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ABSTRACT 

The Department of Defense’s future vision for Network Centric Operations (NCO) 
will increase combat power by networking relevant entities across the battlefield. This 
will result in highly complex mission scenarios in which the operator’s workload will be 
easily overloaded if the system is not designed to support the mission requirements. 
New technologies for these complex command and control environments are currently 
being developed. However, little has been done to evaluate the adequacy of a particular 
technology for specific sets of mission requirements. There is neither a standard 
methodology to evaluate these new technologies, nor a research environment to test 
these technologies under realistic assumptions. This paper will introduce a new 
approach to evaluate these technologies and determine whether they can transition into 
practical applications for the Navy, and under which limitations. 
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I. INTRODUCTION 
 

The Department of Defense’s future vision for Network Centric Operations (NCO) 
is intended to increase combat control by networking relevant entities across a 
battlefield [1]. This new vision implies large amounts of information sharing and 
collaboration across different entities. An example of a futuristic NCO scenario is one in 
which a group of heterogeneous Unmanned Vehicles (UVs) are supervised by a single 
operator using NCO technology. In this type of complex command and control (C2) 
scenario, UV operators will be subjected to vast amounts of information as compared to 
today’s command and control scenarios. Therefore, this vision brings with it a new 
problem that must be addressed: How to maintain an adequate workload to avoid 
information overload and resulting loss of situation awareness. Currently, C2 
technologies that allow the operator to control multiple UVs in a NCO scenario are 
rapidly increasing. The development of these new C2 technologies generates the 
tendency to exponentially increase the ratio of UVs to operators. However, if systems 
are inadequately designed or are used beyond their design capabilities, they will not 
adequately control for increased workload, which in turn will cause the operator to 
become overloaded and lose situation awareness. It is critical that military decision 
makers develop predictive models of human and system performance to evaluate the 
adequacy of a system’s design to satisfy specific mission requirements. 

 
 

II. BACKGROUND 
 

Mental workload is a limiting factor in deciding how many UVs an operator can 
control or supervise. In the case of one operator supervising multiple vehicles, the 
operator’s workload is measured by the effort required to supervise each vehicle and 
the overall task. The effort required to supervise an individual UV in a team depends on 
the efficiency of the system to reduce workload and increase situation awareness. 
Moreover, workload also depends on the complexity of the mission scenario. Some of 
the characteristics of a complex mission scenario as defined by military standards 
include: mission time constraints, precision constrains, repeatability in tasks (i.e., 
navigation, manipulations, etc.), level of collaboration required, concurrence and 
synchronization of events and behaviors, resource management (i.e., power, 
bandwidth, ammunition), rules of engagement, adversaries, and knowledge 
requirements [2]. The degree to which these characteristics are required also define 
workload. Consequently, if the system is not designed to achieve specific types of 
requirements, then when it is tested for those requirements the system may not perform 
them adequately.  
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Previous attempts to model operator capacity were developed to display 
temporal constraints associated with the system. The complexity of these measures 
progressed from measuring operator capacity in homogenous UVs controlled by one 
operator [3-7], to scenarios in which teams of heterogeneous UVs are supervised by 
one operator [8]. The first equation developed to predict operator capacity in 
homogenous UVs suggested that the operator capacity is a function of the Neglect Time 
(NT), or the time the UV operates independently, and Interaction Time (IT), or the time 
the operator is busy interacting, monitoring, and making decisions with the system [3]. 
Critics of this method suggested that the equation lacked two critical considerations: 1) 
the importance of including Wait Times (WTs) caused by human-vehicle interaction, and 
2) how to link this equation to measure effective performance [6]. Hence, WTs were 
added to the equation to account for the times the UV has to perform in a degraded 
state because the operator is not able to attend to it or is not aware of a new incoming 
event. Three WTs were identified: Wait Times due to Interaction (WTI), Wait Times due 
to Loss of Situation Awareness (WTSA), and Wait Times due to Queue (WTQ).  

