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Abstract— This paper uses information theory to 
investigate the utility of alternative Command and Control 
(C2) structures and strategies. Specifically we use 
information theoretic metrics complexity, entropic drag and 
evolutionary entropy. Complexity measures the amount of 
information required to fully express a situation. Entropic 
drag measures the rate at which situational information 
becomes obsolete. These metrics are used to characterize 
situations managed by C2 systems. The performance of C2 
designs is measured as a function of these characteristics; 
performance that is characterized as the C2 system’s 
impact on mission performance, situation awareness and 
controllability. This paper provides a comparative analysis 
of C2 topologies including: centralized control, scale-free 
hierarchies, scale-invariant hierarchies and heterarchical 
“small world” topologies. Dominance plots that map 
optimal topologies to scenario characteristics are provided 
as results. To support our analysis of training and 
innovation we introduce the concept of evolutionary 
entropic drag, which is the rate at which adversaries are 
able to adapt their behavior. 

Keywords- Concepts, Theory and Policy;  Collaboration, Shared 
Awareness and Decision Making; Networks and Networking  

I.  INTRODUCTION 
A healthy tension exists in military command and control 

(C2) between the desire to maximize coordination between 
units through centralized planning and the desire to rapidly 
respond to changing conditions with decentralized “agile” 
units. In Power to the Edge, Alberts and Hayes [1] provide 
compelling evidence that agile C2 can provide a decisive 
advantage in military engagements. In Planning Complex 
Endeavors [2] Alberts and Hayes showed how multi-unit 
planning can be performed by “flattened” decentralized 
organizations. In his highly influential paper  Network-Centric 
Warfare: Its Origin and Future [3], Vice Admiral Cebrowski 
hypothesized that future military conflict will be won by the 
side that achieves “information dominance” by producing and 
distributing information throughout a force more effectively 
than one’s adversary. The Net-centric Warfare vision suggests 
that modern, internet-like, tele-communication networks 
would be the key enabler to information dominance. It is 
widely assumed that net-centric warfare and agile C2 visions 
are synergistic. When net-centric systems use internet-like 

networks the net-centric infrastructure may not be conducive 
to agile C2. As shown in this paper, agile systems based upon 
flattened structure dissimilar to the internet can outperform 
internet-like structures.   

Internet style networks are scale free, relying on quasi-
centralized “supernodes” to rapidly connect leaf nodes. 
Barabasi [4] showed that the scale free topologies are highly 
effective at connecting massively parallel distributed systems. 
Barabasi’s findings appear to contradict Alberts’ assertion that 
flat, decentralized organizations outperform centralized and 
quasi-centralized organizations. Further, recent U.S. military 
experiences in Iraq and Afghanistan support Alberts’ 
argument, as experiences show that large interconnected 
networked force with superior intelligence, surveillance and 
reconnaissance (ISR) assets will not always achieve 
information dominance over forces that use human spotters 
communicating with manual signals. Failure to achieve 
information dominance over less sophisticated adversaries is 
not due to a lack of sensing capabilities but due to an inability 
to process and deliver information to the appropriate war 
fighter without overloading and/or over-tasking the war 
fighter.  The reason Barabasi’s discovery that scale free 
networks outperform other structures does always hold for C2 
systems is found in the differences between internet and 
military requirements. Whereas the Internet is commonly used 
to facilitate information exchanges between arbitrary users, C2 
networks are designed to positively impact a game-theoretic, 
time-varying system, specifically a military engagement. As 
such, C2 networks are more contextual and more time-
sensitive than their civilian counterparts. A specific difference 
is that the value of military C2 information is more dynamic as 
the value of the information is more susceptible to change over 
time. 

This paper explores the impact of information dynamics on 
command and control structure. We do this by using 
information theory to characterize the underlying 
environment, the C2 system and C2 measurements.  

II. DEFINITION OF A COMMAND AND CONTROL SYSTEM 
In Power to the Edge, Command and Control (C2) is 

defined as the “common military term for management of 
personnel and resources.”  They go on to discuss some of the 
approaches taken to differentiate command and control, but 
note that many of these approaches are focused on a single 
command entity, despite their primary thesis that command 
and control has become a distributed responsibility.  If one 



thinks of the structure of the C2 process as a network, on the 
“edge” of this network (to use the terminology of Alberts and 
Hayes) are information sources and actors.  Information 
sources include sensors, humans, databases, etc.  Actors 
include mechanical systems, humans, and weapons systems; 
essentially any entity that can change its state due to a control 
action is an actor.  There is considerable (if not complete) 
overlap between information sources and actors in a given 
situation.  These two types of entities, along with non-
combatants and adversaries are called agents. 

One focus of this manuscript is the structure of the C2 
network.  The interconnections between agents in the C2 
process form networks, and we show that the structure of these 
networks can affect the performance of the agents in the C2 
process. In hierarchical C2 structures, the sources and actors 
are at the bottom of the hierarchy.  Sources provide 
information that is passed and fused through various 
intermediaries in the hierarchy, who in turn are responsible for 
passing information to superior entities and relaying control 
actions to their subordinates based on instructions from their 
superiors.  Additionally, if this hierarchy is centralized and all 
agents share a common representation scheme, then the role of 
the intermediary entities is purely to relay information, all the 
decision making is performed at the top of the hierarchy. For 
centralized hierarchies that do not share a representation 
scheme, intermediate agents take on the responsibility of 
translating information across representation schemes.  The 
concept of “power to the edge,” however, includes the notion 
of sources and actors being able to share information and also 
to have some authority to use local information to dictate their 
own control actions.  If the sources and actors are to 
communicate and coordinate in a non-hierarchical fashion, this 
implies a degree of decentralization in the decision making 
process, potentially in a collaborative fashion between actors.   

