Temporal reasoning models of a targeting decision chain

Robert J. Houghton Chris Baber

University of Birmingham, UK

www.hfidtc.com

Human Factors Integration Defence Technology Centre

Purpose

- To demonstrate and pilot a new (old) idea for analysing systems
 - A logical method: the event calculus
- Domain of interest:
 - "Strawman" model
 - Activities that occur between calling for a UAV having spotted a target to the point of tasking assets
 - Full F2T2EA model in progress

Sociotechnical systems

- Heterogeneous
- Hard to describe consistently using one method
- Elicitation
 - Verbal descriptions
 - Procedures
 - Narratives/scenarios
- Analogy with a contract

Event calculus

- Logic-based approach to describing events over time
- Consists of
 - Fluents (time-varying variables)
 - Events (things that happen that affect fluents)
 - Sorts (things in the world; objects, people, devices etc.)
 - Time
- Constructed from these are a domain description ('a formalisation') and a narrative of events
- This representation can be shown to be consistent on the basis of <u>first principles</u>

Event calculus 2

Predicate	Explanation
Happens(<i>e</i> , <i>t</i>)	Event <i>e</i> happens at time <i>t</i>
HoldsAt(f,t)	Fluent <i>f</i> is true at time <i>t</i>
Initiates(<i>e,f,t</i>)	If event <i>e</i> occurs at time <i>t</i> , fluent <i>f</i> will be true after time <i>t</i>
Terminates(<i>e,f,t</i>)	If event <i>e</i> occurs at time <i>t</i> , fluent <i>f</i> will be false after time <i>t</i>

Event calculus 4

Time	START STATE
0	
1	
2	
3	
4	
5	
6	
7	
8	NARRATIVE OF EVENTS
9	
10	
11	
12	
13	
14	
15	
16	
17	
	END STATE

POSTDICTION

ABDUCTION / MODEL FINDING

PREDICTION

Task and people

• Task representation:

- Linear flow
 - Event B follows event A etc.
 - Some AND-split/joins, Event I follows Events F & H
 - No attempt made in the model to understand the content of actions, just their sequential relationship to each other
- People representation:
 - Can only do one thing at a time
 - Scope for future work

Linear workflow

Approach to representation

- Based on Cicekli & Yildirim "Formalising workflows using the event calculus" (2000)
- Two states for each activity (active/completed) and two events that change them (Start/End)

Initiates(Start(activity),Active(activity),time).
Terminates(Start(activity),Completed(activity),time).
Initiates(End(activity),Completed(activity),time).
Terminates(End(activity),Active(activity),time).

 Events can only occur once precursor events have occured

How it works...

TIME	0	1	2	3	4	5	GOAL
EVENT	Start(A)	End(A)	Start(B)	End(B)	Start(C)	End(C)	no event
AGENT	Available	Busy	Available	Busy	Available	Busy	Available
TASK A		Active	Completed	Completed	Completed	Completed	Completed
TASK B				Active	Completed	Completed	Completed
TASK C						Active	Completed

Workflow: timeline

	A	В	С	D1	D2	Е	F	G	Н	L	J1	J2	ĸ
START	S	-	-	-	-	-	-	-	-	-	-	-	-
1	A	-	-	-	-	-	-	-	-	-	-	-	-
2	E	-	-	-	-	-	-	-	-	-	-	-	-
3	С	S	-	-	-	-	-	S	-	-	-	-	-
4	С	А	-	-	-	-	-	А	-	-	-	-	-
5	С	Е	-	-	-	-	-	Е	-	-	-	-	-
6	С	С	S	-	-	-	-	С	S	-	-	-	-
7	С	С	А	-	-	-	-	С	А	-	-	-	-
8	С	С	Е	-	-	-	-	С	Е	-	-	-	-
9	С	С	С	S	S	-	-	С	С	-	-	-	-
10	С	С	С	А	А	-	-	С	С	-	-	-	-
11	С	С	С	Е	Е		-	С	С	-	-	-	-
12	С	С	С	С	С	S	-	С	С	-	-	-	-
13	С	С	С	С	С	А	-	С	С	-	-	-	-
14	С	С	С	С	С	Е	-	С	С	-	-	-	-
15	С	С	С	С	С	С	S	С	С	-	-	-	-
16	С	С	С	С	С	С	А	С	С	-	-	-	-
17	С	С	С	С	С	С	Е	С	С	-	-	-	-
18	С	С	С	С	С	С	С	С	С	S	-	-	-
19	С	С	С	С	С	С	С	С	С	А	-	-	-
20	С	С	С	С	С	С	С	С	С	Е	-	-	-
21	С	С	С	С	С	С	С	С	С	С	S	S	-
22	С	С	С	С	С	С	С	С	С	С	А	Α	-
23	С	С	С	С	С	С	С	С	С	С	Е	Е	-
24	С	С	С	С	С	С	С	С	С	С	С	С	S
25	С	С	С	С	С	С	С	С	С	С	С	С	Α
26	С	С	С	С	С	С	С	С	С	С	С	С	Е
ENDSTATE	С	С	С	С	С	С	С	С	С	С	С	С	С

