting of 29 member nations and NATO. It covers operational, procedural,

and technical aspects of command and control information exchange. MIP develops specifica-

tions with focus on exchange of land C2 information in coalition environments. The latest

version of the MIP solution, MIP Baseline 3, was released in October 2009.

The JC3IEDM standardizes data elements exchanged by C2 systems. Over the past five years,

the Multilateral Interoperability Programme has been exploring the applicability and possible

adoption of the MDA framework to support the development and maintenance of the next

generation of information systems. As part of the transition to a future product line, the

JC3IEDM has been converted from a platform-specific entity-relationship model to a platform-

independent class model in the Unified Modeling Language (UML) [9].

Table of Contents This paper is structured as follows: Section 2 gives a brief introduction to

the concepts of model-driven architecture. Section 3 describes the Query/View/Transformation

(QVT ) technology and its realization in a MIP-developed prototype tool. QVT is a standard

promulgated by the Object Management Group (OMG) [8] that promotes the development of

complete and unambiguous models that can be kept consistent and up to date with acceptable

effort levels. The transformation of the JC3IEDM towards a platform-independent model is

sketched in section 4. Section 5 outlines the benefits of using formal languages and tools for

keeping data model artifacts consistent. Section 6 addresses aspects of change management in
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a standardization process. Finally, different approaches to the collaboration of communities of

interest are discussed in section 7. The paper concludes with a short summary in Section 8.

About the Authors The Institute for Defense Analyses (IDA) provides technical support

to the US delegation that participates in the Multilateral Interoperability Programme. In that

capacity, IDA has been exploring the applicability of the MDA framework to the MIP activities.

The Fraunhofer FKIE supports the German delegation of the MIP. The research institute has

been involved in the transformation of the JC3IEDM and has contributed several tools for data

model management.

2 Model-Driven Architecture

One of the biggest problems in C2 system development, deployment, and use is the difficulty

of maintaining and working with the many different models created and used by architects,

analysts, engineers, and end users in defining, validating, and implementing them.

Computer-Aided Software Engineering (CASE) tool vendors promote their products as a way

to eliminate or substantially reduce model inconsistency. In the past, many CASE tools let a

user create a high-level model and then transform it into a lower-level model. These CASE tools,

although useful, tend to be brittle. Most only support a reduced number of transformations,

e.g., from an RDBMS physical schema to the corresponding SQL script needed to instantiate

the tables in a relational database engine.

As a result, communities end up investing substantial resources to develop special purpose

tools to fill the CASE tool gaps. This approach is suboptimal and explains in large part the

two conditions that plague modern information systems:

1. Lack of interoperability, caused by the difficulty of transforming the information of one

system’s model into that of another.

2. Incompleteness, ambiguity, obsolescence, and inconsistency of the underlying models and

their documentation during the system’s life cycle.

OMG promotes the Model Driven Architecture (MDA) technology as a means to alleviate many

of the issues mentioned above. In MDA, a model has a rigorous enough definition to allow its

mechanical transformation into another model. MDA envisions a product’s life cycle as a series

of transformations between increasingly detailed, rigorous models, until finally one generates

models detailed enough to implement as hardware or source code.

MDA is an approach to system and software development that recognizes the central impor-

tance of models. In engineering, a model serves several purposes:

1. It presents an abstract view of a complex system or of a complex information struc-

ture. The abstract view lets a user concentrate on certain fundamental properties while

ignoring details that are unnecessary to gain an understanding of those properties. Con-

sider a software system written in an object-oriented programming language such as Java
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2 Model-Driven ArchitectureM3 (meta-metamodel)
M2 (metamodels)
M1 (models)
M0 (instances)
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Figure 1: MOF layers

or C++. A user who is interested in understanding the class inheritance may want to

view the system using a UML class diagram, even though the class diagram omits the

algorithmic details.

2. It permits a limited but important degree of formal analysis. Continuing the example from

the previous paragraph, a UML class diagram can be analyzed for violations of rules on

inheritance (e.g., no multiple inheritance in Java, and no circularity). The amount of

formal analysis is model-specific and generally limited in comparison to results obtained

by analyzing, testing, and observing an actual system. However, model analysis helps

uncover problems early, at the time they are introduced, when fixing them is cheapest

[1].

3. It supports, within the context of software development, the automated transformation of

higher-level models into lower-level implementation models. Any code written in a com-

puting language is in fact a model of algorithmic computation that a compiler transforms

into a virtual machine language (in case of Java) or a computer’s native instruction set

(C++).