Carl Nehme from the Massachusetts Institute of Technology (MIT) developed the 
Multiple Unmanned Vehicles Discrete Event Simulation (MUV-DES). He attempted to 
create a link to performance by using proxies to measure workload and situation 
awareness [8]. In this model, the researcher intended to model heterogeneity in UV 
systems in order to evaluate the system’s design. The human was modeled as a server 
attending to vehicle-generated tasks – both exogenous and endogenous tasks – as 
defined by their arrival and service processes. The concept of utilization was introduced 
as a proxy for measuring mental workload. Utilization Time (UT) refers to the 
percentage of time the operator is busy. The concept of WTSA was used as a proxy to 
measure Situation Awareness. The UT and WTSA measures were computed as a type 
of aggregate effect of inefficiencies in information processing rather than being 
computed as individual measures of workload and situation awareness. The author of 
this model suggested that many other sources of cognitive inefficiencies, besides these 
two proxies, are manifested through cognitive delays. He emphasized that measures of 
UT and WTSA are extremely critical to determine supervisory performance and 
suggested that better methodologies to measure these variables need to be developed.  

 
III. PROJECT GOALS 

This study aims to develop a model of operator capacity in a complex mission 
scenario that converges all previous research in the area to create a more 
comprehensive model of operator capacity. This comprehensive model is intended to fill 
in the gaps of current research by introducing new variables and relationships to 
previous models. The model will be constructed in a way so prior knowledge about the 
relationship between variables will serve to better predict missing data, such as 
workload and situation awareness. Moreover, the model will be structured in a way that 
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will make it easy to determine which areas in the system design need improvement. The 
ultimate goal of this study is to develop a decision-making tool that will serve to evaluate 
and determine the effectiveness and limitations of a particular NCO technology in a 
complex mission scenario. 

 
IV. METHODOLOGY 

 
A. Approach 
 The approach taken by this research study was to model the decision-making 
process required to decide whether to increase a particular team size. This approach 
was taken in order to present decision makers with a decision-support tool that will 
ensure that knowledgeable decisions are made in regards to the adequacy of a given 
team size with a particular NCO technology. Modeling the decision-making process, as 
opposed to the environment, allows for more knowledgeable decisions because not only 
are the most important factors in the decision taken into account, but optimization of the 
recommended decision’s outcome is also possible. This approach provides adequate 
information to the user to make a decision. And while the model is based on answering 
this particular question, the nature of the situation is manifested in the model, thus 
allowing users to draw more conclusions than only the adequacy of the team size.  

 
B. The Model   

 
i. Model Overview 

 A decision network was developed to model the decision-making process 
required to decide whether to increase a given team size with the selected NCO 
technology. Netica Software [9] was used to develop a Bayesian decision network that 
incorporates quantitative and qualitative information about the model. This software was 
chosen mainly because it can accommodate missing or incomplete data. Using Netica 
allows researchers to compute unobservable variables (i.e., missing data) based on 
measures that are observed (i.e., prior knowledge).  
 A decision network consists of nature, decision, and utility nodes. Nature nodes 
represent variables over which the decision maker has no control. Decision nodes 
represent variables over which the decision maker can make a decision (see blue 
nodes in Fig. 1). Utility nodes represent a measure of value, or the decision maker’s 
preferences for the states of the variables in the model (see pink nodes in Fig. 1). In this 
type of network, the outcome of a decision node is maximized by finding a configuration 
of the various states of the sets of variables that maximize the values of the utility node. 
Therefore, based on a series of requirements, or utility values, a decision network 
provides the user with the correct decision. Additionally, the arrows in the model 
represent reasoning relationships and are detailed in the conditional probability tables 
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(CPTs) of the nature and utility nodes. In the CPT, the distribution of each node will be 
determined a priori based on the relationships specified in each conditional probability 
table.  
   

ii. Model Assumptions 
 This model makes several assumptions. First, the type of UV system addressed 
by this model is one in which a single human operator is responsible for supervising a 
team of heterogeneous UVs. The human operator is assumed to act in a supervisory 
control style, interacting with the system at discrete points in time (i.e., there is no 
manual control). Second, in this model, the human operator is responsible for 
supervising a team of heterogeneous UVs defending an oil platform from potential 
enemies. Third, the human operator could be situated in a ground-based, sea-based, or 
airborne control station. Fourth, the model was built in a way such that decision makers 
will use this model to help them decide if a particular technology is adequate for specific 
mission requirements. Finally, the model assumes that the decision making process 
required to make this decision is hierarchical; therefore, later decisions are based on 
earlier ones. The model captures attributes from the Operator Performance Model, the 
System Performance Model, and the Operator Capacity Model as shown in Figure 1.  