Boyd’s Observe, Orient, Decide, Act (OODA) loop [5] is a 
basic model for a C2 process.   In the context of a single 
entity, this is a self-contained cycle based on that entity’s 
knowledge and decision-making abilities.  This line of 
thinking can be extended to a centralized C2 process of many 
entities by thinking of the observation stage as including 
communication of observation towards the centralized 
decision maker, and the act stage including the communication 
of control actions from the decision maker to the actors.  In a 
more decentralized C2 process, each entity is responsible for 
its own OODA loop, while (potentially asynchronously) 
receiving communications containing observations, decisions, 
action requests, etc., from other entities. 

III. INFORMATION THEORY SYSTEM CHARACTERIZATION 
For a C2 process, the continuous world in which the 

process evolves is encoded in a C2 system that discretizes the 
world into a discrete and finite number of states so that the 
inherently discrete sensors, communications, computers, etc., 
can interact with the process.  This discretization is 
fundamentally an engineering decision based on the 
communication and computational resources available.  For 
our purposes, we will assume that the C2 process x(t) operates 
in a discrete state space X={x i} with finite cardinality |X|.  
Then, we call the number of bits required to describe the state 

of the C2 process the descriptive complexity, which is equal to 
log2

To quantify the notions of uncertainty and information in 
the process, we use Shannon information entropy [6].  For 
each state x

|X| bits.  The descriptive complexity can be thought of as 
the fidelity at which the process is described, for instance the 
location of an adversary agent to the nearest meter as 
compared which city block the agent currently inhabits. 

1 ∈ X the information entropy (in bits) of the 
process x at time t is  

 
  

where P(xi,t) is the probability that the process x is in state xi  
at time t. Additionally, the information, I,  of a particular 
observation x(t)=xi is  

 
Thus, one interpretation of entropy is the expected 

information gain of an observation.  It is known that entropy is 
maximized when all states are equally probable, i.e., 
P(xi,t)=|X|-1 for all states xi

Consider an observation S=(x

, so in this sense the notion of 
descriptive complexity outlined above is the maximum 
possible entropy of the system with a fixed discretization.  

i,t) with the interpretation that 
x(t)=xi, then as mentioned above, (allowing for an abuse of 
notation) the information content of the observation is  

 
As time elapses, however, the relevance of the observation S 
that occurred at time t should decrease.  Indeed, if the system 
is not uniquely determined by a single observation, then the 
conditional expected information content of a second 
observation S’ = (xj,t’)  of the same sensor for some t’ > t  is 
H(x(t’) |S ) would be nonzero.  The very fact that repeating the 
same observation (i.e., polling the same sensor) results in 
gaining new information beyond the original observation 
indicates that the previous observation’s information content 
has in some sense decayed.  For a sequence of k observations 
S1:k={(xj,tj)} of the process x ending at time tk = t we define 
the entropic drag (Γ) of the system on the observations at time 
t’ > t by 

 
Conceptually, this can be thought of as the time-derivative 

of conditional entropy, but in a strict mathematical sense the 
assumed discrete space of the sensors will not admit a 
derivative. For observations that occur with fixed sampling 
time ∆t>0 the quantity Γ(S1:k,t , t+∆t)  is effectively the 
expected rate of information generation of the system at time t.  
Entropic drag should not be interpreted solely as being due to 
the motion of the underlying system, for example a pendulum 
or train moving at a fixed speed have predictable trajectories 
and would have considerably lower entropic drag than systems 
whose motion is not as constrained. 



The information sources and actors in a C2 process have 
access to their own local repositories of information in the 
form of local observations and information accumulated 
through communication.  We call the sum of all information 
over the set of sources and actors at any specified point in time 
the information volume (at that time). Since there will 
generally be overlap in the information known between 
different actors and sources, the information volume can be 
larger than the information content of the state of the system, 
i.e., the descriptive complexity.  However, the information 
volume being larger than the descriptive complexity does not 
mean that fusion of all the information comprising the 
information volume would result in enough unique 
information to be able to determine the state of the system.  
Since the information about the system from a particular 
agent’s point of view is bounded by the system complexity, it 
is clear that the information volume must be bounded by the 
descriptive complexity times the number of unique agents that 
are sources and/or actors. 

It is assumed that actor agents are able to take control 
actions.  Here, we refer to a specific control action that an 
actor takes as an actuation, in much the same way that a 
sensing action results in an observation.  While an actuation is 
a deterministic event and as such contains no information per 
se, we call the information that went into the decision that 
determined the control process the actuation information.  If 
an actuation is taken and held without reprocessing new 
information, the actuation information of that actuation can 
decrease via entropic drag on the information that the decision 
was based upon.  In this way, even if an actuation was based 
on perfect knowledge of the system state, unless the actuation 
eliminated all future uncertainty in the process, the actuation 
could eventually be rendered suboptimal due to the effects of 
entropic drag. 

IV. INFORMATION FITNESS 
For a C2 process, it can be tempting to believe that more 

information results in better, more effective decisions and thus 
more effective control actions.  Indeed, this is not inconsistent 
with notions from information theoretic control theory. 
Touchette and Lloyd [7,8] showed that the maximum decrease 
in uncertainty of some controlled system was equal to the 
decrease possible without any information (i.e., open-loop 
control) plus the information gathered by the controller 
observing the system state.  On its face, this indicates that the 
descriptive complexity should be as high as possible, in order 
to reduce the uncertainty as much as possible.  This strategy 
would certainly work for a system without entropic drag, as 
the time spent gathering, fusing, processing, and 
communicating observations and decisions would have no 
effect on the information content of the observations. 