This paradigm encourages both the up-front creation of good models and the maintenance

of downstream consistency. If model A can be mechanically transformed into model B, then

in general it is possible to check whether modifications to B have made it inconsistent with

A. If B is not consistent with A, it is possible to identify exactly where B differs. This does

not guarantee that anyone will fix the offending model, but it does help everyone determine,

automatically, why some component is not behaving as expected.

The MDA framework uses the Meta Object Facility (MOF ) [5] to define the conversion of UML

models to other UML models. As originally conceived and published in MOF 1.4, there are

four layers (see figure 1).

In MOF, the superstructure is defined in terms of layer M3. That is, the UML concepts of

class, property, and association are instances of the MOF class Class.
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 class M2 Class

Class

+ name:  String

Attribute

+ name:  String

+superclass 0..1+subclass 0..*

0..*

+type
1

+attributes 0..*

1

 class M2 Table

Table

+ name:  String

Column

+ name:  String
+ type:  ColumnTypes
+ isPrimaryKey:  Boolean

«enumeratio...
ColumnTypes

 VARCHAR
 NUMERIC

ForeignKey

0..*

+relatedTable

1

+columns 1..*

1

Figure 2: MOF Level 2 Metamodels for a UML Class Diagram (left) and its Corresponding
Database Representation (right)

Layer M1 is an instance of a meta-model — what an analyst creates using a UML modeling

tool. Layer M0 is an instance of an M1-layer model. In the case of software, the M0 layer would

consist of the elements a program manipulates at runtime. The right of figure 1 shows how

MOF is used by MIP to express the JC3IEDM. Layer M2 is the version of UML supported

by UML tool Enterprise Architect1. Layer M1 is the JC3IEDM PIM itself. Layer M0 is an

instance of a PIM data set, that is, the data a MIP-compliant C2 system collects and reports.

Figure 2 depicts two metamodels that will be used to explain the transformation of a standard

UML JC3IEDM class diagram into a model that uses the OMG’s database profile. The meta-

model on the left allows the instantiation of M1 models that consist of classes and attributes.

The classes are related by a single inheritance hierarchy. An attribute has a type, which is a

class.

The model on the right is a metamodel for a relational database. It describes tables and

columns. A column may be a primary key. It may also be a foreign key, in which case it has an

association to the table it relates. A column’s type may be either VARCHAR or NUMERIC.

Figure 3 shows a small subset of instances of the Classes metamodel from figure 2 (left portion).

It depicts two JC3IEDM classes (ObjectItem and Person) and two attributes (nameText and

genderCode). Note that the data type String is represented as a class, as is the GenderCode

enumeration.

Figure 4 is a UML object model. It shows instances of classes in the left-side metamodel from

figure 2. That metamodel has two classes, Class and Attribute. Figure 4 uses these classes to

specify two JC3IEDM classes and their properties. Figure 3 shows the instances from figure 4

in the more familiar UML class model form.

1see http://www.sparxsystems.com/
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3 Automatic Generation of Platform-Specific Models with QVT
 class M1 JC3IEDM

ObjectItem

+ nameText:  String

Person

+ genderCode:  GenderCode

«enumeratio...
GenderCode

 Male
 Female

Figure 3: Example of JC3IEDM Instantiation for the MOF Level 2
 object ObjectDiag

o1 :Class

name = ObjectItem

a1 :Attribute

name = nameText

o3 :Class

name = String

o2 :Class

name = Person

a2 :Attribute

name = genderCode

o4 :Class

name = GenderCode

a3 :Attribute

name = Male

a4 :Attribute

name = Female

+type

+attributes

+attributes +attributes

+type

+attributes

+superclass +subclass

Figure 4: An Object Diagram for the JC3IEDM Classes in Figure 3

3 Automatic Generation of Platform-Specific Models with QVT

OMG has endorsed the Query/View/Transformation (QVT ) [7] technology for describing

transformations. Using QVT, one can specify how to transform one model into another. One

common use of QVT is to transform a Platform Independent Model (PIM) into a Platform

Specific Model (PSM).