 

 

Fig. 1. A high level representation on the attributes the model captures.  Notice that variables of interest in Operator 
Performance Model are Operator Attention Allocation Strategies and Operator Decision Making Efficiency, while in the 
System Performance model are Usability, Automation Level and Algorithm Efficiency. The output of the operator capacity 
model is to determine an adequate team size.   
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iii. Model Description 
 The model is based on three major areas of relevance for the decision to 
increase the team size: system performance, operator performance, and cognitive 
workload (See Fig. 2). These areas of relevance are represented in the model as sub-
models; each of them contains one or more decision nodes that correspond to the 
decisions that must be made by the operator in each area to ensure that they are 
working adequately. The order in which the decision nodes have been organized 
represents the way in which decisions should be made (see blue nodes on Fig. 1). The 
model represents a sequence of decisions in which later decisions depend on the 
results of earlier ones. In this model, the last decision is shown at the end of the 
sequence. The last decision determines whether the team size should be increased.  
 The first sub-model, system performance, includes three decision nodes with the 
followings decisions: 1) Is the interface effective? 2) Does the system have an adequate 
level of automation? 3) Are the system algorithms efficient for the task? These three 
decisions were included in this sub-model because they represent areas that are 
important to ensure good system performance. Some of the utility nodes for each of 
these decision nodes were identified from the literature, while some others were 
included to ensure that specific mission requirements are satisfied. For example, if the 
system has good interface usability, the situation awareness of the operator will be high. 
Moreover, if the situation awareness is high, the system’s automation level must be 
somehow effective to avoid loss of situation awareness and/or complacency. Then, to 
ensure that the mission requirements are satisfied, the algorithms used must be working 
efficiently toward achieving the mission goal. This efficiency is measured by the number 
of times the operator reassigns a mission that was previously assigned by the system, 
with a lower number signaling higher efficiency. Note that algorithm efficiency is defined 
in this model only as a result of the operator’s perceived trustworthiness of the system. 
If the system is not perceived as trustworthy, then the operator will tend to override the 
system frequently and the algorithm efficiency will be low.    
 The second sub-model, operator performance, needs to ensure that the operator 
performs effectively with the system being evaluated, as more UVs are introduced to the 
team, and the mission scenario becomes more complex. Since this is a supervisory 
control environment, operator performance is defined in terms of the operator’s decision 
making. There are two decisions (decision nodes) that are important to evaluate 
whether the operator’s performance is adequate for the task: 1) Is the operator’s task 
management strategy efficient? 2) Is the operator’s decision making efficient? The first 
decision is necessary to evaluate whether operators will efficiently prioritize different 
tasks that arrive simultaneously. The second decision is necessary to evaluate whether 
the operator will successfully achieve the goals of the mission (i.e., protecting the asset 
from enemy attack). Together these two decisions summarize what is important to 
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ensure a satisfactory operator performance. Please note that by measuring task 
management efficiency, an attention inefficiency component is included in this model. 
 Finally, the last sub-model, cognitive workload, includes the final decision node: 
“Increase Team?” For this decision, it is important to ensure that operators are not 
overloaded, but instead their workload is adequate to successfully complete the mission 
scenario. This final decision node is the end of a sequence of decisions and therefore it 
depends on the outcomes of the previous decisions made in the system performance 
and operator performance sub-models. Hence, in order to avoid cognitive overload, not 
only does the system have to efficiently perform in the mission scenario, but the 
operator also has to perform efficiently to ensure that tasks are adequately managed 
and do not overload the operator. The cognitive workload and operator performance 
sub-models are strongly associated. If cognitive workload is too high, then the operator 
performance will be low. Therefore, the more inadequate management and tactical 
decisions operators make, the higher their workload will be.  
 System performance, operator performance, and cognitive workload are the 
foundation of this model. Most of the knowledge about the model relationships between 
variables was acquired from a literature review. Variables such as “Information 
Overload” and “System Interruption” were included to emphasize the need to evaluate 
these aspects of the usability of the system (see Fig. 2) in complex supervisory control 
tasks. These variables are relevant because they contribute to design interfaces, 
especially in the supervisory control environment in which large amounts of information, 
and large event queues can result in information overload and frequent system 
interruptions.  