When entropic drag is considered, however, there is a cost 
to increasing the descriptive complexity. As the descriptive 
complexity increases, the number of bits required to fully 
encode the state increases.   If the communications bandwidth 
is fixed, more time is required to communicate observations.  
Additionally, as the descriptive complexity increases, the 
amount of time required to process these observations after 
they are communicated will likely increase as well.  As the 

time to manipulate information increases, the actual 
information content will be reduced due the decay induced by 
entropic drag and there is likely a point where the information 
will be decaying faster than it can be used [9], see Figure 1. 

 
Figure 1: Uncertainty of a sample two-dimensional world showing 
effects of entropic drag as unit resolution is increased. Increasing 
resolution increases complexity, which increases communication 
time, resulting in more entropic drag [9]. 

Beyond information content and its decay via entropic drag, 
there are other factors that determine the utility of information.  
Different actors have different tasks to accomplish, and the 
nature of these tasks determines the relevance of an 
observation to these actors.  Much as the relevance of an 
observation to an agent decays relative to localization in time, 
it is natural to suggest that for certain types of agents there is 
likely a decrease in relevance of an observation with respect to 
spatial localization as well.  If an agent is not fast or far 
reaching enough to affect entities far away in space, that 
information will likely be less relevant to that agent.  There are 
also likely cases where the utility of information to an agent is 
a nonlinear function of the specific observations and not just 
the sum of the information content.  Because of this, a C2 
process is, as has often been said, about getting the right 
information to the right agents at the right time, and there are 
tradeoffs between individual utility of information and mission 
objectives. 

The following sections we describe some simulation-based 
experiments that initially focus on situational awareness, the 
“observe orient” portion of the OODA loop and subsequently 
extend to include the execution or “act” part of the OODA 
loop.  All of these experiments assume a uniform utility of 
information.  

V. METHODOLOGY 
A. Graph Theoretic Preliminaries 

Here, we define the command and control network 
topology using the mathematical concept of a graph. A (finite) 
graph G = (V,E) is a collection of two sets, where V={1,…,N} 
is the set of N vertices or nodes of the graph, and E ⊆ V×V  is 
the set of edges of the graph.  In this manuscript, we assume 
that G is an undirected graph with no self-loops, thus  
(i,j) ∈ E ⇔ (j,i) ∈ E, ∀i, j∈V and (i,i) ∉ E, ∀i,j∈V. Let 
deg(i)=|{i,j} ∈ E : j ∈ V}| be the degree of the vertex i.  A 
graph is connected if for any i, j ∈V, i ≠ j, there is a sequence 
of vertices ak, k=0,…,K, where (al-1,al) ∈ E for l=1,…K, a0 = 



i,  and aK

 

i

 = j.  We call this set of vertices a path, and the 
length of the path is K, and the minimum length of all such 
paths between  and 

 

j  is called the geodesic distance between 
i and j. We denote this length d(i, j) when i, j are connected, 
and set d(i, j)=∞ if they are not connected.  A path is simple if 
it repeats no vertices from start to end (thus all minimum 
length paths are simple, but not vice-versa).  A graph is 
acyclic if for every i∈V, there does not exist a simple path of 
nonzero length from i to i. 

A number of different graph topologies are studied here, 
including randomly generated graphs.  All graphs are assumed 
to be finite and connected, as well as undirected and without 
self-loops, as described above.  An all-to-all or fully connected 
graph is a graph where each vertex is connected to all other 
vertices, i.e., deg(i)=|V|-1, ∀i∈V (see Figure 2a).  A tree is a 
connected acyclic graph.  If we choose one vertex i in a tree 
and call it the “root” of the tree, then we have a rooted tree.  
The parent of a vertex i in a rooted tree is the vertex j such that 
(i, j) ∈ E and (i, j) is in the simple path to the root, and every 
vertex except the root has a unique parent.  The children of a 
vertex i are the set of vertices for which i is a parent, and a leaf 
is a vertex without any children.  Vertices of the same 
geodesic distance from the root are said to be of the same 
generation.  Here, we look at two particular classes of rooted 
tree, m-ary trees and regular trees. An m-ary tree is a rooted 
tree where each node has at most m children.  Regular trees 
are described by a vector [a1,a2,…,an], where ai

Figure 2

 are positive 
integers, that define the maximum number of children per 
node in a generation (see b).  For a given regular tree 
described by [a1,a2,…,an], the root has at most a1 children, 
the root’s children have at most a2children, and so on.  Clearly 
an m-ary tree is also a [m,…,m] regular tree.  Unless otherwise 
noted, all m-ary and regular trees are “full” in the sense that 
they have the maximum number of children per generation, 
and the number of generations is fixed. 

  

(a) (b) 

Figure 2: Sample graphs. (a) Fully connected. (b) [3,6] tree. 

A path graph is a tree with two vertices of degree one, and 
the remaining vertices of degree two (see Figure 3a).  A 1-ring 
is formed by taking a path graph and adding an edge between 
the two vertices of degree one (assuming |V| ≥ 3).  A k-ring 
(for k > 1) can then be defined from a 1-ring by connecting 
each vertex to vertices with geodesic distance 

 

≤ k  along the 
1-ring, up to |V|/2, where x is the greatest integer ≤ x (see 
Figure 4). The final class of non-random graphs that we 
consider is the two-dimensional grid graph.  A grid graph G 
can be defined as the Cartesian product of two path graphs 

P1=(V1,E1) and P2=(V2,E2), where the vertices of G=V1×V2  
and two vertices (i,i') and (j,j’) are adjacent in G if i=i' and 
(j,j’) ∈ E2 or j=j’ and  (i,i') ∈ E1 Figure 3 (see b). 

 

 

(a) (b) 

Figure 3: Sample graphs. (a) Path. (b) 4 by 3 grid. 

  
(a) (b) 

Figure 4: Sample graphs. (a) 1-ring. (b) 3-ring. 

  
(a) (b) 

Figure 5: Sample graphs. (a) 1-ring with two additional links. (b) 
(1,1) scale-free. 