A PIM is a model that is independent of the implementation details of a specific platform; a

PSM is tied to a particular platform. For example, a C2 information system has an abstract

data model, which describes the C2 data the system is prepared to handle. This model is

a PIM. The system may want to persist its data using a Relational Database Management

System (RDBMS) such as Oracle or MySQL. Each data model for a specific RDBMS is a

distinct PSM. Or the system may want to exchange information with other C2 information

systems using XML messages. The XML schema for the message structure is another PSM.
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Briefly, the approach to using QVT is as follows:

• System architects, analysts, and engineers develop multiple models using UML. These

models are at the highest level of abstraction possible such that they can be specified com-

pletely and unambiguously. For example, MODAF-compliant2 users create Operational

View (OV) models: interaction models to describe the OV-1 through OV-6 products, and

a class model to describe the OV-7 Logical Data Model.

• Engineers develop QVT transformations to related models. On a MODAF-compliant

project, they would develop transformations from the OV models to the SV models. For

example, an engineer would develop a transformation from OV-7 (Logical Data Model)

to SV-11 (Physical Schema).

• System architects and engineers use automated QVT tools to perform the transforma-

tions. In other words, the physical schema is automatically generated from the logical

data model.

• Engineers develop systems using the transformation results. Inevitably, they find prob-

lems that require changes. They use the QVT tools to test whether (and how) these

changes affect the source models (i.e., those used as input to transformations). If the

transformed model is inconsistent with the source model, system architects and engi-

neers change the source model, then perform the transformation again.

Many languages can be used to describe transformations from one UML model into another,

ranging from natural language descriptions to traditional procedural programming languages.

QVT provides what is arguably the simplest, most technology-neutral way. QVT, having been

designed to perform MDA transformations, contains powerful features lacking in other ap-

proaches, and eliminates unnecessary constructs that would otherwise clutter a transformation.

The QVT language states transformations. In the simplest and most common case, a transfor-

mation relates two M1-level models. Each model has an M2-level metamodel. The models may

share the same metamodel, or they may have different metamodels.

A transformation consists of one or more relations. A relation relates an element from one

model’s metamodel to an element in the other model’s metamodel. Consider the problem

of describing how to translate a class model (the PIM) into a database schema (the PSM).

Using the metamodels from figure 2, a class-to-schema transformation would contain a relation

between Class and Table. This relation states, in effect, that there is a one-to-one mapping

between a class in a class hierarchy and a table in a database.

The transformation would contain a second relation that specifies the one-to-one relationship

between an attribute and a column. Because a class and its attributes are related, the class-

to-table relation is associated with the attribute-to-column relation.

Some relations describe relationships that are not one-to-one. For example, each table has a

primary key. The class model does not usually have key attributes. In other words, there is an

element in the database model that is not in the class model.

2For more information on the MOD Architecture Framework (MODAF), see http://www.mod.uk/

DefenceInternet/AboutDefence/WhatWeDo/InformationManagement/MODAF/.
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3 Automatic Generation of Platform-Specific Models with QVT

1 transformation Class DBMS(classModel: Classes, dbmsModel: Tables) {
2 top relation Class Table {
3 domain classModel class: Class {} { name <> ’String’ };
4 enforce domain dbmsModel table: Table {
5 name = class.name.toUpper(),
6 columns = pk: Column {
7 name = class.name.toLower().concat(’key’),
8 type = ColumnTypes:NUMERIC,
9 isPrimaryKey = true

10 }
11 };
12 where { Attribute Column(class, table); }
13 }
14
15 relation Attribute Column {
16 domain classModel class: Class {
17 attributes = attr: Attribute {}
18 };
19 enforce domain dbmsModel table: Table {
20 columns = col: Column {
21 name = attr.name.toLower(),
22 type = if attr.type.name = ’String’ or isEnumeration(attr.type.name)
23 then ColumnTypes::VARCHAR
24 else ColumnTypes::NUMERIC
25 endif,
26 isPrimaryKey = false
27 }
28 };
29 }
30
31 query isEnumeration(name: String): Boolean {
32 let size: Integer = name.size() in name.substring(size−4,size) = ’Code’
33 }
34 }

Figure 5: Example of a QVT Script to Transform UML Class Diagrams to its RDBMS Repre-
sentation

The paragraphs above describe transformation patterns: translate a class to a table; translate

an attribute to a column; and so on. QVT is a pattern-based language. Pattern languages are

esteemed for providing concise descriptions.