 
Fig. 2. Decision network representing the decision process involved in deciding whether to increase a particular team size. 
Notice that this picture displays the model with no data. When data are introduced into the model, the system provides the user 
with a recommended course of action that will be displayed as a percentage (i.e., Yes 90%).  
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iv. Model Measures 
 The model allows for measurement of several output variables. These variables 
include those implemented in the MUV-DES model, as well as specific user-defined 
metrics that the model allows to capture. Temporal measures such as UT and WT are 
used because they are critical in a system where the operator has limited attention 
resources that must be divided across multiple tasks. UT is used to capture the effects 
of alternate design variables on operator workload. Some researchers indicate that 
average UT and WT can allow for benchmarking and comparison to be made across 
applications [8, 10]. The level of autonomy in the model is captured through the NT.  In 
addition to the basic metrics inherently captured by the MUV-DES model, this model 
also captures mission-specific metrics. Some of the mission-specific metrics include the 
rate at which tasks are successfully completed, the UVs’ health status and the total time 
to complete the mission scenario. Furthermore, other measures being captured by the 
model include Information Overload, System Interruption, and Reassignment Rate. 
These three measures are important to evaluate the system performance. Information 
Overload and System Interruption are shown to be related to SA; therefore, they are 
used to help determine Situation Awareness (SA). For example, when the operator is 
overloaded with information, he/she is not able to focus on what is important, therefore 
vital SA is lost. Moreover, when the system is constantly interrupting the operator at any 
point in time, it drives the operator’s attention away from one task to focus on another, 
therefore affecting their SA. The system’s Frequency of Reassignment measure is used 
to evaluate the number of times the operator overrides the system. Identifying the 
amount of times the system has been overridden will help us determine how trustworthy 
the system is for the operator. The underlying assumption is that the more the operator 
overrides the system, the less reliable the algorithm for the system is. For a list of the 
performance measures used in the model, see Figure 3.                       

Performance Measures MUV-DES Others 
Wait Times due To Situation Awareness( WTSA) x  
Wait Times due to Queue (WTQ) x  
Wait Times due to Cognitive Reorientation (WTCR) x  
Interaction Times (IT) x  
Neglected Times (NT) x  
Utilization Times (UT) x  
Total Task Time x  
Information Overload  x 
System Interruption  x 
Target Elimination Task- Success Rate  x 
Identification Task-Success Rate  x 
Frequency of Reassignment  x 
UV Health Status  x 

Fig. 3. Performance measures used in the model. Notice table divides measures that are being 
used from the MUV-DES model and other measures that were developed specifically for this model. 
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C. Model Validation and Data Collection 
 

i. Experimental Apparatus 
 Since there is no test bed available that portrays all the complexities of a 
futuristic mission scenario, the Research Environment for Supervisory Control of 
Heterogeneous Unmanned Vehicles (RESCHU) developed by MIT was acquired and 
later modified to be used as a test bed in this study. The RESCHU simulator [8] is a test 
bed that allows operators to supervise a team of Unmaned Aerial Vehicles (UAVs) and 
Unmanned Underwater Vehicles (UUVs) while conducting surveillance and identification 
tasks. This simulation was modified for this study to include the following requirements: 
1) a complex mission scenario with an asset to protect and multiple simultaneous 
enemies to attack, 2) a highly automated system such as mission definition language 
(MDL) and 3) a highly heterogeneous team that is made of at least three different types 
of UVs. The new version of the simulation is called RESCHU SP. 
 It is important to mention that the Unmanned System technology selected as an 
example of a NCO’s technology that allows one operator to supervise multiple UVs is 
the Collaborative Sensing Language (CSL) developed at the University of California, 
Berkeley. The CSL [11] is a high-level feedback control language for mobile sensor 
networks of UAVs. This system allows an operator to concentrate on high-level 
decisions, while the system takes care of low-level decisions, like choosing which UV to 
send for a particular type of task. A framework for the CSL was designed to integrate 
this technology into the complex mission scenario portrayed by the RESCHU SP 
simulator. The CSL version displayed in this simulation is only intended to illustrate one 
way to portray how this technology may work in more complex mission scenarios and 
with supervisory control of heterogeneous UVs (See Fig. 4).  
 