Two different classes of random graphs are investigated 
here as well.  Small world graphs were introduced by Watts 
and Strogatz [10], but we use the variation used by Newman 
and  Watts [11] and also by Monasson [12].  In this variation, 
a small-world graph is generated by adding additional edges to 
the graph, instead of “swapping” a vertex in an existing edge.  
In this paper, we use k-rings as defined above for the base 
lattice, and denote the resulting small-world graph as a k-ring 
with m additional links (k-ring + m for short, see Figure 5a).  
The other class of random graph investigated here is the scale-
free graph generated using Barabasi’s preferential attachment 
mechanism [13].  Here, we use the term (l,m) scale-free to 



denote a graph generated starting from a fully connected graph 
of l vertices and adding l vertices each with degree m at each 
iteration of the construction process (see Figure 5b). 

B. Information Flow Simulation 
To explore the flow of entropic information on a network 

of C2 entities, we constructed simulations that would allow us 
to study network and system parameters.  We use a given 
graph G=(V,E) to model a specific instance of a networked 
collection of entities observing an external system.  The 
simulation models a distributed set of sensors and 
intermediary nodes connected through the network that are 
observing portions of a common system and communicating 
and processing these observations.  This network is assumed 
to be time invariant; so that the edge set E  is fixed over the 
course of an experiment.  In addition to the sets V and E, we 
define a sensor set S⊆V , denoting the entities that are 
equipped with a sensor that observes the system.  Each of the 
sensors observes one bit of information, i.e., each sensor 
partitions the state space in to two equally probable outcomes.  
Additionally, we assume that the set of sensors is such that the 
largest common refinement of the sensors’ corresponding 
partitions results in 2|S| equally probable outcomes, so that the 
maximum amount of unique information in the system is |S| 
bits.  Here, the state space of the simulation does not represent 
a collection of sensor readings, but rather the state space is a 
collection of each node’s information content (i.e., one bit of 
information per sensor less the current entropy).  To model 
entropic drag, we use a function that decays the information 
content (i.e., increase the entropy) of an observation from the 
time that it was actually observed.  For a specific observation 
I(t0) initially sensed at time t0, we calculate the information 
content of that observation at a later time by I(t0+t)=I(t0)(1-
Γ)t

We implemented a discrete event system (DES) simulation 
that accommodates variable delays in computation and 
communication.  This simulation models the “observe-orient” 
portion of the OODA loop. In this model, a node on the graph 
G represents an entity.  Entities are abstractions that represent 
either automated or human elements.  This entity is in one of 
four states: SEND, CHECK, COMPUTE, or SENSE, 
representing the node sending, checking, processing, and 
sensing new information, respectively.  In the sensing state, a 
node i ∈ S  reads one bit of perfect (no initial uncertainty) 
information and associates with this information a time-stamp 
at the current simulation time.  In our experiments we assign a 
delay of 1 sec to the sensing state.  From the sensing state, a 
node immediately enters into a computation state whose time 
length is a function of the amount of information to be 
processed.  Computation delay is determined by a linear delay 
that is proportional to the number of new sensor readings, 
counting each sensor no more than once (i.e., only the most 
recent observation from a given sensor is “processed”).  A 
simulation parameter of β sec per unprocessed observation is 
used to determine the length of the COMPUTE state. The 
term β is used to quantify the complexity of the computations.  
After COMPUTE has been completed, the node enters SEND 
and communicates with its neighbors in the graph by sending 
information that they have processed that the neighboring 
node has not yet received.   This communication stage takes 1 

sec of simulation time regardless of the number of 
observations sent, and all neighbors are communicated with 
simultaneously and without interaction on the part of the 
neighbor.  From SEND the node enters SENSE again if the 
node is in S and there are still sensor readings to perform, 
otherwise, it goes into CHECK.  The state CHECK is a 
holding state where the node remains until it receives new 
information, when the process transitions to COMPUTE on 
the new information. 

, and we call Γ the (geometric) decay rate. 

To test the hypothesis that certain network topologies 
would perform better than others under different decay rates 
and complexities, we compared simulations of thirty different 
graphs at a number of points in the decay-complexity (Γ,β) plane (see Appendix A).  Included in this experiment are a 
fully connected graph, a grid, a number of trees, small-worlds, 
rings, scale-free graphs.  All of the graphs had 127 vertices 
with 64 sensors (the number of vertices and leaves in binary 
tree of seven generations, respectively).  The non-binary trees 
and the grid graphs were truncated from their full size to 127 
by removing rows and columns from the adjacency matrix.  
For the trees, node reduction removed leaf vertices such that 
all siblings of that vertex are removed before removing a leaf 
node from another group of siblings.  For the grid graph, this 
amounts to removing vertices from the last “row” of the grid 
starting at a corner and moving in the same direction.  The 
sensor set for all graphs were vertices 64-127.   Each sensor 
performed exactly one observation at the beginning of the 
simulation.  The primary metric used in this simulation is the 
sum of the information of all processed observations at a given 
time step, denoted the processed information volume. 

To explore the relationship of complexity and entropic drag 
on irregular, random graphs (both small-world and scale-free), 
an intermediate step was taken to first find representative 
graphs.  For each type of random graph (e.g., 3-ring with 10 
links, or scale-free generated by adding 3 nodes per iteration), 
a total of twenty sample graphs were generated, and running 
an experiment on the collection of twenty samples produced 
information volume metrics.  From the results of these 
experiments two (in one case three) graphs were selected 
based on the results.   For most of the samples, one sample 
tended to dominate in the lower-left (Γ,β) ranges and another 
sample dominated in the upper-right (Γ,β)  ranges.  In the case 
of the small-world graph constructed from a 1-ring with 15 
links, there were three dominant samples, one in the lower-left 
and upper-right range, but also an additional sample graph that 
dominated in the middle range between the other dominant 
samples.  These dominant sample graphs were then compared 
with other topologies. 