Figure 5 shows a QVT script that expresses these patterns. The script omits some details for

the purposes of this example, but it is complete and complex enough to provide the flavor of

QVT. The Class Table relation expresses the relationship between a Class and a Table (note

the words at the end of the domain lines). Its where clause links it to the Attribute Column

relation. The name = class.name.toUpper() line in the Class Table relation states that the

table’s name is basically the same as the class’s (unlikely in a real transformation). The columns

= pk: Column line begins a pattern stating that each table has a column that is a primary key.

The column’s name is the concatenation of the table’s lowercased name and the string key.
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 object Result

t1 :Table

name = OBJECTITEM

c1 :Column

name = objectitemkey
isPrimaryKey = true
type = NUMERIC

c2 :Column

name = nametext
isPrimaryKey = false
type = VARCHAR

t2 :Table

name = PERSON

c3 :Column

name = personkey
isPrimaryKey = true
type = NUMERIC

c4 :Column

name = gendercode
isPrimaryKey = false
type = VARCHAR

+columns

+columns

+columns

+columns

Figure 6: Result of Transformation

The script states how to transform a class model into a database model. More precisely, it states

how to transform the instances in figure 4, which are instances of the metamodel in figure 2

(left), into instances of the metamodel in figure 2 (right). It specifies that every instance of

Class in the figure 2 (left) metamodel maps to an instance of Table in the figure 2 (right)

metamodel. To avoid creating a table for the primitive string data type, the script eliminates

the class whose name is String.

The script also states that each instance of Attribute in the figure 2 (left) metamodel maps to

an instance of Column in the figure 2 (right) metamodel. The where clause relates a class to

its attributes and the corresponding table to its columns. Executing the transformation results

in creation of the instances shown in figure 6.

The previous paragraphs exemplify the basic principles regarding how one creates instances

of one metamodel from instances of another metamodel. Transforming a PIM into any other

type of PSM, e.g., to an XML schema representation for the classes, to an OWL ontology, etc.,

follows essentially the same logic.

The MDA/QVT transformations that have so far been demonstrated, and their roles, are as

follows:

• A transformation from a PIM to a relational database schema. C2 information needs to

be persisted, not just transmitted, and an RDBMS is an efficient mechanism. In the past,

systems have maintained JC3IEDM data sets in databases. This transformation, then,

provides for C2 data persistence and shows how the JC3IEDM PIM can still be used in

conjunction with legacy systems.

• A transformation from a PIM to a software development kit (SDK). An SDK is often

the most natural way for software developers to access a conceptual data model. The

US Army’s C2 Interoperability Group (CIG) built an SDK from an earlier version of the

9



4 A Modular, Platform-Independent JC3IEDM

JC3IEDM. The QVT transformation developed by the IDA study team demonstrates

that an SDK can be generated automatically and rapidly from the PIM.

• A transformation from a PIM to an ontology. DoD sees ontologies as the best currently

available technology to achieve data understanding. A consensus has emerged to write

ontologies using the Web Ontology Language, known as OWL. Transforming a conceptual

data model into OWL is effort-intensive. Consequently, many organizations opt to write

conceptual data models directly in OWL. This is somewhat unfortunate, as OWL is

by design limited in its expressivity — certainly in comparison with UML (for example,

OWL cannot express constraints involving arithmetic). The PIM-to-OWL transformation

demonstrates that an organization can write a conceptual data model in UML, with all

the expressivity that said modeling language supports, and then automatically transform

much of the model into OWL. This gives both the power of UML and the interoperability

potential of OWL.

• A transformation from a PIM to an XML Schema Definition (XSD). Although OWL

is the preferred technology for sharing information semantics, it is often unnecessarily

complex. OWL-based information exchange can result in both large messages and high

computational requirements — especially as compared to raw XML messages. Put an-

other way, OWL specifies semantics, XSD specifies syntax, and sometimes knowing the

syntax is all that is necessary. MIP has provided definitions of the JC3IEDM using XSD.

The QVT transformations demonstrate that generation of XSD can be automated.

4 A Modular, Platform-Independent JC3IEDM

The data model of MIP baseline 3, the JC3IEDM version 3.0.2, is defined as an Entity-

Relationship model in IDEF1X notation. The JC3IEDM has both a logical and a physical

view. However, they are structurally identical and only differ with regard to the naming of

entities/attributes and a few additional attributes in the physical view.

