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IntroductionIntroduction

Why are we interested in synchronization ?
 Motivation: try to understand mechanisms of sensor fusion
 Emergent behavior: What is it and when does it occur?
 Simple oscillators provide a good model for studying these
 We focus on phase synchronization as a basic mechanism for

inducing co-operative behavior
 Is it possible to extend the paradigm to real applications, 

e.g. in modelling military sensor networks ?

 Systems studied: 
1. Non-linear coupling of 2 linear oscillators 
2. Non-linear coupling between N linear oscillators
3. Linear coupling of 2 non-linear oscillators
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Examples of synchronization processesExamples of synchronization processes

 Biology: fireflies, yeast, algae, crickets
 Physiology: heart, brain, biological clocks, ovulation cycle
 Chemistry: chemical clocks
 Engineering: Power grids, distribution of time (UTC)
 Communication requires synchronisation at all OSI layers
 Physics:  coherence of lasers and masers, phase transitions, 

ferromagnetism, superconductivity, spin waves

 SHOW physics demo: 3 metronomes synchronization
 presentatie\Synchronization of Three Metronomes.MP4
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SynchronizationSynchronization

 History: Christiaan Huygens (Feb 1665) “Sympathie des horloges”
 2 pendulum clocks suspended from the same beam will in a 

relatively short period assume the same rythm if they are 
initially out-of-phase; they will eventually synchronize and lock
in antiphase !

 Constant phase difference between 2 oscillations:

 Only possible if both have the same frequency:

 Amplitude of oscillator can be chaotic

0 constant     

1 20 f f   
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The definition of phaseThe definition of phase

 How can “phase” be defined for an arbitrary, periodic signal?

 Different ways to define momentary phase:
 For a simple sine fœ[0,2p]
 For a periodic function phase plane; Poincaré map
 For a complex oscillator Hilbert transform
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Two coupled linear oscillators (1)Two coupled linear oscillators (1)

 2 oscillators, each with its own eigenfrequency :

 with nonlinear interaction          dependent on the phase 
difference
so that

with
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Two coupled linear oscillators (2) Two coupled linear oscillators (2) 

 If synchronization occurs, we have:

 So if real roots for this algebraic equation exist, we have 
found synchronous solutions !

 A an example we take                          and find the graphical 
solutions of

 is stable and      unstable
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Two coupled linear oscillators (3) Two coupled linear oscillators (3) 

 Synchronization  occurs when

 This algebraic equation only has real roots iff the difference 
in eigenfrequencies lies within the interval of values of 
the function            :

 In our example we have:

“Arnold tongue”
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Two coupled linear oscillators (4) Two coupled linear oscillators (4) 

 The common synchronization frequency      of the two 
coupled  oscillators follows from:

where      is the phase difference from the stable graphical 
solution 

 Outside the entrainment region the motions are not
synchronous, but they can still influence each other 
significantly. (-> phase slips)
As an example take  

so that
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Two coupled linear oscillators (5) Two coupled linear oscillators (5) 

 Time dependence of phase difference                 outside the 
region of synchronization.

1 2   
1 1.05       

time

θ

2π phase slip
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Modeling a homogeneous sensor networkModeling a homogeneous sensor network

 Homogeneous network of N nodes (“agents”) acts as a 
distributed sensor (or detector)

 Homogeneous networks are part of typical NEC networks
 Node composition: (analog) sensor, memory, decision taking
 Mathematical modelling: Node = oscillator
 Observable determines the oscillator frequency: Node = 

parametric oscillator (or VCO ?)
 Contact between nodes through non-linear coupling K
 Study the dynamic behavior of the ensemble of N coupled 

oscillators
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Why is synchronization important ?Why is synchronization important ?

 Sensor network: each member of the population is 
represented by a phase oscillator

 Synchronization on physical layer, not on protocol layer: 
faster and more accurate

 Greater robustness, fault tolerance, scalability, small
complexity self-synchronization

 Ultimate goal: local information storage, propagation of 
information, distributed, “soft” decision taking

 Redistribution of mobile sensors to more effectively sample 
the environment in presence of measurement noise

 Propagation and fusion of analog information without a 
central fusion master
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N linear oscillators N linear oscillators 

 Kuramoto model 
 ensemble of N nearly identical oscillators
 symmetric distribution of eigenfrequences
 global coupling strength
 evolution of oscillator phase given by

 Stationary synchronization (mean-field approximation)

 complex order parameter r:
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Sensors acting as detectorsSensors acting as detectors

 Distributed, dense sensor network
 Detection as a stochastic process:

if an event is detected
if no event is detected

 Probability of detection p0
 If the network is sufficiently large the phase rate   

converges to       :

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Synchronisation phase diagram N=400 oscillatorsSynchronisation phase diagram N=400 oscillators

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 = 0.5     400 oscillators

 

S
yn

ch
ro

ni
ze

d 
fr

ac
tio

n 

(1-2/)

SYNCHRONIZED

UNSYNCHRONIZED

interaction strength K

sy
nc

hr
on

iz
ed

fra
ct

io
n



Faculty of Military Sciences

Integration time step = 0.01

How fast is synchronization for N=400 ?How fast is synchronization for N=400 ?
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Results of simulations N=400Results of simulations N=400

 presentatie\freq  N=400.avi
 presentatie\phase N=400.avi
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SynergySynergy

 The basic notion of synergy is:

 or at least:

 Non-lineartity is an essential ingredient for understanding 
sensor data fusion !

 Classical approach via Bayesian networks, DS theory and/or 
fuzzy (belief and plausability) measures

 In the present study we focus on a different approach: the 
paradigm of phase transitions in physics

( ) max( ( ), ( ))g A B g A g B 

( ) ( ) ( )g A B g A g B  

1 ( ) ( ) ( ) ( ) ( )g A B g A g B g A g B       



Faculty of Military Sciences

ConclusionsConclusions

Nonlinear coupling of 2 linear oscillators results in very fast
phase synchronization, provided that the interaction is strong
enough. 
Synchronization of 2 nonlinear oscillators occurs already at very
weak coupling. 
In a non-linear globally interacting many-particle system we 
observe spontaneous (partial) synchronization above a critical 
interaction strength.

The fast and spontaneous synchronization of globally interacting
systems is a form of emergent behavior and may be exploited as 
a mechanism for military smart sensor networks.
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