C. Information Flow with Actuation 
In order to begin an investigation system that includes both 

observation and actuation (control), we implemented a second 
DES simulation.  We chose to first study the simpler case of 
hierarchical C2 processes. This restricts the topologies studied 
to trees.  Specifically, there is a designated root node, and 
distance from that root node determines order in the hierarchy, 
i.e., child nodes are subordinate to their parent node.  Nodes in 
the tree are equipped with sensors as above, but a node with a 
sensor is also equipped with an actuator that can take a one-bit 



control action.  Information is pushed up the hierarchy, and 
actuation decisions are pushed down the hierarchy.  
Additionally, vertices at each level are able to process 
information received from sensors below them in the 
hierarchy, and relay the resulting control actions based on 
information from this subset of sensors to the actuators below 
them. 

In this simulation, each node is in one of seven high-level 
states at any time step: SENSE, SEND_I, REC_I, PROC, 
SEND_A, REC_A, ACT, and HOLD.  As above, in the 
SENSE state, a node that is equipped with a sensor reads one 
bit of perfect information.  If it is a child, it will then transition 
in one time step to HOLD to attempt communication; 
otherwise it will go into the PROC state.  In the SEND_I 
state, a node is sending all of the sensor observations for 
sensors below it in the tree to its parent node, which must be in 
the REC_I state.  Mirroring these two states are the states 
SEND_A, where a parent is communicating actuation 
commands to a child for all of the actuators below the child in 
the hierarchy, and the state REC_A where a child receives 
actuation commands from its parent.  All of the 
communication states last for one time step per bit 
communicated (i.e., one time step per sensor observation or 
actuator command).  From the SEND_I state, the node will go 
in to the PROC state.  From the REC_I state the node will go 
into PROC if it is the root and it has received information 
from all of its children since the last time it was in PROC. 
From SEND_A, the node goes into HOLD. From REC_A, if 
the node is an actuator, it will enter ACT, otherwise it will 
enter HOLD.  In the state PROC, the node will delay for the 
number of sensors below it in the hierarchy (representing a 
processing delay of one time step per bit of observation), and 
from PROC it will go to ACT if it is an actuator, or to HOLD 
if it is not.  The ACT state takes one time step to represent the 
application of the control command to the actuator, and the 
node will then transition to HOLD if it has actuation 
commands to relay to children, or to SENSE if it does not.  In 
the HOLD state, the node first looks among its children for 
nodes who are also in HOLD who haven’t yet received its 
portion of the most recent actuation command (whether this 
was received from a parent or the result of processing at the 
node).  If such a child exists, the child transitions to REC_A 
and the node transitions to SEND_A.  If no such child exists, 
the node will send information to its parent if it has received 
information from all of the node’s children since the last time 
the node communicated with its parent.  If this is the case, the 
node transitions to SEND_I and the parent transitions to 
REC_I.  If neither of the above steps results in a state 
transition, the node remains in HOLD until the next time step 
when it tries again to communicate. 

Clearly, the communication process (for both observations 
and actuations) is significantly different from the process in 
the previous simulation.  For this simulation, a vertex can only 
communicate with a single neighbor at a time, and must wait 
for a neighbor to be ready to initiate communication.  
Additionally, communication between neighbors is now serial, 
so that the communication time is linearly proportional to the 
number of bits in the communication (whether observation or 
actuation).  Another simulation parameter that changed 

between the two simulations is the use of repeated 
observations for this simulation, as compared to the single 
round of observations used in the previous simulation.  Rather 
than information volume, the metric used to evaluate results is 
total actuated information, which we define as the sum over all 
time steps and actuators of the information content behind an 
actuation decision at a given time step and actuator. 

As above, the number of sensors (and thus actuators) is 64 
across all topologies tested; however, the total number of 
nodes was varied to explore the effect of intermediary (non-
sensor/actuator) nodes on the network (see Appendix B).  
Additionally, the root node of the hierarchy was determined by 
finding the node with the minimum average geodesic distance 
to all other nodes in the graph, using a deterministic method to 
break ties (lower node number in our adjacency matrix based 
enumeration).  For regular trees, this corresponds to the root as 
defined in the regular tree definition, for path graphs this is the 
median node, and for the scale-free graphs the initial node in 
the construction algorithm (although this is not guaranteed in 
general).  In addition to the algorithm given above, we also ran 
each graph through two slightly modified simulations. In the 
first modification, a sensor node in HOLD will perform 
another observation instead of a repeated HOLD and then 
enter HOLD again (i.e., the observations will be more recent 
when the node finally communicates with its parent).  We call 
this resensing.  In the second modification, a sensor node in 
HOLD will transition to the SENSE state instead of a 
repeated HOLD, resulting in a re-sense, re-process, and re-
actuation before it enters the HOLD state and attempts 
communication again.  We call this reprocessing. 

VI. RESULTS 

A. C2 Topology impact on Situational Awareness 
(Information Flow Simulation) 
To test the hypothesis that different topologies would 

perform better (in terms of information volume) under 
different computational complexity and entropic drag 
conditions, thirty different graphs were compared at a number 
of points in the (Γ,β) plane using the information flow 
simulation as described in Section 5.1.  Specifically, the decay 
rate varied from 0.001 to 0.999 in increments of 0.002 
bits/step, and the computational complexity varied from 0 to 
16 steps/bit in increments of one.  To display the results of this 
simulation, we use a dominance plot (see Figure 6), which 
shows the topology with the greatest processed peak 
information volume at each tested point in the (Γ,β) plane.  

