

Sensor Positioning and Selection in Sensor Networks for Target Tracking

Umesh Ramdaras^{1,2}, Frans Absil¹ & Piet van Genderen²

Presented by Ariën van der Wal¹

Point of Contact: <u>u.ramdaras@nlda.nl</u>

¹Netherlands Defence Academy

Combat Systems Department Den Helder, The Netherlands

²Delft University of Technology

International Research Centre for Telecommunications and Radar Delft, The Netherlands

June 23, 2010

Overview

- 1. Introduction
 - Framework
 - Research Objectives
- 2. State Estimation
 - Target Tracking
 - Sensors
- 3. Sensor Selection
 - Selection Algorithm
 - Expected Performance
- 4. Sensor Positioning
 - Future Platform Position
 - Combination of Sensor Selection and Positioning
- 5. Simulation Results
- 6. Conclusions

1. Introduction

Framework

- The Network Centric Warfare (NCW) systems concept consists of a sensor, an information and a shooter grid.
- Sensor grid nodes (platforms) contain different sensors with multiple operational modes.
- To realize the NCW capabilities, coordination between various naval units will have to be increased and sensor management (SM) will have to be applied across ships.
- In this paper sensor coordination is extended to a group of moving platforms for single target tracking.

1. Introduction

Research Objectives

- The goal is to optimize the target track estimate accuracy.
- SM is divided into sensor selection and sensor positioning.
- The outcome of the sensor selection process is the appropriate sensor for doing an observation.
- Sensor positioning will place the platforms such, that they can best deploy their sensor capabilities in the near future.
- The result is one target track composed of a sequence of measurements from (possibly) different sensors.

2. State Estimation

Target Tracking

- Target tracking: a sequence of sensor observations is used to estimate the target state vector.
- State estimation is done with the Kalman Filter (KF), a recursive algorithm with a predictor, update and a corrector step.
- The KF output is a target state estimate $\mathbf{x}_{k|k}$ with a corresponding error covariance matrix $\mathbf{P}_{k|k}$.
- The target state is estimated using measurement data \mathbf{z}_k in polar coordinates (range, Doppler and bearing).

2. State Estimation

Sensors

- There are three different radar-like sensors, $s^{(1)}$, $s^{(2)}$ and $s^{(3)}$, each located on a moving platform:
 - $s^{(1)}$: measures bearing only.
 - $s^{(2)}$: measures bearing and range.
 - $s^{(3)}$: measures bearing, range and Doppler.
- Since the detection probability $0 \le p_d^{(j)} \le 1$, it is possible that no measurement is obtained at a certain time step.
- In case of no measurement update: the KF update and corrector steps are skipped.

3. Sensor Selection

Sensor Selection

- The Sensor Selection Algorithm (SSA) compares the available sensors with respect to the best expected performance.
- The sensor with the best expected performance is selected to obtain a measurement at time *k*.

Now, for a single target j sensors will yield one target track.

3. Sensor Selection

Sensor Selection Algorithm

- The Modified Riccati Equation (MRE) is used for performance evaluation. It includes for each sensor the p_d and measurement accuracies.
- The cost function is based on the MRE and the best expected target position accuracy selection criterion (i.e., minimum positional variance in Cartesian coordinates).
- For every sensor the expected performance is computed.

3. Sensor Selection

Expected Performance

Sensor selection criterion: best expected target position accuracy

$$C_{k}^{(j)} = \det \left\{ \begin{bmatrix} \hat{\mathbf{P}}_{k+1|k}^{(j)} \left(1,1\right) & \hat{\mathbf{P}}_{k+1|k}^{(j)} \left(1,3\right) \\ \hat{\mathbf{P}}_{k+1|k}^{(j)} \left(3,1\right) & \hat{\mathbf{P}}_{k+1|k}^{(j)} \left(3,3\right) \end{bmatrix} \right\}$$

$$\hat{\mathbf{P}}_{k|k+1}^{(j)} = ext{expected error covariance matrix}$$

$$\mathbf{P}_{k|k-1} = \mathsf{predicted}$$
 error covariance matrix

$$\mathbf{H}_{k}^{(j)}=$$
 Jacobian of the measurement matrix

$$\mathbf{R}_{k}^{(j)}$$
 = measurement accuracy matrix

$$p_{d,k}^{(j)} =$$
 detection probability

$$\mathbf{F} =$$
 state transition matrix

$${f Q}={\ \ }$$
 process noise covariance matrix

$$(j) = \text{index sensor}$$

4. Sensor Positioning

Sensor Positioning

The future sensor position envelope is divided into nine sectors. This envelope is constrained by:

- 1) the platform speed v and
- 2) the platform maneuverability:
 - maximum longitudinal acceleration a,
 - the heading change α .

Two iteration steps are depicted (2 levels).

Sensor positioning algorithm (SPA):

- fast convergence,
- reduced computational requirements.