ii. Vehicle Types and Functions 
 The team of UVs in the RESCHU SP simulator is composed of UAVs, UUVs, and 
Unmanned Surface Vehicles (USVs). There are two types of UAV, the MALE UAV and 
the HALE UAV; both travel to areas of interest to detect potential enemies. When a UAV 
detects a potential enemy, a USV is sent to the detection area to identify the vehicle 
(i.e., the unidentified vehicles appear as dark yellow numbered icons in map). Engaging 
the video payload that arrives at a detection area requires the operator to decide 
whether the vehicle detected is a potential enemy. If an enemy is identified, a UUV 
travels to the location to target the enemy. UUVs are slower than USVs and UAVs. 
UAVs are the fastest UVs.  
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Fig. 4. RESCHU SP simulator displays a mission scenario with a team size of nine UVs (blue numbered icons on the 

map), three potential enemies (dark yellow numbered icons on the map), and one identified enemy (red numbered icon on 
the map). Notice that the big red circle is the asset to be protected (an oil platform, while the big yellow circles are threat 
areas that the UVs should avoid. The CSL tab shows how the technology handles missions. In the Active section of the 

tab, identify and attack missions that are currently active are displayed (i.e., box E displays that a mission to identify 
potential enemy 4 was assigned to USV 9). 

 
iii. Operator Tasks 

 The operator’s main task is to identify and target potential enemies while 
protecting an asset (i.e., oil platform). At the same time, the operator is responsible for 
supervising the path of the UVs, in order to avoid traveling through potential threat 
areas (bright yellow areas on the map).  Threat areas are zones that operators should 
avoid in order to protect the health of their vehicles. Moreover, operators are also 
responsible for following chat messages which provide them with the necessary 
Intelligence and guidance to complete their missions.   
 When a UAV detects a potential enemy, a visual flashing alert is issued to warn 
the operator. This alert indicates that the operator should command the CSL system to 
assign a UV to complete the task. The operator commands the CSL to complete the 
task through a right-click interaction. The CSL system chooses a UV that is appropriate 
for the task and one that is also in close proximity to the potential target. The operator is 
in charge of approving the CSL selection by submitting the task through the Submit All 
button in the CSL Editing Controls tab. In the case of multiple identification tasks 
submitted to the CSL at the same time, the operator’s task is to approve the CSL 
selection, and if applicable, determine the order in which the tasks should be conducted. 
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For example, in a situation in which there is only one UV available for the task, the 
operator has to determine the order in which tasks should be conducted to ensure a 
good mission performance. Once the order of tasks has been determined, the operator 
needs to submit the commands so that the CSL can complete the tasks.  Once that a 
task has been submitted, a selected UV is sent to location, when it arrives, a visual 
flashing alert warns the operator that the video payload is ready to engage.  Then, the 
operator engages the video payload through a right-click interaction.  The detected 
vehicle is viewed through the video image displayed in the Payload View tab to 
determine whether the detection is identified as the enemy. The operator identifies the 
vehicle by clicking on the Yes or No button below the payload view.  A supervisor will 
inform the operator via chat whether the identification is correct or not. If the operator 
correctly identifies the vehicle as an enemy, the vehicle icon on the map becomes red. If 
the operator incorrectly identifies a detected vehicle as the enemy, the supervisor will 
override the operator; therefore, the icon will not change to red. The next step for the 
operator is to inform the CSL that a vehicle should be assigned to complete the target 
mission. Once again, the CSL system chooses a UV and sends it to the target location. 
When on target, a visual flashing alert is issued to inform the operator that the UV is 
ready to engage. The operator confirms this through a right-click interaction, and the 
target is eliminated. In this way, the operator is responsible to identify all detections and 
eliminate all enemies in order to protect the asset.  
 