There are a number of interesting features present in the 
dominance plot.  First, not every graph has its own region of 
dominance, and there are also regions where multiple graphs 
co-dominate.  At the far right of the plot is a region marked 
“All Bad” where every topology performed equally poorly, 
due to the extremely high entropic drag and computational 
complexities.  Along the majority of β =0and for a small range 
of β =1is the region dominated by the all to all graph.  The 
lower left region of the plane is dominated by various scale-
free graphs, with the two (5,5) scale-free graphs closer to the 
origin, followed by the two (3,3) scale-free graphs.  One of the 
(1,1) scale-free graphs forms much of the boundary between 



the scale-free graphs and the large region dominated by the 
binary tree.  To the right of the binary tree region of 
dominance is the region dominated by one of the 3-rings with 
10 additional links.  Adjacent to this region is a region where a 
3-ring with 15 links is co-dominant with the same 3-ring with 
10 that dominated the region to the left.  Adjacent to this co-
dominant region is another co-dominant region that includes 
the grid graph in addition to the co-dominant graphs in the 
region to the left.  In the lower right corner is a small region 
that is co-dominated by the regular trees.  There are also a few 
very small disconnected regions that appear in the right of the 
dominance plot that are likely related to numerical issues. 

 

There appears to be some connection between neighboring 
regions of topological dominance that appeals to intuition.  
Starting from the far right of the dominance plot, the region 
where all topologies performed equally poorly indicates a 
region where communication is of no value, since the 
information content of any additional observations is lost 
during the time that it takes to communicate and process the 
observations.  The regions dominated by the different small 
world graphs and the grid graphs correspond to regions where 
it is efficient to communicate with a small number of 
neighbors.   To see why the grid graph is co-dominant in one 
of the regions, note that it is only one edge short of being 
isomorphic to a 1-ring with 132 additional links, so it also 
balances local communication with links across the graph.   
The region dominated by the binary tree corresponds to 
parameters that continue to favor communication among a 
small number of neighbors, but also favor gathering this 
information and distributing hierarchically up and down the 
tree.  Adjacent to the binary tree dominated region is a narrow 
region dominated by a (1,1) scale-free graph.  This graph is 
also a tree, but lacks the regular structure of the binary tree 
and instead has the large range of degrees from which the 
scale-free graph gets its name.   The regions from the binary 
tree dominated region moving left each represent a decrease in 

average path length of the graph at the cost of an increase in 
average vertex degree.  A vertex with higher degree tends to 
serve as a conduit of information to its neighbors, so they 
spend a lot of time processing and communicating, and thus 
serve as bottlenecks. 

FIGURE 6: DOMINANCE PLOT. 1- ALL TO ALL. 3- BINARY TREE. 11- (1,1) SCALE-
FREE. 13 - (3,3) SCALE-FREE. 14- (3,3) SCALE-FREE. 15- (5,5) SCALE-FREE. 16- 

(5,5) SCALE-FREE. 24- 3 RING+10. MULTIPLE 1&2- REGULAR TREES. MULTIPLE 

3-  3 RING+10, 3 RING +15, GRID. MULTIPLE 4- 3-RING+10, 3-RING+15.  
MULTIPLE 5-  SEVERAL GRAPHS. ALL BAD – ALL GRAPHS EQUALLY POOR. 

The power law distribution of vertex degree in scale-free 
graphs necessarily results in so called super-nodes of high 
degree [4].  In networks where these super-nodes are 
responsible for increased traffic and information processing 
(such as the Internet), the computational power of these nodes 
should be greater than nodes with little or no computational 
needs (such as end-users) to maintain efficient operation of the 
network.  The design of this simulation, however, is that the 
communication and processing capabilities of all nodes are 
assumed to be identical, beyond network topology differences 
and sensing ability.  This results in areas in the (Γ,β) where 
scale-free topologies are not dominant.  In fact, the region 
dominated by the binary-tree is larger than all tested scale-free 
graphs combined. 

B. C2 Topology impact on Control Efficacy (Information 
Flow with Actuation) 

To test the efficacy of different hierarchical control structures 
(in terms of total actuated information), eleven different trees 
were compared using the information flow with actuation 
simulation.  Each graph was run using the base behavior, as 
well as the resensing and reprocessing modifications as 
outlined above, for a total of 33 different experiments over 
501 logarithmically spaced geometric decay points between 0 
and 1.  Logarithmic spacing of decay was chosen because 
initial simulations using linear spacing indicated more 
variation in relative performance over the lower decay regions 
than the vast majority of the higher decay regions.  Results 
from the comparison of the 33 different experiments are 
shown in Figure 7.  These figures show the ranking of the 33 
experiments in ascending order (i.e., rank 33 had the most 
total actuated information at that decay value), rather than the 
total actuated info.  These plots can be thought of as a slice of 
a dominance plot similar to Figure 6.  Again, there are a 
number of regions of dominance, with four different dominant 
topologies.  The dominant topologies, from lowest decay to 
highest are: [64] regular tree with resensing, [2,2,2,2,2,2] 
regular tree with resensing, (1,1) scale-free with reprocessing, 
and a path graph of length 64 with reprocessing. 

For the vast majority of the decay ranges, i.e., Γ∈[0.1,1), 
the reprocessing modification outperformed all other 
candidates.  The interpretation here is that when the decay 
rates are higher, the actuation commands received from nodes 
above in the hierarchy are based on observations that have 
little remaining information content, and the only way to 
accumulate actuations based on any information content is to 
use repeated local observations.  Nearly the exact opposite 
phenomenon occurs for the low decay regions.  With the 
exception of the dominant [64] regular tree using resensing, 
the next eleven dominant are candidates that are not 
reprocessing or resensing.  This indicates that when decay 
rates are low, for the actuations received from agents above 
are based on much more information, making the reprocessing 
strategy less effective.  Furthermore, at low decay rates, even 



the additional time taken to perform resensing reduces the 
amount of total actuated information by decreasing the 
frequency at observations can be sent upward and actuations 
sent downward. 