Information requirements

- ...possibly touches on "Organisation"
 - Reflects NEC/NCW future systems
 - Information can be pulled/pushed from network
 - More flexibility in flow of activities
 - Difficulties:
 - How can we be assured dangerous paths of events will not occur
 - Are procedural safeguards sufficient?
 - Swiss cheese error model
 - How can this process be managed?
- Axiomisation:
 - Events can occur when their information needs are met

Representation

• Example of what events do:

Initiates(Targetidentification(target),KnowLocationTarget
(target),time).

 When we have identified a target, it is true we know the location of that target

Example of what events require:

Happens(Finalapproval(target),time)-> HoldsAt(Approved(target),time) & HoldsAt(JAGcleared(target),time)

- & HoldsAt(KnowLocationTarget(target),time)
- Final approval can only be given once it is true that the mission has been approved, JAG has given clearance and we <u>still know</u> the location of the target.
- Differences from workflow:
 - Events considered in more fine grained 'meaningful' manner
 - States of fluents must remain true throughout the operation of the system, not just at specific points in time (earliest event directly influences the final event)
 - Analogy can be draw here with a contract

Information reqs: timeline

TIMEVACTIVITY	А	в	C	D1	D2	Е	F	G	Н	1	J1	J2	K
START	S	-	-	-		-	-	-	-	-	-	-	-
1	A	-	-	-	-	-	-	-	-	-	-	-	-
2	E		-	-	-	-			-	-	-	-	-
3	С	S	•		•	-	-	-	-	-	-	-	-
4	С	A	-	-	-	-		-	-	-	-	-	-
5	С	Е	-	-	-	-		-	-	-	-	-	-
6	С	С	S	S	S	-	-	S	-	-	-	-	-
7	С	С	A	A	A	-		A	-	-	-	-	-
8	С	С	Е	E	Е	-	-	E	-	-	-	-	-
9 10 11 12	С	С	С	С	C	S	S	С	S	•	S	-	-
	С	С	С	С	С	А	A	С	A	-	A	-	-
	С	С	С	С	С	E	E	С	E	-	E	-	-
	С	С	С	С	С	С	С	С	С	-	С	S	-
13	С	С	С	С	С	С	С	С	C	-	С	A	-
14	С	C	C	С	С	С	C	С	C	-	С	E	-
15	С	С	С	С	C	С	С	С	C	S	С	C	-
16	С	С	С	С	С	С	С	С	C	A	С	С	-
17	С	С	С	C	С	С	C	С	С	Е	С	С	-
18	С	С	С	С	С	С	С	С	С	С	С	С	S
19	С	С	С	С	С	С	С	С	С	С	С	С	А
20	С	С	С	С	С	С	С	С	С	С	С	С	Е
END	С	С	С	С	С	С	С	С	С	С	С	С	С

Preliminary results

Time	Agent1	Agent2	Agent3
0	Astart		
1	A active		
2	Alcomp		Bistart
3			Blactive
4	Catart		Boomp
5	Cipatiua		Decomp
5	Cacilve		Deter
0	Comp		Distant
1	F		Diactive
8	F start		Dicomp
9	F active		
10	F comp/G start		
11	Gactive		
12	Gcomp		İstart
13			Lactive
14		Estart	leomp
15		Elactive	
16		Ecomp	
17			
18			
19			
20			Histart
21			Hactive
22			Heomo
23	Jetart		ricomp
24	Jactive		Mictori
25	Loomp		Miscarc
26	o comp		Macave
20			recomp
21			
20			
23	D		
30	Ristart		
31	Ractive	_	
32	Rcomp	Pstart	
33	_	Plactive	
34	Sistart	Peomp	
35	Sactive		Ustart
36	Scomp		Qactive
37	Tistart		Qcomp
38	Tactive		
39	Teomp		Ustart
40			Ulactive
41			Ucomp
42		Vistart	
43		V active	
44		Vicomp	
45	Xistart		
46	Xactive		
47	Xcomp		
48	MISSION ENDS	MISSION ENDS	MISSION ENDS

EC conclusions

- But outputs convert naturally to English
- Allows different ways of thinking about things to be built into models to allow comparisons
 - Other techniques often have a fixed perspective on how a problem should be thought about
- Time consuming
 - Construction of models has potential to be automated
- Potential for an EC model when run in real time to function as the backbone for a decision support/management system

How this all fits in

Analytical prototyping