iv. Participants and Experimental Procedure  
 Experiments are being conducted using the RESCHU SP test bed in order to 
provide data for model validation. The experiment was designed to generate a large 
data set suitable for model validation. The recruited participants are students from the 
Naval Postgraduate School (NPS). The online test bed includes: a background and exit 
survey, an interactive tutorial, a practice trial, and one of a set of possible experimental 
conditions.  
 The objective of conducting the first experiment was to validate the model. First, 
it is desired to have performance data associated with the different levels of team size, 
in order to build confidence in the model’s accuracy at replicating human-UV-interaction 
under different conditions. Second, having team size as the independent variable, the 
model’s ability to replicate statistically significant effects on the operator performance 
and/or mission performance could be evaluated. Finally, having data sets associated 
with the different levels of team size allows for predictive validation by selecting a single 
data set associated with one of the conditions and predicting the results observed for a 
second condition.  

In order to ensure the validity of the variables and relationships represented in 
the model, the decision network was converted into a Bayesian Belief Network (BBN) to 
run validation analysis. The software’s Test with Cases Analysis is used to validate the 
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network. The analysis examines if the predictions in the network match the actual 
cases. The goal of the test is to divide the nodes of the network into two types of nodes: 
observed and unobserved. The observed nodes are the nodes read from the case file, 
and their values are used to predict the unobserved nodes by using Bayesian belief 
updating. The test compares the predicted values for the unobserved nodes with the 
actual observed values in the case file and the successes and failures are then 
recorded. The report produced by this analysis has different measures that validate 
each node’s predicted capabilities. After evaluating the validity of the model, we can 
determine which relationships are incorrect and we can make the network learn those 
relationships through the collected cases. Finally, we can run sensitivity analysis and 
predictive validation analysis to determine which variable has the biggest effect on team 
size and how each variable affects the overall result of the model.   
 The study design is a between-subject design with three conditions: high team 
size, medium team size, and low team size. The high team size condition is composed 
of 9 UVs:  3 UAVs, 3 USVs and 3 UUVs. The medium team size condition is composed 
of 7 UVs: 3 UAVs, 2 USVs and 2 UUVs. Finally, the low team size condition is 
composed of 5 UVs: 3 UAVs, 1 USV and 1 UUV. Notice that the UAV’s number was 
kept constant through the different conditions because the UAVs produce little 
interaction with the operator (i.e., UAVs only patrol for detection and operators only 
have to supervise their flight path to avoid flying into threat areas). The number of USVs 
and UUVs was gradually incremented to investigate how they affect the performance 
measures and therefore the model outcome. Furthermore, the baseline of a team of 5 
UVs was decided after pilot testing the simulation with different team sizes.   
 The experimental test bed was designed for a web-based delivery, with an 
interactive tutorial and practice trial. A web-based experimentation was chosen in order 
to obtain as much data as possible. The website was Common Access Card (CAC) 
protected and participation was via invitation. Data collected from the simulation is 
currently being recorded to an online database. Demographic information is collected 
via a background survey presented before the tutorial. Participants are being instructed 
to maximize their overall performance by: 1) avoiding threat areas that dynamically 
changed and therefore minimizing damage to the UVs, 2) correctly identifying enemies, 
3) targeting enemies before they reach the asset, 4) overriding the system when 
necessary to minimize vehicle travel times and maximize mission performance, and 5) 
eliminating potential enemies as soon as possible. Participants have to go through the 
consent form and background survey before they can start the interactive tutorial. The 
estimated time to read through the consent form and complete the background survey is 
10 minutes. Next, participants are allowed to go through the interactive tutorial and 
practice trial until they feel comfortable with the task and the interface. The estimated 
time to complete these two sessions is about 25 minutes. Once they are comfortable, 
participants can move to the test session, which lasts 10 minutes. After completing the 
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test session, participants are required to fill out an exit survey that last about 5 minutes. 
Participants are allowed to see their test score at the end of the test session. 

 
v. Experimental Results 

 Experiments are currently being conducted at NPS, it is expected that the data 
collection will last until the end of May 2011.  
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