 
 

Figure 7: Rank of total actuated information for 11 graphs with 
linear scale in decay.  The graphs are indicated by color –  (1) [2, 2, 
2, 2, 2, 2] (binary) tree, (2) [4, 4, 4] tree, (3) [64] tree (star), (4) 
truncated binary, (5) 64 line, (6,7)  (1,1) scale-free graphs, (8,9) 
truncated (1,1) scale-free graphs, (10) 127 line,  (11) [63] tree.  
Graphs with the base algorithm are denoted with an ‘x’, resensing 
with a ‘+’, and reprocessing with a ‘o’. 

 

 
Figure 8: Rank of total actuated information for 11 graphs with 
logarithmic decay scale.  The graphs are indicated by color –  (1) [2, 
2, 2, 2, 2, 2] (binary) tree, (2) [4, 4, 4] tree, (3) [64] tree (star), (4) 
truncated binary, (5) 64 line, (6,7)  (1,1) scale-free graphs, (8,9) 
truncated (1,1) scale-free graphs, (10) 127 line,  (11) [63] tree.  
Graphs with the base algorithm are denoted with an ‘x’, resensing 
with a ‘+’, and reprocessing with a ‘o’. 

VII. CONTROL 
Control actuations change the state probabilities within a 

system. Ideal actuations reduce the probability of states that 
are inconsistent with the actuation to zero. Actuations within a 
fault-prone system reduce the probability of inconsistent states 
in proportion to the actuator’s probability of failure. This 

change in probability can be represented as an increase in 
order, called negentropy [14] for a system with the possible 
state set X associated with actuation, IA. 

 
where t is the time at which actuation(s) take effect and t is the 
time immediately prior to actuation.  Likewise a sequence of 
actuations A1:k will produce negentropic drag ΓA 

 
Note that negentropy and negentropic drag measure the 

increase in order but do not measure the quality of the 
decision.  

VIII. FITNESS REVISITED 
For the simulations presented here the utility of all 

information is assumed to be equal, however this is not the 
only utility measure for information. In general, information 
varies in contextual importance and in time and space. For the 
purposes of this discussion, assume that the C2 process lasts 
for finite time, and that we have some utility function U : 
X→R that assigns a numerical value to the desirability of each 
system state, based on mission objectives. Then, the expected 
utility E[U] and conditional expectations E[U | x(t)∈S] for 
some set S are well defined based on the transition 
probabilities of the process. Furthermore, for some sequence 
of actuation A1:k={(ui,ti)} treated as inputs to the system,     
E[U | x(t1),A1:k

In this sense, it is the actuations that actually have utility, 
since they are responsible for restricting the future states of the 
system, or, for fault-prone systems, increasing the probability 
of desirable states while decreasing the probability of 
undesirable states. Thus, the utility of a particular piece of 
information is dependent upon the influence the information 
has on actuation. In turn, the value of actuation resulting from 
an information-based control action is equal to the difference 
in expected utilities of the control actuations that would be 
chosen after receiving that information (including time costs 
and entropic drag) less the utility of the actuation that would 
have been taken without that information. 

] defines the expected utility of that sequence of 
actuations. 

If there is no time cost associated with communicating and 
processing information, the impact on utility of the next 
control action of additional information is nonnegative. 
However, if there is entropic drag present in the system, then 
the decay due to entropic drag in both the communication and 
processing stages of an incremental piece of information can 
result in reduced control efficacy, particularly if the 
information would have minor (or no) impact on the decision 
process that decided upon to use a specific actuation. This can 
easily be seen using a uniform utility of information on control 
actuations, as noted above (see Figure 1). Control can be used 
to reduce entropy by modifying the probabilities of succeeding 
system states, for example by restricting the future states of 
the system so some subset of the state space. However, if the 
control actuation is chosen so as to maximize the change in 
expected utility, then by preventing a low utility state of very 
high probability in favor of multiple high utility, low 



probability states the entropy of the system could increase as a 
result of an actuation, even as the expected utility of remaining 
states increased. 

IX. ADAPTATION AND LEARNING 
Another aspect of a C2 process that may be able to be 

analyzed using information theory is the notion of adaptation 
and learning in adversary agents. This would result in non-
stationary (time-varying) probabilities when conditioned upon 
prior states, e.g.,  

 
This is problematic, as decisions based on the identical 

observations (up to a shift in time) would result in identical 
actuations if a stationary system model is used to predict the 
effects of possible actuations. However, since the underlying 
system behavior has changed, the effect of the chosen 
actuation on the system will be different. Assuming that the 
adversary agents are learning and adapting to the behavior of 
the actors, these actuations will be less effective. Similarly, if 
adversary agents are able to predict the behavior of the 
information sources, they may be able to reduce the 
information produced by the sources’ observations. Many 
actuations are designed to reduce uncertainty in the system, 
and observations (potentially) provide information that 
necessarily reduces uncertainty. In this sense, the adaptation of 
the adversary agents serves to reduce the expected reduction in 
uncertainty (i.e., expected gain in information) when an 
actuation or observation is performed. We call this 
phenomenon evolutionary entropic drag. 

This notion is prevalent in game theory, specifically in the 
context of competitive repeated games [15][16], where the 
(mixed) strategies of opponents are allowed to vary with time, 
and are thus non-stationary. In this context, even if the 
behavior of the adversary agents is stationary, there is still a 
notion of uncertainty in the strategy of the adversary that 
appears as a non-stationary strategy (strategic entropy) that 
can occur due to finite memory not being able to store all past 
actions of the adversary, for example, if the strategy is 
dependent on a number of previous states of greater quantity 
than can be stored in the actors’ memory. In the machine 
learning community, the notion of a non-stationary 
environment is known as concept drift or concept shift 
depending on whether it is a gradual or sudden change. This is 
of particular concern in the field of online learning, where the 
target concept to be learned can change (e.g., classifying 
multiple shapes of varying color by shape changes to 
classifying them by color [17]. Alternatively, the target 
concept could stay the same, but the underlying distribution of 
data could change (data drift or data shift), resulting in 
previously learned rules to become less effective [18]. 