Weaknesses of the JC3IEDM 3.0.2 The JC3IEDM ER model has some known technical

weaknesses:

• The main purpose of the JC3IEDM is to support database replication. Accordingly,

the data model includes many database-specific elements. About 40% of all JC3IEDM

attributes are primary or foreign key attributes. In addition, discriminator-code attributes

are defined for every parent entity to denote the type of the subentity.

• The JC3IEDM has the capability to express the logical deletion and update of data. This

has led to complicated and ambiguous data structures. Moreover, the built-in“versioning”

of data was introduced in an ad hoc and inconsistent manner.

• The use of metadata is inconsistent throughout the data model, again resulting in am-

biguous and complicated data structures.
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• In the same way, grouping of information is supported only partially and in an inconsistent

manner. The problem is partly caused by the fact that the grouping concept and metadata

are tightly related to each other in the data model.

The issues listed above have resulted in a series of subtle problems for implementers and

operators. For instance, for some information it is impossible to determine whether or not it

is part of a specific information group. Therefore, in combination with the MIP data exchange

mechanism, information leakage may occur. Moreover, the overall complexity of the data model

(in terms of both number of entities and relationships) makes it hard to maintain. Since some

concepts have been introduced “when needed” and sometimes even with multiple modeling

options, the correct evaluation of JC3IEDM data in a C2 system is algorithmically challenging

and requires special business rules. On the other hand, concepts like grouping, metadata, and

logical update/delete could be introduced and handled by a pattern-based approach in a generic

manner.

Restructuring of the JC3IEDM The MIP has decided to restructure its JC3IEDM for a future

baseline and make it a true platform-independent model. In fact, there will be a conceptual, a

logical, and a physical data model, where the conceptual model defines the starting point for

automatic model transformation, i.e., logical and physical data models are derived from it.

In a first step, the ER model has been transformed into a UML model. In doing so, all database-

specific elements (such as keys) have been eliminated and the model has been adapted to

general UML design conventions. It has been demonstrated that the database elements can be

re-introduced in a platform-specific model, applying the MDA approach (cf. section 3).

In a second step, the cross-cutting concepts (metadata/grouping) have been factored out of

the data model “core” and workarounds to support logical update/deletion of data have been

removed. These transformations have resulted in a significant reduction of complexity, while

preserving the operational concepts of the JC3IEDM.3

Key Characteristics of the Conceptual Model The conceptual model describes objects, ac-

tions, etc. and their associations as they appear in the real world. It does not describe how

objects are perceived and how information about objects, actions, etc. is actually exchanged

between C2ISs. This results in two important properties of the conceptual model:

• “Stateless”: unlike the JC3IEDM 3.0.2, the conceptual model does not describe evolution

of objects over time. The model describes objects as such but it does not incorporate the

concept of object states, which is introduced in the logical model by transformation. The

conceptual model allows characterizing the status of an object but it does not provide

data structures to capture the fact that a status is superseded by another status.

• “Sourceless/contextless”: the conceptual model does not consider conflicting information

from different reporters, nor does it reflect the fact that current situation information can

3Note: At the time of writing this paper, the technical restructuring has not been completed yet. We expect a
stable version by autumn 2011.
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 class PIM - Conceptual Model

Core Elements

GroupsMetadata

Metadata ReferenceDescription

ReportingData

SecurityClassification

Appraisal

TemporalValidity

ObjectItemStatus

ObjectItem

Affiliation

ObjectType

ObjectItemLocation

PlanOrder

Location

Organisation

InformationGroup

Action

OperationalInformationGroup OtherInformationGroup

PlanOrderComponent

AssessmentGroup

Assessment

Capability

1

1

0..*

0..1

0..*
0..*

1

0..1

1

0..1 0..1

0..*

1

0..1

0..1

0..*

instance

0..*

classification

1

0..1

0..*

owner

0..*

Holdingproperty

0..*

0..1

0..1

reportingAgent 1

0..*

authority
0..* 0..*

responsibleOrganisation
1..*

0..*

1

0..*
{sequence}

0..*

0..*

0..1

0..1

1
1..*

0..1

0..*
0..*

0..1

0..*

0..1

Figure 7: Future JC3IEDM Conceptual Model

coexist with plans. While the conceptual model describes metadata and grouping, it does

not provide a mechanism for associating information on objects with metadata/groups.

Again, this is introduced in the logical model.

Figure 7 shows the foundational classes and associations of the future conceptual model.