4. Sensor Positioning

Sensor Positioning Algorithm

- For each corner point of the 9 sectors the cost is computed based on the MRE expected performance.
- The sector that minimizes the MRE-based cost function is selected and divided again into 9 sectors, until d_{max} is reached.
- The center of the last selected sector is the future position.

4. Sensor Positioning

Sensor Positioning and Selection

- A schematic representation of the SPA and MRE SSA, in relation to the target tracking algorithm:
 - search with the SPA for every sensor the position that will yield the lowest tracking error (best sensor positions),
 - 2) select with the MRE SSA the sensor that maximizes the target track accuracy (best available sensor) for measuring at time k.

Simulations

- Goal: demonstrate the benefits of the SPA and SSA whilst maximizing the target track accuracy.
- Performance evaluation: the real performance (positional variance) after the KF corrector step: $\det(\mathbf{P}_{k|k})_{pos}$.
- Three positioning cases:
 - Case 1: stationary co-located sensors (at three positions),
 - Case 2: a distributed sensor network (stationary) and
 - Case 3: moving sensors (positioning with the SPA).
- Sensor properties:
 - $s^{(1)}$: $p_d^{(1)} = 1$; bearing: 0.09° (accuracy standard deviation, σ).
 - $s^{(2)}$: $p_d^{(2)} = 1$; bearing: 0.09°, range: 31.6 m.
 - $s^{(3)}$: $p_d^{(3)} = 1$; bearing: 0.9°, range: 7.7 m, Doppler: 10 m/s.
- Platform properties: $50 \le v \le 200 \text{ m/s}$, $a_{\text{max}} = 10 \text{ m/s}^2$, $\alpha_{\text{max}} = \pi/20 \text{ rad/s}$.

Case 1: Stationary Co-located Sensors

- The opening true target track (with respect to (0,0)).
- Three co-located sensors positions for Case 1.
- The relative position between the sensors is always the same for each co-located set.
- The line-of-sight (LOS) angle between the sensors and the target is the same.

Case 1: Stationary Co-located Sensors

- The real performance $\det(\mathbf{P}_{k|k})_{pos}$.
- For sensors at (0,0) km the $\det(\mathbf{P}_{k|k})_{pos}$ increases due to the increasing distance between sensors and target.
- The $\det(\mathbf{P}_{k|k})_{pos}$ will decrease for a closing target, (e.g., sensors placed at (10,8) km).
- Although the parameters and selection strategies are equal, the performance strongly depends on the sensor position.

Comparison between Case 1, 2 and 3

- The true target track and sensor positions (trajectories for Case 3) for all three cases.
- Same initial sensor positions for Case 2 and Case 3.
- Sensor positioning for Case 3 is based on the SPA.
- For Case 3 the future sensor position also depends on the past performance of the other sensors.
- β_1 : LOS-angle between $s^{(1)}$ and $s^{(3)}$ at t=50 s; β_2 : LOS-angle between $s^{(2)}$ and $s^{(3)}$.

Comparison between Case 1, 2 and 3

- Sensor selection strategies.
- For Case 1 an alternating preference for $s^{(2)}$ and $s^{(3)}$ is the optimal selection strategy to minimize $\det(\mathbf{P}_{k|k})_{pos}$.
- For Case 2 and Case 3, the LOSangle between sensors and target is not the same.
- Now, in general, the sensor will be selected that alternates with $s^{(3)}$ and has the smallest LOS-angle difference with $s^{(3)}$.
- For Case 3 a same reasoning holds, only now the sensor positions change every time step.

Comparison between Case 1, 2 and 3

- The real performance $\det(\mathbf{P}_{k|k})_{pos}$.
- The 2 humps for Case 2 are due to multiple successive selections of $s^{(3)}$.
- The hump for Case 3 is due to the increasing distance between $s^{(3)}$ and the target.
- Stationary distributed sensors do not necessarily yield better performance compared to colocated sensors.
- Overall, Case 3 yields the lowest $\det(\mathbf{P}_{k|k})_{pos}$ (i.e., best performance).

6. Conclusions

Conclusions

- A combination of sensor positioning and selection is used to minimize the target track error.
- The outcome of both the SPA and the SSA is based on the expected target state accuracy, which is computed with the MRE and the best expected position accuracy criterion.
- The results show that a distributed moving sensor network (based on the SPA and MRE SSA) yields the best performance.
- In general, the sensor preference alternates between a sensor with good range and Doppler measurements, but a poor bearing accuracy and a sensor with a good bearing accuracy, but poor or no range measurements.
- The performance is optimized when the sensors have the same (or a small difference in) line-of-sight-angle between sensor and target.

Sensor Positioning and Selection in Sensor Networks for Target Tracking

Umesh Ramdaras^{1,2}, Frans Absil¹ & Piet van Genderen²

Presented by Ariën van der Wal¹

POC: u.ramdaras@nlda.nl

¹Netherlands Defence Academy

Combat Systems Department Den Helder, The Netherlands

²Delft University of Technology

International Research Centre for Telecommunications and Radar Delft, The Netherlands

June 23, 2010