Methods have been proposed for detecting these non-
stationary changes using information theoretic criterion, 
typically based on approximations to the entropy rate [19][20]. 
The entropy rate of a process is 

 
when the limit exists. Techniques from the tracking domain 
can also be used to deal with non-stationarity, including 

adaptive filtering (e.g., [21]) and non-stationary models (e.g., 
jump-Markov or switched linear systems [22]). Since entropy 
depends only on the probabilities, and not the outcomes, it 
may be more appropriate to quantify and study the notion of 
evolutionary entropic drag using a distance metric on the 
probabilities (taken as a subset of Rn there are n distinct 
outcomes, or as an element Lp

X. FUTURE WORK 

 space for continuous 
probabilities) or a divergence (e.g., Renyi, Kullback-Leibler). 

This paper describes an approach for using information 
theory to assess all aspects of coordinated decision-making 
(the OODA loop) facilitated by C2 structures. Simulation-
based experimentation has been used to generate quantitative 
results that show a relationship between complexity, entropy 
and entropic drag and situational awareness (the “observe-
orient” portion of the OODA loop) produced by C2 structures 
with varying topologies. Additional experiments produced 
quantitative results that include “actions”, resulting in an “OO-
A” loop. A formalism for extending these experiments to 
include the decision-making process has been introduced. 
Future work will further refine the information-theoretic 
models of decision-making strategies and use the models as a 
basis for additional experimentation that includes the entire 
OODA loop.  

Modeling decision-making processes across a distributed 
system will require information-theoretic models of multiple 
decision-making strategies. Of particular interest is a 
comparison between deliberative planning and training. The 
concept of evolutionary entropy has been introduced in this 
paper as an information-theoretic metric for exploring this 
relationship. Also of interest is a comparison between human 
in-the-loop decision-making, human on-the-loop decision-
making and fully autonomous decision-making (machine 
intelligence). A series of mixed human-machine experiments 
are proposed to produce data sets from which models may be 
constructed. 

Abstract, context-independent, models formed the basis of 
the experiments discussed in this paper. To demonstrate that 
the experimental results hold for real-world systems additional 
experiments are planned. In these experiments militarily 
relevant real-world systems are characterized through 
information-theoretics and C2 efficacy will be measured 
through a series of simulation-based experiments. Finally, a 
prototype agile C2 system is proposed. In this proposed 
system the C2 system uses information- theoretic metrics to 
conduct real-time assessments of C2 performance and, based 
upon those metrics, dynamically changes the C2 structure and 
information exchange strategy. 

XI. CONCLUSION 
This paper described a method for evaluating C2 structures 

based upon information theory. Specifically, complexity, 
entropy and entropic drag were used to characterize dynamic 
engagements and C2 performance. Evolutionary entropy, a 
novel information theoretic metric that we believe can be used 
to assess the comparative benefits of training vs. planning, was 
also defined. Simulation-based results demonstrated that 



correlations do exist between information theoretic 
measurements of a situation and a C2 structure’s effectiveness 
in addressing that situation. In these experiments it was found 
that the optimal amount of information used to describe a 
dynamic scene and the optimal topology used to coordinate 
units operating in that scene varied as the information-
theoretic metrics of the scene varied. In particular, for certain 
information-theoretic characteristics, binary trees and lattice-
based topologies out-performed the scale-free topologies, and 
vice-versa.  Based on these results we can confidently state 
that the structure used by an organization to effect command 
and control should vary as the situation changes and, further, 
that information-theoretic metrics can be used as a basis for 
selecting a C2 strategy. 
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APPENDIX A 

LIST OF TOPOLOGIES  USED IN INFORMATION FLOW 
SIMULATION 

1. Fully connected 
2. Star ([126] tree) 
3. Binary tree ([2,2,2,2,2,2] tree) 
4. [3,3,3,3,3,3] tree truncated to 127 vertices 
5. [4,4,4,4] tree truncated to 127 vertices 
6. [2,3,4,5] tree truncated to 127 vertices 
7. [11,11] tree truncated to 127 vertices 
8. 1-ring 
9. 2-ring 
10. 3-ring 
11. (1,1) scale-free 
12. (1,1) scale-free 
13. (3,3) scale-free 
14. (3,3) scale-free 
15. (5,5) scale-free 
16. (5,5) scale-free 
17. 1-ring+10 
18. 1-ring+10 
19. 1-ring+15 
20. 1-ring+15 
21. 1-ring+15 
22. 1-ring+5 
23. 1-ring+5 
24. 3-ring+10 
25. 3-ring+10 
26. 3-ring+15 
27. 3-ring+15 
28. 3-ring+5 
29. 3-ring+5 
30. 11 by 12 grid truncated to 127 vertices 

 

APPENDIX B 

LIST OF TOPOLOGIES  USED IN INFORMATION FLOW WITH 
ACTUATION SIMULATION 

1. [2,2,2,2,2,2] tree 
2. [4,4,4] tree 
3. [64] tree (star) 
4. [2,2,2,2,2,2] tree truncated to 64 vertices 
5. 64 vertex path graph 
6. (1,1) scale-free 
7. (1,1) scale-free 
8. (1,1) scale-free truncated to 64 vertices 
9. (1,1) scale-free truncated to 64 vertices 
10. 127 vertex path graph 
11. [63] tree 
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