5 Consistency of Artifacts

One of the most important features of a comprehensible specification is accessibility to consis-

tent and concise documentation with formal models and accompanying examples. The JC3IEDM

specification of MIP baseline 3 consists of

• An ER model in IDEF1X notation

• A Microsoft Access database describing the IDEF1X model and additional business rules

and metadata
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• A set of Microsoft Word documents, which include further business rules (in semi-formal

and free-text form) and examples on how to use the data model

The difficulty of keeping these artifacts consistent is obvious: While some information is ex-

pressed in three different formats, other information is just present in one of the artifacts and

there are no tools that provide consistency checks. Thus, all changes to the model in IDEF1X

require manual adjustments of the respective information in the Access database as well as

in the Word documentation. This process, which includes several quality assurance steps, is

extremely time-consuming, effort-intensive, and error-prone.

In the future, the number of manually adjusted products for the JC3IEDM will be reduced,

and as much exemplifying documentation as possible will be generated from a single source:

• In the UML version of the JC3IEDM, all business rules have already been added to the

model by use of the Object Constraint Language (OCL) [6]. The availability of formal

business rules in OCL means a huge improvement in terms of implementing a business

rule checker, because OCL is an established standard and understandable to a much

larger base of programmers than the proprietary (or even free-text) format in which MIP

baseline 3 defines business rules. Furthermore, OCL allows checking business rules for

syntactic and semantic errors and for consistency with the underlying UML model.

• It is also desirable to store example data in a structured way. Since the JC3IEDM is

based on UML classes, using UML object definitions for example data is an obvious

choice. Depending on the capabilities of the UML modeling tool, consistency between

the object models and the class model can be ensured to a certain degree.4

• For free-text documentation, it is impossible to ensure consistency with the model au-

tomatically. However, if the documentation is annotated in a way that allows a tool to

identify references to classes, attributes, and domain values, it is possible to perform an

impact analysis and identify those parts of the documentation that need to be reviewed

and perhaps updated in response to any specific change to the model. Modern modeling

tools have built-in document editing features and allow modelers to introduce hyperlinks

among model elements.

• Class diagrams, which illustrate different aspects of the data model (in terms of subviews),

need to be updated whenever the model changes. For updates on attributes, UML mod-

eling tools manage to update the affected diagrams automatically but new classes (and

associations in some cases) need to be added to class diagrams manually. In the future, it

would be beneficial to describe diagrams formally and create them automatically based

on their descriptions. For example, a diagram showing a specific class hierarchy should be

updated automatically if a new subclass is added to the hierarchy. This approach requires

an expressive and user-friendly rule language that allows to specify the classes shown in

the diagram based on their associations with other classes rather than by name.

4Unfortunately, the tool used by the MIP Community (Enterprise Architect (EA)) only supports limited
consistency checks. While EA renames object classifiers in an object diagram if the class name changes, the
same does not hold true for renaming attributes in a class. Furthermore, EA does not check if the type of
an assigned value of an attribute matches with the specified attribute’s type. However, this is not a major
concern, since it is possible to write a plugin which performs all those consistency checks.
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6 Formal Description of Change Proposals

For a complex specification such as the JC3IEDM, it is vital that all changes to the model are

tracked. In a community-driven specification process, all interested parties propose, discuss,

and vote on changes prior to applying them to the model and documenting them. In MIP

baseline 3, change proposals (CPs) were specified as Word documents, which textually outlined

the desired changes and their underlying rationale. Once a CP was accepted, it was manually

applied to the various artifacts. In some cases, this required further changes (e.g., generating

database keys) which had not been defined in the CP itself.

To ensure that accepted changes can be applied to the model without manual intervention,

the CPs against the UML version of the JC3IEDM are written as XML files that conform to a

specific XML schema. This schema defines a list of operations that can be performed on a UML

model, such as adding, removing, or modifying attributes, classes, associations, etc. For each

operation, the schema ensures that all information needed to perform the respective change is

given. An example of a formal operation is shown in figure 8. Furthermore, the schema requires

a CP to include metadata such as rationale and the CP’s author(s).

In order to make change proposals more readable, Fraunhofer FKIE has developed a tool

that transforms an XML file into an RTF document (see figure 8). Another tool processes an

XML CP and applies all listed changes to the UML model. While and after doing so, the tool

performs various checks, such as ensuring that the changes do not result in an invalid model.

These checks range from generic constraints that are valid for all UML models to very specific

tests that are unique to the design patterns of the JC3IEDM. Currently, the following checks

have been implemented:

• Each class has at most one direct supertype and no cycle in its type hierarchy5

• Each class is connected to at least one other class

• All OCL business rules conform to the underlying UML model

• Naming conventions

– Class names are written in upper camel case notation (e.g., ObjectItem)

– Attribute names are written in lower camel case notation (e.g., decoyIndicator)

• Spurious/unused model elements

– Enumerations with one or zero attributes (= values) are not allowed

– Enumerations have to be referenced by at least one attribute

The tool stores the CPs in a specific package in the UML model. Thus, each version of the

UML model also includes all CPs that have been applied to it. The CPs are stored as text

documents in XML format, so users can search for, e.g., all CPs that modify a specific class.

5UML supports multiple inheritance (i.e., one class is the subtype of multiple supertypes). However, multiple
inheritance often introduces implementation problems.
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Figure 8: Example of a Formalized Change in XML and RTF

7 Collaboration of Communities of Interest

Several projects beyond MIP make use of the JC3IEDM, e.g., the Battle Management Language

and the Joint Dismounted Soldier System. These Communities of Interest (COIs) benefit from

the international standardization effort in MIP by taking those parts of the specification that

are relevant to them and extending the data model in areas where the JC3IEDM is not sufficient

for their purposes.

However, this process should not be unidirectional. For the sake of consistency and future

reusability of data among all interested parties, it would be highly beneficial to leverage the

expertise and work of these COIs to further improve and extend the JC3IEDM. Doing this will

require a fine balance between including too much COI-specific information in the JC3IEDM

and omitting important general aspects. Too much specific information will make the model

convoluted and hard to maintain; missing information that is interesting for multiple COIs

may result in different COIs modeling the same aspect in parallel, and inconsistently. In the

future, significant care will have to be taken to find and keep this balance.

There has been a long and on-going discussion within NATO, MIP, and on the national level

whether a single unified information model is the right answer to tackle interoperability issues

or whether a federated model (a hierarchy of domain-specific models) is more appropriate.

Presently, NATO is in favor of creating a simple generic model (often referred to as the“common

core” or “C2 core”), which can be extended by different COIs in different areas. This approach

has two major prerequisites:

• The identification of this common core as a starting point for all modeling activities in

all COIs

• An organization structure responsible for supervising all modeling activities and ensuring

consistency across the extensions of different COIs

These requirements are necessary to ensure that a) all COIs use the same well-defined core

and b) extend the core consistently with regard to their subject matter as well as the common

modeling guidelines. It is important to note that these prerequisites are currently not fulfilled.
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Figure 9: Monolithic vs. Modular vs. Federated Model

Right now, the MIP community follows a modular approach, which could be adapted to a

federated modeling approach in the future (see figure 9). Rather than splitting the JC3IEDM

into a small core and several COI-specific models (which by itself is a long-term effort and

requires a clear understanding of the COIs), the JC3IEDM is kept in its entirety but structured

in a way that allows to define submodels in an elegant way. Technically, this is achieved by

providing a tool, which allows for different COIs to define their own (semantically meaningful)

subset of the JC3IEDM that is created automatically. Then, further modifications, such as

additions of missing classes and attributes, can be performed in the de-coupled submodel.

Furthermore, it is possible to perform an impact analysis of MIP change proposals across all

COI-specific submodels. Again, the automatic application of model changes, which is already

given by the use of formalized CPs, has huge benefits.

Defining proper submodels is considered a long-term process. Later on, it would be possible

to identify parts of the JC3IEDM that are only used by one COI, and parts that are shared

between different COIs. The latter would be good candidates for a future common core model.

Because MIP grants access to their specifications and tools, other COIs are invited to benefit

from the experience of MIP members as well as from a vast toolset. Based on this, a federated

modeling approach could be established.

8 Summary

In this paper, we have described various approaches to simplify the management of data models

in the context of an international standardization program. As part of the continuous improve-

ment of its interoperability solution, the Multilateral Interoperability Programme has started

16



to convert the JC3IEDM into a platform-independent model in UML, facilitating a high degree

of tool automation and product consistency.

As of writing this paper, the JC3IEDM is still undergoing a major revision. An interim version

is available at the MIP MDA Website [3] (in particular, see http://mda.cloudexp.com/DEV/

SVN/PIM/trunk). In addition, various tools have been developed to support the management

process. They are publicly available and may be useful for other programs and projects.
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